
Feasibility of Circuit Polynomials without Black Swans

Weixun Deng∗

deng15521037237@tamu.edu
Texas A&M University

College Station, Texas, USA

Alperen Ergür†

alperen.ergur@utsa.edu
University of Texas at San Antonio

San Antonio, Texas, USA

Grigoris Paouris‡

grigoris@tamu.edu
Texas A&M University

College Station, Texas, USA

J. Maurice Rojas§

rojas@tamu.edu
Texas A&M University

College Station, Texas, USA

ABSTRACT

Suppose 5 is a polynomial in = variables with degree 3 , exactly

=+: monomial terms, coefficients in {±1, . . . ,±� } for some� ∈N,
and Newton polytope of positive volume. Testing real feasibility of

such an 5 is a fundamental task whose bit-complexity remains a

mystery, even in the first non-trivial case : = 2: The fastest algo-

rithms so far have deterministic bit-complexity (= log(3� ))$ (=) .
We prove a significant speed-up that holds for all but a small col-

lection of inputs in the : = 2 case: Bit complexity (= log(3� ))$ (1)

for all but a$
(

1
2=�

)
-fraction of the 5 above, for any fixed support.

Our result follows by combining a connection to diophantine ap-

proximation with a more recent anti-concentration result. In par-

ticular, we show that for random inputs, Baker’s famous theorem

on linear forms in logarithms can be significantly sharpened. We

also consider extensions beyond feasibility such as counting con-

nected components.
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1 INTRODUCTION AND MAIN RESULTS

Counting the number of connected components (a.k.a. pieces) for

the positive zero set, /+ (5 ), of a Laurent polynomial 5 , as a func-

tion of its monomial term structure, is a fundamental problem from

real algebraic geometry that is still far from completely understood.

This is unfortunate, because many real zero sets occuring in prac-

tice come from highly structured polynomials, and one of the most

basic structures to consider is monomial term structure.
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Definition 1.1. Suppose 5 ∈Z
[
G±11 , . . . , G±1=

]
is of the form 5 (G)=∑=+:

8=1 28G
08 , where 28 ∈ {±1, . . . ,±� }, 08 ∈ {−3, . . . , 3}=×1, and G08 :=

G
01,8
1 · · · G0=,8= for all 8 . Assuming in addition that � := {01, . . . , 0=+: }
has cardinality=+: , we call such an 5 an=-variate (=+:)-nomial of

type (�,3, � ), and say that 5 is supported on�. If we also have that

the matrix Â :=

[
1 · · · 1

01 · · · 0=+:

]
∈ Z(=+1)×(=+:) has rank = + 1

then we call 5 an honest =-variate (= + :)-nomial. ⋄
Remark 1.2. The geometric restriction on the exponent vectors

(via the rank of Â above) makes the parameter = meaningful: With-

out this restriction, one could find a simple change of variables to

reduce to a smaller = while still preserving = + : , e.g., the positive
roots of 1 − G~ + G100~100 can be determined from the positive roots

of 1−D+D100 by substitutingD=G~. Note also that the rank restriction
on Â forces : ≥ 1. ⋄

For the special case ==1, Descartes’ Rule tells us that the num-

ber of pieces (for the positive zero set of a univariate (:+1)-nomial)

is at most : , and this bound is tight thanks to the explicit family

of examples (G1 − 1) (G1 − 2) · · · (G1 − :). However, for = = 2, it

isn’t even known if the number of pieces admits an upper bound

of the form :$ (1) : The best upper bound is still exponential in :2

[BS09], and no family of examples evincing even Ω(:2) pieces is
known. However, recent probabilistic results in real fewnomial the-

ory [Kho91, BET-C19] suggest that, on average (for many natural

coefficient distributions), the number of pieces should be $ (:2).
Remark 1.3. All$-,Ω-, and>-constants in our proofs are effective

and absolute, i.e., they are actual constants that can be made explicit,

albeit with some effort. Also, for an 5 as in Definition 1.1, we define

the size of 5 to be
∑=+:
8=1

(⌈
log2 (2 + |28 |)

⌉
+ ∑=

9=1

⌈
log2 (2 + |08, 9 |)

⌉)
,

i.e., the sum of the bit sizes of the coefficients and the exponents of

5 . So in our setting, polynomial-time algorithms have bit complexity

((= + :) log(3� ))$ (1) , as opposed to many basic algorithms in clas-

sical computational algebra that have complexity (3= log� )$ (=) . ⋄
For the algorithmic question of actually counting the number of

pieces for a given /+ (5 ), our knowledge is even sparser: A polynomial-

time algorithm is known only for the cases (=, :) ∈ {(1, 1), (1, 2)}
[BRS09, Bih11]. There is also the folkloric fact that the case : = 1

and = arbitrary never results in /+ (5 ) having more than 1 piece,

and (for : = 1) deciding between 0 and 1 pieces is doable in time

$ (=) (see, e.g., Lemma 2.14 in Section 2.1 below). On the other
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hand, we have NP-hardness (for deciding non-emptiness) if we fix

any Y > 0, let = −→ ∞, and take : = =Y [BRS09]. What happens

between : =1 and : ==Y is still a mystery.

In particular, the fastest algorithms for just deciding if there are

any pieces at all (for : = 2 and = arbitrary) have deterministic bit-

complexity (= log(3� ))$ (=) [BRS09]. (See also [BPR06, BR14] for

muchmore powerful and general algorithms which, unfortunately,

are no faster in the: =2 case.) Sowe prove the following significant

speed-up for the case : =2:

Theorem 1.4. Following the notation above, for a fraction of

1−$
(

1
2=�

)
of honest =-variate (= + 2)-nomials of type (�,3, � ), we

can decide whether /+ (5 ) is empty in deterministic time

$ (=3.373 log3 (=3� )).

Theorem 1.4 is proved in Section 3. The first step is to reduce our

counting question to a Diophantine problem: Determining the sign

of an integer linear combination of logarithms of integers. This re-

duction is straightforward, after we review a special case of the

A-discriminant [GKZ94] in Section 2. So the main subtlety is un-

derstanding the peculiar behavior of linear forms in logarithms.

By combiningwith amore refined classification of isotopy types

from [BDPRRR24], we can in fact count the number of pieces of

/+ (5 ) within the same time bound as Theorem 1.4, and this adden-

dum is currently being finalized. However, the underlying proba-

bilistic technique is the same for both results, so we cover it now.

1.1 Probabilistic Bounds on Linear Forms in

Logarithms

A landmark 1966 result in transcendental number theory due to

Baker can be coarsely summarized as follows [Bak77]: LetΛ(1, 2) :=∑<
8=1 18 log 28 be an integer linear combination of logarithms of ra-

tional numbers. Let � denote the maximal absolute value among

the integers that appear in the numerators and denominators of

the 28 , and let � :=max8 |18 |. A special case of Baker’s Theorem on

Linear Forms in Logarithms [Bak77, BW93, Mat00, Nes03] then im-

plies

Λ(1, 2) ≠ 0 ⇒ log |Λ(1, 2) | > −$ (log� )< log�. (1)

This bound proved remarkably difficult to prove, and the special

case< = 2 already implies the solution to Hilbert’s Seventh Prob-

lem (proving that 01 is transcendental for 0 ∉ {0, 1} algebraic and
1 algebraic and irrational).

Baker won a Fields Medal in 1970 for his lower bound, and later

his bound also proved useful for computing explicit upper bounds

for the size of integer points on curves of genus 1 (see, e.g., [Sch92]).

More recently, Baker’s lower bound has also found use in the de-

sign and analysis of algorithms for real algebraic geometry and

parsing (see, e.g., [BRS09, BHPR11, BSY14, Roj22]).

It has been conjectured that Baker’s lower bound is far from

sharp: Lang and Waldschmidt used a simple heuristic argument to

motivate a conjecture that the optimal bound should be −$ (< log(��))
[Lan78, Pg. 213]. However, there appears to have been no progress

whatsoever, for close to half a century, on their conjecture. Our

algorithmic goals happen to naturally motivate a probabilistic ap-

proach to this bound: Can we prove a sharper version of Baker’s

lower bound, for most inputs instead, and thereby prove that ear-

lier algorithms for real feasibility can be sped up most of the time?

Remark 1.5. The title of our paper was inspired by the title of

[AL17], which studies algorithms that are fast on average, outside of

a small region of inputs. In contrast, we study a setting where worst-

case complexity is low outside of a small region of inputs. ⋄

1.2 Two Models of Discrete Randomness

We start by stating an important consequence of Corollary 1.4 from

an elegant paper of Rudelson and Vershynin [RV15].

Lemma 1.6. Consider a random vector - = (-1, . . . , -<) where
the -8 are independent random variables. Let ?, C > 0 be parameters

such that supI∈R P{|-8 − I | ≤ C} ≤ ? for all 8 ∈ {1, . . . ,<}. Then
there is a constant � > 0 such that for any fixed 1 := (11, . . . , 1<) we
have

sup
I∈R
P{|〈-,1〉 − I | ≤ C ‖1‖2} ≤ �? . �

Remark 1.7. To obtain the lemma one uses the special case3 =1 of

[RV15, Cor. 1.4] and notes that the corollary is stated for a projection

where we allow taking inner product with an arbitrary vector 1. ⋄

1.2.1 Random Integers with Controlled Bit-Size.

Proposition 1.8. Let� ∈ N and consider a uniformly random U

chosen from {±1, . . . ,±� }. Then, for any I ∈ R and any Y ∈
(
1
� ,

1
4

)

we have:

P{|log |U | − I | ≤ Y} ≤ 9Y.

Proof: Note that for any interval [B, C] we have that
P{log |U | ∈ [B, C]} = P{|U | ∈ [4B , 4C ]}, which is in turn bounded

from above by
Twice the number of integers in [4B ,4C ]∩[1,...,� ]

2� .

So if 4I−Y > � then we have P{|logU − I | ≤ Y} = 0. If 4I−Y ≤ �

then we have

P{|logU − I | ≤ Y} ≤
1 +

(
4I+Y − 4I−Y

)

2�
≤ 2

2�
+ 2

(
42Y − 1

) 4I−Y
2�

.

For any Y <
1
4 Taylor’s expansion yields 42Y − 1 ≤ 1

1−2Y − 1 =

2Y
1−2Y ≤ 4Y. So we have

P{|logU − I | ≤ Y} ≤ 2

2�
+ 8Y

(
4I−Y

2�

)
≤ 9Y. �

Remark 1.9. The probability distribution in Proposition 1.8 was

chosen for simplicity. Similar estimates can be easily derived for more

general distributions, e.g., the uniform distribution on {G − �, . . . ,
−1, 1, G, . . . , G + � } for any 0≤G ≤� . ⋄

Combining Lemma 1.6 and Proposition 1.8 gives the following

probabilistic estimate on integer linear sums of logs.

Corollary 1.10. Fix any 1 := (11, . . . , 1<) ∈ (Z \ {0})< and let

U = (U1, . . . , U<) be a uniformly random vector in {±1, . . . ,±� }< .

Then there is a constant �0 > 0 such that for any I ∈ R and any

Y ∈
(
1
� ,

1
4

)
we have:

P{|11 log |U1 | + · · · + 1< log |U< | − I | ≤ Y |1 |2} ≤ �0Y
Since 128 ≥ 1 for all 8 , this also yields

P{|11 log |U1 | + · · · + 1< log |U< | − I | ≤ Y
√
<} ≤ �0Y. �
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Remark 1.11. As noted in Remark 1.9, we could alsomimic the ap-

proach above for independent 08 uniformly distributed in

{G8 − �, . . . ,−1, 1, . . . , G8 + � }, for arbitrary integers G8 satisfying

0 ≤ G8 ≤� . This can be thought of as an adversarial random model

where the adversary is allowed to pick a bad G = (G1, . . . , G=) and a

random perturbation with magnitude � ≥max8 |G8 | is added to G to

obtain the random vector 0. ⋄

Remark 1.12. The constant �0 in Corollary 1.10 satisfies�0 ≤ 9�

where � is the constant from Lemma 1.6. The smallest suitable �

known so far is
√
2, thanks to [LPP16]. ⋄

1.2.2 Discrete Gaussians. A distribution that is commonly used in

discrepancy theory and integer programming applications is the

discrete Gaussian (see, e.g., [ADRSD15]).

Here we will consider discrete Gaussian centered at an arbitrary

integer 0 ∈ Z with standard deviation � . More precisely, for any

G ∈ Z we define ? (G) := 4−
(G−0)2
2�2 and set & :=

∑
G ∈Z 4

− (G−0)2
2�2 . Then

the discrete Gaussian centered at 0 with standard deviation � is

the random variable- that takes integer values with the following

weights: P(- = G) := ? (G)
& .

First we make a quick computation:

1 +& = 2

∞∑

~=0

4
− ~2

2�2 ≥ 2

∫ ∞

0
4
− ~2

2�2 3~ =

∫ ∞

−∞
4
− ~2

2�2 3~ = �
√
2c

So & >�
√
2c − 1, and for any � >4, this also yields & >2� .

Lemma 1.13. Let 0 be an arbitrary integer and let- be the discrete

Gaussian centered at 0 with standard deviation � where � > |0 |.
Then, for any real number I and any 1

4 > Y > 1
� we have

P{|log |- | − I | ≤ Y} ≤ 9Y.

Proof: Note that for any interval [B, C] the probability we have

P{log |- | ∈ [B, C]} = P{|- | ∈ [4B , 4C ]} ≤
2
∑

~∈[4B ,4C ]∩Z 4
− (~−0)2

2�2

&

So we have

P{|log- − I | ≤ Y} ≤

∑
~∈[4I−Y ,4I+Y ]∩Z

4
− (~−0)2

2�2

�

For any Y <
1
4 Taylor’s expansion yields 42Y − 1 ≤ 1

1−2Y − 1 =

2Y
1−2Y ≤ 4Y. So, we have 4I+Y − 4I−Y ≤ 4Y 4I−Y . If � ≥ 0 ≥ 4I−Y we
have

P{|log- − I | ≤ Y} ≤ 4Y4I−Y + 1

�
≤ 9Y

If 0 < 4I−Y , let 3 =: min~∈[4I−Y ,4I+Y ]∩Z |~ − 0 |. Note that 0 +3 >

4I−Y , and thus we have 4I+Y − 4I−Y ≤ 4Y (0 + 3). So, we have

P{|log- − I | ≤ Y} ≤ (4Y (0 + 3) + 1)4−
32

2�2

�
≤ Y + 4Y

(0 + 3)4−
32

2�2

�

If 3 < � , then we are done. Let X =
3
� > 1, then we have

P{|log- − I | ≤ Y} ≤
(
1 + 8X4−

X2

2

)
Y ≤ 9Y �

Combining Lemmata 1.6 and 1.13 immediately gives the follow-

ing probabilistic estimate on integer linear sums of logs.

Corollary 1.14. Let 1 = (11, . . . , 1<) ∈ Z< be an integer vector

with 18 ≠ 0. Let U = (U1, . . . , U<) be a random vector where the U8
are independent discrete Gaussian random variables centered at in-

tegers G8 with variances �8 where �8 > |G8 |. Let � := max1≤8≤< �8 ,

then for any I ∈R and Y ∈
(
1
� ,

1
4

)
we have

P{|11 log |U1 | + · · · + 1< log |U< | − I | ≤ Y |1 |2} ≤ �0Y.
(�0 being the constant from Corollary 1.10.) Since 128 ≥ 1 for all 8 ,

this also yields

P{|11 log |U1 | + · · · + 1< log |U< | − I | ≤ Y
√
<} ≤ �0Y. �

There is evidence [Roj22] that our approach to new probabilis-

tic speed-ups can be extended to systems of circuit polynomials (all

with the same support). Technically, counting pieces in our setting

here is accomplished by using signs of linear combinations of loga-

rithms of rational numbers to decide which discriminant chamber

contains 5 . (This is explained further in Section 2.) To count real

solutions of circuit systems instead, there is a reduction (usingGale

Dual form [BS07]) to counting real roots of a linear combination of

logarithms of degree one polynomials. While the latter problem ap-

pears to be purely transcendental, one can reduce it (as analyzed in

[Roj22]) to computing several signs of linear forms of logarithms

of real algebraic numbers. So we can extend our approach to sys-

tems providedwe have sufficiently strong extensions of Corollaries

1.10 and 1.14 to real algebraic numbers. (There are other technical

hurdles as well, but we leave the details for future work.) This moti-

vates Corollary 1.18 below as a first step toward the harder problem

of counting real roots of circuit systems.

1.3 Random Algebraic Integers

Suppose we are given a primitive element D with a degree 3 field

extension Q(D). We would like to generate random algebraic inte-

gers from the number field Q(D) that have height at most � . We

first recall the basics.

Definition 1.15 (Height). Let U be an algebraic number with

minimal polynomial 20 + 21G + · · · + 23G3 , and let U1, . . . , U3 be the

conjugates of U . Then the height of U , denoted by � (U) is defined as

� (U) :=
(
|20 |

3∏

8=1

max{1, U8 }
) 1
3

The logarithmic height is defined as ℎ(U) := log� (U).

The following lemma is standard (see, e.g., [BG06, Ch. 1]).

Lemma 1.16. Let G = 20 + 21D + · · · + 23−1D3−1 ∈ Q(D) where
Q(D) is a degree 3 number field, then

ℎ(G) ≤ 3
(
max
8
ℎ(U8 ) + ℎ(D)

)
+ log3

Nowwe consider the followingmodel of randomness:We gener-

ate G = b0 + b1D + · · · + b3−1D3−1 where b8 are independent discrete
Gaussian random variables centered at arbitrary integers 28 and

variances �8 where �8 ≥ |28 |. Let � := max{�0, . . . , �3−1, � (D)},
then by Markov’s inequality and Lemma 1.16 we have

P(ℎ(G) ≤ 43� + 2 log3) ≥ 1

2
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So we condition on G satisfying

ℎ(G) ≤ 43� + 2 log3 (2)

and thus our randomness model is a uniform sample among the

algebraic numbers G = b0 + b1D + · · · + b3−1D3−1 that satisfy (2). We

call this model of randomness Γ(20, . . . , 23−1, �0, . . . , �3−1, D).
Lemma 1.17. Let D be algebraic number with |D | ≥ 1, and & (D)

being degree 3 . Let - be a random variable distributed according to

Γ(20, . . . , 23−1, �0, . . . , �3−1, D). Then, for any I ∈ R and any Y ∈(
1
� ,

1
4

)
we have

P{|log |- | − I | ≤ Y} ≤ 9Y.

Proof: By Lemma 1.6 and the fact that
���D:

��� ≥ 1, - satisfies small-

ball estimates at least as strong as discrete Gaussian random vari-

ables. The rest of the proof follows as in the case of discrete Gaus-

sians. �

Corollary 1.18. Fix 1 = (11, . . . , 1<) ∈ (Z \ {0})< and let U =

(U1, . . . , U<) be a random vector where each U8 is an independent

random variable distributed according to

Γ(00, . . . , 03−1, �0, . . . , �3−1, D). Then for any I ∈R and Y ∈
(
1
� ,

1
4

)

we have

P{|11 log |U1 | + · · · + 1< log |U< | − I | ≤ Y |1 |2} ≤ �0Y.
(�0 being the constant from Corollary 1.10.) Since 128 ≥ 1 for all 8 this

also yields

P{|11 log |U1 | + · · · + 1< log |U< | − I | ≤ Y
√
<} ≤ �0Y.

2 WHICH SIDE ARE YOU ON?: CIRCUIT

DISCRIMINANTS AND THEIR SIGNS

Let us first recall a rational function of absolute values that is re-

lated to a particular class of A-discriminant polynomials.

Definition 2.1. Suppose � = {01, . . . , 0<+2} ⊂ Z= is such that

Â :=

[
1 · · · 1

01 · · · 0<+2

]
∈ Z(=+1)×(<+2) has distinct columns and

rank< + 1 for some<≤=. Let 1 ∈Z(<+2)×1 be any generator of the

right Z-nullspace of Â. We then call � a non-degenerate circuit if

and only if 1 has no zero coordinates (and a degenerate circuit other-

wise). Also, for any non-degenerate circuit�⊂R= of cardinality<+2,
and any nonzero real 21, . . . , 2<+2, we define Ξ� (21, . . . , 2<+2) :=(∏<+2

8=1 |28/18 |18
)
− 1.

In our setting, the 28 will always be the coefficients of a polyno-

mial 5 supported on the circuit �. So we will often abuse notation

by writing Ξ� (5 ) instead of Ξ� (21, . . . , 2<+2), assuming 5 (G) =

21G
01 + · · · + 2<+2G0<+2 . When restricted to a suitable orthant in

R<+2, our Ξ� is a monomial multiple of the A-discriminant poly-

nomialΔA from [GKZ94, Ch. 9]. From the development of [GKZ94,

Ch. 9] (restricted to R) we have the following summary of the key

properties of Ξ� that we’ll need:

Theorem 2.2. Suppose �= {01, . . . , 0<+2} ⊂ Z= is a non-degenerate

circuit of cardinality< + 2, 5 ∈ R
[
G±11 , . . . , G±1=

]
is supported on �,

and 5 (G) = 21G01 + · · · + 2<+2G0<+2 . Then /+ (5 ) has a singularity

if and only if Ξ� (5 ) = 0 and sign(1121) = · · · = sign(1<+22<+2). In
particular, when<==, such a /+ (5 ) has at most 1 singular point. �

Example 2.3. � = {0, 2, 7} ⊂ Z1 is a non-degenerate circuit, and

we see that a suitable 1 ∈ Z3 is 1 = (5,−7, 2)⊤ (taking (·)⊤ to mean

transpose). Theorem 2.2 then tells us that 5 (G) :=21+22G2+23G7 has a
degenerate positive root if and only if [[21, 23>0>22 or 21, 23<0<22]

and
��21
5

��5 �� 22
−7

��−7 ��23
2

��2=1]. Note that the last equality is equivalent to
5 log |21 | − 7 log |22 | + 2 log |23 |=5 log(5) − 7 log(7) + 2 log(2).

Note also that Ξ� (5− 7G2 + 2G7)=0 here, and the unique degenerate
root of 5 − 7G2 + 2G7 is 1. ⋄

Example 2.4. �= {(0, 0), (2, 2), (7, 7)} ⊂Z2 is also a non-degenerate
circuit of cardinality 3 and the same 1 ∈Z3 from Example 2.3 works

for this example as well. We then get exactly the same criteria for

21 + 22G21G
2
2 + 23G71G

7
2 to have a degenerate root as in Example 2.3.

However, 5 − 7G21G
2
2 + 2G71G

2
7 has infinitely many degenerate roots in

R2+: They are all of the form (G1, G2)= (A, 1/A ) for A ∈R+. ⋄
We let Conv� denote the convex hull of �, i.e., the smallest con-

vex set containing �.

Theorem 2.5. [BRS09, Thm. 2.17] Following the notation of The-

orem 2.2, /+ (5 ) is empty if and only if at least one of the following

two conditions holds:

(1) All the 28 have the same sign.

(2) Conv� is a simplex, sign(1121) = · · · = sign(1<+22<+2), and
(Ξ� (5 ) + 1)sign(1 9 ) < 1 where 9 is the unique index with

sign(181 9 )<0 for all 8≠ 9 .

Furthermore, /+ (5 ) consists of a single point if and only if the fol-

lowing conditions all hold:< ==, Conv� is a simplex, sign(1121) =
· · ·=sign(1<+22<+2), and Ξ� (5 )=0. �

Remark 2.6. Unravelling the characterization above, we see that

unless all the 28 have the same sign, and Conv� has a particular

shape, we will need to compare a high-degree monomial in the 28
against 1 to know if /+ (5 ) is empty. The latter calculation is then

clearly equivalent to computing the sign of 11 log |21/11 | + · · · +
1<+2 log |2<+2/1<+2 |. This is our central reduction to linear forms

in logarithms. ⋄
Example 2.7. Suppose � ⊂ Z3 consists of the columns of



24 68 −47 52 71

−85 −10 −51 11 87

−90 33 1 28 46


. Then Conv� is a simplex, and Theorem 2.5

(along with a bit of Morse Theory [BDPRRR24]) tells us (assuming

21, 22, 23, 25>0>24) that

/+
(
21G

24
1 G

−85
2 G−903 + 22G681 G

−10
2 G333 + 23G−471 G−512 G3 + 24G521 G

11
2 G

28
3 + 25G711 G

87
2 G

46
3

)

is empty, a single point, or isotopic to a 2-sphere, according as∑5
8=1 18 log |28 | is less than, equal to, or greater than

∑5
8=1 18 log |18 |,

where 1= (43403, 600796, 150818,−1138887, 343870)⊤. This condition
can clearly be handled reasonably via floating calculation on a computer

— provided sufficient accuracy is used for the underlying logarithms. ⋄
Remark 2.8. We thus see that the sign of Ξ� (5 ) (or, equivalently,

the sign of log(Ξ� (5 ) + 1)) appears to determine the isotopy type of

/+ (5 ), at least in certain orthants of coefficient space.We call the con-

nected components of the complement of the zero set of Ξ� (5 ), in the
orthants of (R \ {0})=+2, discriminant chambers. One aspect of cir-

cuits that helps make computing the isotopy type of /+ (5 ) tractable
(for 5 a circuit polynomial) is that every orthant of R=+2 contains at
most 2 discriminant chambers. So, in the circuit case, the topological

behavior of /+ (5 ) depends mainly on whether 5 ∈ /R (Ξ�), or on
which “side” of /R (Ξ�) 5 lies. ⋄
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The degenerate circuit analogue of Theorem 2.5 is similar. In

particular, recall that for any degenerate circuit�= {01, . . . , 0<+2} ⊂
R= of cardinality< + 2, with corresponding right null vector 1 for

Â, the subset � := {08 | 18 ≠0} is a non-degenerate circuit. We also

let 5� (G) :=
∑
08 ∈� 28G

08 .

Theorem 2.9. [BRS09, Thm. 2.18] Following the notation above,

suppose � is a degenerate circuit, 5 ∈ R
[
G±11 , . . . , G±1=

]
is supported

on �, and 5 (G) = 21G01 + · · · + 2<+2G0<+2 . Then /+ (5 ) is empty if

and only if at least one of the following conditions holds:

(1) All the 28 have the same sign.

(2) (a) Conv� is a simplex, (b) sign(1828 ) is constant as 8 ranges
over all indices with 08 ∈�, (c) sign(282 9 ) < 0 for some 8 with

08 ∉�, and (d) (Ξ� (5�) + 1)sign(1 9 ) ≤ 1 where 9 is the unique

index with 1 9 ≠0 and sign(181 9 ) ≤ 0 for all 8≠ 9 . �

Example 2.10. With � = {(0, 0), (1, 0), (2, 0), (0, 1)} it is easily

checked that1= (1,−2, 1, 0)⊤ is a suitable right nullvector for Â, and

the 9 from Theorem 2.9 is 9 = 2. So, for 5 (G1, G2) = 1 − 2G1 + G21 + G2
and 2 >0, we see that 5� =1 − 2G1 + G21 , Ξ� (5�) + 1= 2

2 , sign(1 9 )=1,
and thus /+ (5 ) is empty if and only if 2 ≤ 2. ⋄

So in the end, although the indexing is slightly more complicated,

we can again reduce detecting emptiness of /+ (5 ) to checking the
sign of an integer linear form in logarithms of integers.

Before moving on, we must also recall an explicit bound on the

complexity of computing the sign of a linear form in logarithms.

First, we recall the following paraphrase of a bound of Matveev

[Mat00, Cor. 2.3], considerably strengthening earlier bounds of Baker

and Wustholtz [BW93]. (See also [BMS06, Thm. 9.4].)

Theorem 2.11. Suppose is a degree3 real algebraic extension of

Q, 21, . . . , 2< ∈ \{0}, and11, . . . , 1< ∈Z\{0}. Let� :=max{|11 |, . . . ,
|1< |} and log�8 := max{3ℎ(28 ), | log 28 |, 0.16} for all 8 . Then∑<
8=1 18 log 28 ≠ 0 implies that log

��∑<
8=1 18 log 28

�� is strictly greater

than −1.4 ·<4.530<+332 (1 + log3) (1 + log�)
<∏

8=1

log�8 . �

We must also recall the following classical fact on approximat-

ing logarithms via Arithmetic-Geometric Iteration:

Theorem 2.12. [Ber03, Sec. 5] Given any positive G ∈Q of logarithmic

heightℎ, and ℓ ∈Nwith ℓ ≥ℎ, we can compute
⌊
log2max{1, log |G |}

⌋

and the ℓ most significant bits of logG in time $ (ℓ log2 ℓ). �

Taking 3 = 1, an immediate consequence of the preceding two

bounds is the following algorithmic complexity bound:

Corollary 2.13. [Roj22, Proof of Lemma 4.2]We can compute the

sign of Λ(1, 2) in time $ ((31 log� )< log(�) log2 (log(�) log� )2). �

By combining Corollary 2.13 with Theorems 2.5 and 2.9, we imme-

diately obtain an explicit (deterministic) complexity bound for de-

tecting positive roots for circuit polynomials, i.e., the main results

of [BRS09]. However, the resulting complexity bound is exponen-

tial in =. Our entire goal is to reduce this time bound to polyno-

mial in = and, thanks to our probabilistic corollaries, we’ll at least

accomplish this for a large fraction of inputs. But first let us com-

plete our background by reviewing real root detection for a single

(= + 1)-nomial.

2.1 A Brief Note on the Case : == + 1

We mentioned earlier that detecting real roots for an =-variate

(= + 1)-nomial is much easier than for a (= + 2)-nomial. This is

because of the following folkloric lemma:

Lemma 2.14. Suppose 5 ∈ R
[
G±11 , . . . , G±1=

]
can be written in the

form 5 (G) =∑=+1
8=1 28G

08 where �= {01, . . . , 0=+1} is the vertex set of
an =-simplex, i.e., the rank of Â is = + 1. Then /+ (5 ) is empty if and

only if all the 28 have the same sign.

Proof: Substituting G8 =4
~8 for all 8 , we see that /+ (5 ) is empty if

and only if the real zero set, /R (6), of the exponential sum 6(~) :=∑=+1
9=1 2 94

0 9 ·~ is empty. Since /R (6) is invariant under translation
of �, we may assume 01 is the origin.

Noting that the emptiness of /R (6) is invariant under invertible
linear maps applied to the variables, we can substitute ~ ↦→ "~,

where we can consider ~ as a column vector, and let " be the in-

verse of the = ×= matrix whose 8th column is 08+1. (" is invertible

since the edge vectors of any vertex of a simplex are linearly in-

dependent.) So we may assume 6(~) = 21 + 224~1 + · · · + 2=+14~= .
Finally, since/R (6) is invariant under nonzero scaling of6, and the
emptiness of /R (6) is invariant under translation of the variables,

we may assume 6(~) = Y1 + Y24~1 + · · · + Y=+14~= where Y8 ∈ {±1}
has the same sign as 28 . Letting D8 =4

~8 for all 8 , we are reduced to

deciding the emptiness of /+ (Y1 + Y2D1 + · · · + Y=+1D=). The latter
zero set is clearly empty if and only if all the Y8 have the same sign. �

3 THE PROOF OF THEOREM 1.4

First note that, out of the 2=+2 orthants of (21, . . . , 2=+2) ∈ (R \
{0})=+2, exactly two of these orthants satisfy the condition

(★) sign(1121)= · · · =sign(1=+22=+2).
For those orthants not satisfying Condition (★), Theorems 2.5 and

2.9 tell us that checking /+ (5 )
?
= ∅ is almost trivial: We merely

need to check whether all the 28 have the same sign. Note also that

the sign of Ξ� (5 ) (or, equivalently, log(Ξ� (5 ) + 1)) is independent
of the signs of the 28 . So the inputs where checking /+ (5 )

?
= ∅ is

harder are exactly the inputs where log(Ξ� (5 ) + 1) requires more

accuracy to evaluate. So by Corollary 1.10, we obtain that we can

decide /+ (5 )
?
= ∅ easily on a fraction of 1 − $

(
1

2=�

)
of our input

5 , since our underlying probability measure is uniform across all

orthants.

So now we must precisely quantify what we mean by “more ac-

curacy” and “easily”: Corollary 1.10 tells us that in the two orthants

satisfying Condition (★), with probability 1 −$ (1/� ), we have:
�����

(
=+2∑

8=1

18 log |28 |
)
−

(
=+2∑

8=1

18 log |18 |
)����� >

√
= + 2

�
(3)

if
=2∑

8=1

18 log |28 |≠
=2∑

8=1

18 log |18 |.

In other words, we now know that for most inputs in our two spe-

cial orthants, “moderate” accuracy for each logarithm in the sums

abovewill suffice to correctly determinewhich of
∑=2

8=1 18 log |28 | or



ISSAC 2024, 16–19 July, 2024, Raleigh, North Carolina Weixun Deng, Alperen Ergür, Grigoris Paouris‡ , and J. Maurice Rojas§

∑=2

8=1 18 log |18 | is bigger (or if they are equal). More precisely, sim-

ply let � :=max8 |18 | and let !8 and"8 be rational numbers satisfy-

ing |!8−log |28 | |<
√
=+2

6=�� and |"8−log |18 | |<
√
=+2

6=�� . Then by the Tri-

angle Inequality, the values of
(∑=+2

8=1 18 log |28 |
)
−
(∑=+2

8=1 18 log |18 |
)

and
(∑=+2

8=1 !8

)
−

(∑=+2
8=1 "8

)
differ by no more than

√
=+2
3� . In other

words, to decide whether Λ(1, 2) is negative, zero, or positive, we
merely check whether

(∑=+2
8=1 !8

)
−

(∑=+2
8=1 "8

)
is less than − 2

√
=+2
3� ,

inside of the open interval
(
− 1

√
=+2
3� , 1

√
=+2
3�

)
, or greater than 2

√
=+2
3� :

These are the only possibilities that can occur on our 1 −$ (1/� )
fraction of inputs from our two orthants satisfying Condition (★),

thanks to Corollary 1.10.

To conclude, observe that Cramer’s Rule (and Hadamard’s

Inequality for determinants) tells us that the height of 18 is $ (= log(3=)).
So by Theorem 2.12, each log |28 | and log |18 | term can be approxi-

mated to our desired accuracy in time

$ ((= + log(3� ) + log(� ) + = log(3=)) log2 (= log(=3� ))),
which is simply $ (= log3 (=3� )). So computing !1, "1, . . . , !=+2, "=+2
takes time $ (=2 log3 (=3� )). The computation of 1 takes time

=3.373 log1+> (1) (=3) via fast integer linear algebra (see, e.g., [Roj22,
Lemma 2.1]). So our overall time bound is

$ (=2 log3 (=3� )) + =3.373 log1+> (1) (=3)=$ (=3.373 log3 (=3� )). �
Example 3.1. Suppose �⊂Z5 consists of the columns of



−48 −70 −31 −41 86 −44 10

−13 −87 53 −93 −82 68 −79
36 −75 −78 −75 −59 −91 54

76 95 −22 −93 68 30 −86
−46 96 47 −11 54 21 54



.

Then a suitable 1 vector is

(13114054985, 1804628444, 48927499024, 2016784302, 2855329886,−51793775050,−16924521591).
More to the point, let us consider the distribution of the values of

log(Ξ� (5 ) + 1) as the coefficients of 5 range uniformly over {±1, . . . ,±1000}:
After a sample of 107 random trials, we found a minimal value of

8498.1 for log(Ξ� (5 ) + 1), attained at
(21, . . . , 27)= (996, 938, 176, 703, 431,−783,−44).

A histogram for the values of log(Ξ� (5 ) +1) from our trial is plotted

below:

⋄
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