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ABSTRACT
Suppose f is a polynomial in n variables with degree d, exactly
n+k monomial terms, coefficients in {+1,..., +H} for some HE€N,

and Newton polytope of positive volume. Testing real feasibility of
such an f is a fundamental task whose bit-complexity remains a
mystery, even in the first non-trivial case k = 2: The fastest algo-
rithms so far have deterministic bit-complexity (nlog(dH))O(").
We prove a significant speed-up that holds for all but a small col-
lection of inputs in the k =2 case: Bit complexity (n log(dH))O(l)
for all but a O(ﬁ)—fraction of the f above, for any fixed support.
Our result follows by combining a connection to diophantine ap-
proximation with a more recent anti-concentration result. In par-
ticular, we show that for random inputs, Baker’s famous theorem
on linear forms in logarithms can be significantly sharpened. We
also consider extensions beyond feasibility such as counting con-
nected components.
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1 INTRODUCTION AND MAIN RESULTS

Counting the number of connected components (a.k.a. pieces) for
the positive zero set, Z,(f), of a Laurent polynomial f, as a func-
tion of its monomial term structure, is a fundamental problem from
real algebraic geometry that is still far from completely understood.
This is unfortunate, because many real zero sets occuring in prac-
tice come from highly structured polynomials, and one of the most
basic structures to consider is monomial term structure.
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DEFINITION 1.1. Suppose f € Z|xE!, ... x| is of the form f (x) =

Z:’;lk cix%, wherec;e{%1,...,+H},a;e{~d,...,d}™, and x% :=
f“ - xp™ for all i. Assuming in addition that A:={a1, ..., Gy}
has cardinality n+k, we call such an f an n-variate (n+k)-nomial of

type (A, d, H), and say that f is supported on A. If we also have that
b ! € Z(m)X(n+k) pas rank n + 1

ar v Apsk
then we call f an honest n-variate (n + k)-nomial. o

the matrix A =

REMARK 1.2. The geometric restriction on the exponent vectors
(via the rank ofﬁ above) makes the parameter n meaningful: With-
out this restriction, one could find a simple change of variables to
reduce to a smaller n while still preserving n + k, e.g., the positive
roots of 1 — xy + x1%0y1%0 can be determined from the positive roots
of 1—u+u'% by substituting u=xy. Note also that the rank restriction
on ﬁforces k>1.0

For the special case n=1, Descartes’ Rule tells us that the num-
ber of pieces (for the positive zero set of a univariate (k+1)-nomial)
is at most k, and this bound is tight thanks to the explicit family
of examples (x1 — 1)(x1 — 2) --- (x1 — k). However, for n = 2, it
isn’t even known if the number of pieces admits an upper bound
of the form k9(: The best upper bound is still exponential in k2
[BS09], and no family of examples evincing even Q(k?) pieces is
known. However, recent probabilistic results in real fewnomial the-
ory [Kho91, BET-C19] suggest that, on average (for many natural
coefficient distributions), the number of pieces should be O(k?).

REMARK 1.3. AllO-, Q-, and o-constants in our proofs are effective
and absolute, i.e., they are actual constants that can be made explicit,
albeit with some effort. Also, for an f as in Definition 1.1, we define
the size of f to be

24 ([togy (2 + i)+ T2, [logy (2 + lai D],
i.e., the sum of the bit sizes of the coefficients and the exponents of
f. So in our setting, polynomial-time algorithms have bit complexity
((n+k) log(dH))O(l), as opposed to many basic algorithms in clas-
sical computational algebra that have complexity (dnlog H)°" o

For the algorithmic question of actually counting the number of
pieces for a given Z, (f), our knowledge is even sparser: A polynomial-
time algorithm is known only for the cases (n, k) € {(1,1),(1,2)}
[BRS09, Bih11]. There is also the folkloric fact that the case k =1
and n arbitrary never results in Z, (f) having more than 1 piece,
and (for k = 1) deciding between 0 and 1 pieces is doable in time
O(n) (see, e.g., Lemma 2.14 in Section 2.1 below). On the other
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hand, we have NP-hardness (for deciding non-emptiness) if we fix
any ¢ > 0, let n — o0, and take k = n® [BRS09]. What happens
between k=1 and k=n° is still a mystery.

In particular, the fastest algorithms for just deciding if there are
any pieces at all (for k =2 and n arbitrary) have deterministic bit-
complexity (nlog(dH))O(") [BRS09]. (See also [BPR06, BR14] for
much more powerful and general algorithms which, unfortunately,
are no faster in the k=2 case.) So we prove the following significant
speed-up for the case k=2:

THEOREM 1.4. Following the notation above, for a fraction of

1- O( 2"1H) of honest n-variate (n+2)-nomials of type (A, d, H), we

can decide whether Z.(f) is empty in deterministic time
0(n3373 1og® (ndH)).

Theorem 1.4 is proved in Section 3. The first step is to reduce our
counting question to a Diophantine problem: Determining the sign
of an integer linear combination of logarithms of integers. This re-
duction is straightforward, after we review a special case of the
A-discriminant [GKZ94] in Section 2. So the main subtlety is un-
derstanding the peculiar behavior of linear forms in logarithms.
By combining with a more refined classification of isotopy types
from [BDPRRR24], we can in fact count the number of pieces of
Z+(f) within the same time bound as Theorem 1.4, and this adden-
dum is currently being finalized. However, the underlying proba-
bilistic technique is the same for both results, so we cover it now.

1.1 Probabilistic Bounds on Linear Forms in
Logarithms

A landmark 1966 result in transcendental number theory due to
Baker can be coarsely summarized as follows [Bak77]: Let A(b, c¢) =
2™, bilogc; be an integer linear combination of logarithms of ra-
tional numbers. Let H denote the maximal absolute value among
the integers that appear in the numerators and denominators of
the c¢;, and let B:=max; |b;|. A special case of Baker’s Theorem on
Linear Forms in Logarithms [Bak77, BW93, Mat00, Nes03] then im-
plies

A(b,c) # 0 = log |A(b,¢)| > —O(log H)™ log B. 1)

This bound proved remarkably difficult to prove, and the special
case m =2 already implies the solution to Hilbert’s Seventh Prob-
lem (proving that a is transcendental for a ¢ {0,1} algebraic and
b algebraic and irrational).

Baker won a Fields Medal in 1970 for his lower bound, and later
his bound also proved useful for computing explicit upper bounds
for the size of integer points on curves of genus 1 (see, e.g., [Sch92]).
More recently, Baker’s lower bound has also found use in the de-
sign and analysis of algorithms for real algebraic geometry and
parsing (see, e.g., [BRS09, BHPR11, BSY14, Roj22]).

It has been conjectured that Baker’s lower bound is far from
sharp: Lang and Waldschmidt used a simple heuristic argument to
motivate a conjecture that the optimal bound should be —O(mlog(HB))
[Lan78, Pg. 213]. However, there appears to have been no progress
whatsoever, for close to half a century, on their conjecture. Our
algorithmic goals happen to naturally motivate a probabilistic ap-
proach to this bound: Can we prove a sharper version of Baker’s
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lower bound, for most inputs instead, and thereby prove that ear-
lier algorithms for real feasibility can be sped up most of the time?

REMARK 1.5. The title of our paper was inspired by the title of
[AL17], which studies algorithms that are fast on average, outside of
a small region of inputs. In contrast, we study a setting where worst-
case complexity is low outside of a small region of inputs. ¢

1.2 Two Models of Discrete Randomness

We start by stating an important consequence of Corollary 1.4 from
an elegant paper of Rudelson and Vershynin [RV15].

LEMMA 1.6. Consider a random vector X = (X1,...,Xm) where
the X; are independent random variables. Let p,t > 0 be parameters
such that sup,cp P{|X; —z| < t} < p forallie{1,...,m}. Then
there is a constant C >0 such that for any fixed b:= (b1, ..., bm) we
have

sup P{|(X,b) — z| < t[[bll,} < Cp. .
z€R

REMARK 1.7. To obtain the lemma one uses the special case d=1 of
[RV15, Cor. 1.4] and notes that the corollary is stated for a projection
where we allow taking inner product with an arbitrary vector b. ¢

1.2.1  Random Integers with Controlled Bit-Size.

ProrosITION 1.8. Let H € N and consider a uniformly random «
chosen from {£1,...,+H}. Then, for any z€R and any e € (Il{ ;11)
we have:

P{|log |a| — z| < €} < 9e.

Proof: Note that for any interval [s, t] we have that
P{log|a| € [s,t]} = P{|a| € [e%, e!]}, which is in turn bounded

Twice the number of integers in [e®,e’ |N[1,...H]

from above by > .
Soif e~ > H then we have P{|loga — z| < ¢} =0.Ife* * < H
then we have
1 + (#HE — g7~ ¢€ z—¢
le ‘ )si+2(e2f—1)
2H 2H

e
2H

P{lloga —z| < ¢} <

1 > . : 2¢ 1 —
For any ¢ < 7 Taylor’s expansion yields e -1 < =5- -1 =
2¢

1= < 4e.So we have

2 e“ ¢
P{|loga—z|§€}£—+8€( )$9£. [
2H 2H
REMARK 1.9. The probability distribution in Proposition 1.8 was
chosen for simplicity. Similar estimates can be easily derived for more
general distributions, e.g., the uniform distribution on {x — H, ...,
-1,L,x,...,x+H} forany0<x<H.o

Combining Lemma 1.6 and Proposition 1.8 gives the following
probabilistic estimate on integer linear sums of logs.

COROLLARY 1.10. Fix any b:=(b1,...,bm) € (Z \ {0})™ and let
a = (a1,...,am) be a uniformly random vector in {+1,...,+H}™.
Then there is a constant Cop > 0 such that for any z € R and any
c€e (%, %) we have:
P{|b1 log |a1]| + - - - + by log |am| — z| < €|bl2} < Coe
Since b? > 1 for all i, this also yields
P{|b1 log |ay| + - - - + by log |am| — z| < eVm} < Coe. n
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REMARK 1.11. As noted in Remark 1.9, we could also mimic the ap-
proach above for independent a; wuniformly distributed in
{xi —H,...,—1,1,...,x; + H}, for arbitrary integers x; satisfying
0 < x; < H. This can be thought of as an adversarial random model
where the adversary is allowed to pick a bad x = (x1,...,xn) and a
random perturbation with magnitude H > max; |x;| is added to x to
obtain the random vector a. ¢

REMARK 1.12. The constant Cy in Corollary 1.10 satisfies Co <9C
where C is the constant from Lemma 1.6. The smallest suitable C
known so far is \?2, thanks to [LPP16]. ©

1.2.2  Discrete Gaussians. A distribution that is commonly used in
discrepancy theory and integer programming applications is the
discrete Gaussian (see, e.g., [ADRSD15]).

Here we will consider discrete Gaussian centered at an arbitrary
integer a € Z with standard deviation H. More precisely, for any

x-a)? x-a)?

x €Z we define p(x):=e 25 andset Q:=),¢7 e_ﬁ. Then
the discrete Gaussian centered at a with standard deviation H is
the random variable X that takes integer values with the following
weights: P(X = x) = 1%

First we make a quick computation:

o yZ 00 yz
1+Q:229_W22/ e_mdy:/
y=0 0

—00

[

2
_v
e 2H? dy=HV2m

So 0> H+\2r — 1, and for any H > 4, this also yields Q > 2H.

LEMMA 1.13. Let a be an arbitrary integer and let X be the discrete

Gaussian centered at a with standard deviation H where H > |al.

Then, for any real number z and any ‘—11 >e> % we have

P{|log |X| — z| < €} < 9e.

Proof: Note that for any interval [s, ] the probability we have

(y-a)®
22 s ot e_ 2H2
Pllog|X| € [s,1]} = P{IX| € [¢", ]} < ——2=L2 ]an
So we have
_ (y-a)?
e 2H?

yE[ez—f’ez-%-s]mZ
H
1 g : ; 2¢ 1 —
For any ¢ < y Taylor’s expansion yields e** =1 < ;== -1 =
22 < 4¢.So, we have %€ — e# € < 4e e* €. IfH > a > e we

1-2¢
have

P{|logX —z| < ¢} <

dee” ¢ + 11
P{llogX —z| < ¢} < RT < 9

Ifa < e*7%, letd =  minyc[ez—c ez ]nz |y — al. Note that a +d >
e*~¢, and thus we have e*™ — ¢*~¢ < 4¢(a +d). So, we have

d? d?
(4e(a+d) +1)e 202 4g(a+d)e_m

P{llogX —z| < ¢} < <e+
{logX —z| < ¢} ;
If d < H, then we are done. Let5:%>1,thenwehave
2

P{|logX —z| < ¢} < (1 +85e_57

)SS% [ ]

Combining Lemmata 1.6 and 1.13 immediately gives the follow-
ing probabilistic estimate on integer linear sums of logs.
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COROLLARY 1.14. Letb = (by,...,by) € Z™ be an integer vector
with b; # 0. Let « = (ay, . .., am) be a random vector where the a;
are independent discrete Gaussian random variables centered at in-
tegers x; with variances H; where H; > |x;|. Let H := maxi<ij<m Hi,

then for any zeR andge(%{, %) we have
P{|b1log |a1]| + - - - + by log |am| — z| < ¢€]bl2} < Coe.

. . 2 .
(Co being the constant from Corollary 1.10.) Since b; > 1 for all i,
this also yields

P{|b1log|az| + - + by log |am| — z| < e¥m} < Coe. m

There is evidence [Roj22] that our approach to new probabilis-
tic speed-ups can be extended to systems of circuit polynomials (all
with the same support). Technically, counting pieces in our setting
here is accomplished by using signs of linear combinations of loga-
rithms of rational numbers to decide which discriminant chamber
contains f. (This is explained further in Section 2.) To count real
solutions of circuit systems instead, there is a reduction (using Gale
Dual form [BS07]) to counting real roots of a linear combination of
logarithms of degree one polynomials. While the latter problem ap-
pears to be purely transcendental, one can reduce it (as analyzed in
[Roj22]) to computing several signs of linear forms of logarithms
of real algebraic numbers. So we can extend our approach to sys-
tems provided we have sufficiently strong extensions of Corollaries
1.10 and 1.14 to real algebraic numbers. (There are other technical
hurdles as well, but we leave the details for future work.) This moti-
vates Corollary 1.18 below as a first step toward the harder problem
of counting real roots of circuit systems.

1.3 Random Algebraic Integers

Suppose we are given a primitive element u with a degree d field
extension Q(u). We would like to generate random algebraic inte-
gers from the number field Q(u) that have height at most H. We
first recall the basics.

DEFINITION 1.15 (HEIGHT). Let o be an algebraic number with
minimal polynomial co +c1x +- -+ + cdxd, and let ay, ..., be the
conjugates of a. Then the height of a, denoted by H(«) is defined as

1

d d
H(a) = (|c0| nmax{l, a,-})
i=1

The logarithmic height is defined as h(«) = log H(«).
The following lemma is standard (see, e.g., [BG06, Ch. 1]).

LEMMA 1.16. Let x = co + cqu + -~ + cg_ju?™! € Q(u) where
Q(u) is a degree d number field, then

h(x) <d (max h(ai) + h(u)) +logd

Now we consider the following model of randomness: We gener-
atex = &+ &u+-- -+ §d_1ud_1 where ¢; are independent discrete
Gaussian random variables centered at arbitrary integers ¢; and
variances H; where H; > |c;|. Let H := max{Hy,...,Hy_1,H(u)},
then by Markov’s inequality and Lemma 1.16 we have

1
P(h(x) < 4dH + 2logd) > 2
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So we condition on x satisfying
h(x) < 4dH + 2logd (2)
and thus our randomness model is a uniform sample among the

algebraic numbers x = & + & u+- - - +&4_u?"! that satisfy (2). We
call this model of randomness I'(cy, .. ., Hy_1,u).

LEMMA 1.17. Let u be algebraic number with |u| > 1, and Q(u)
being degree d. Let X be a random variable distributed according to
I'(co,...,¢q4—1,Ho,...,Hg_1,u). Then, for any z € R and any ¢ €

11
(ITI’ Z) we have

cq-1,Ho, ...,

P{|log |X| — z| < e} < 9e.

Proof: By Lemma 1.6 and the fact that ‘uk > 1, X satisfies small-

ball estimates at least as strong as discrete Gaussian random vari-
ables. The rest of the proof follows as in the case of discrete Gaus-
sians. W

CoOROLLARY 1.18. Fixb = (by,...,bm) €(Z\ {0})™ and let a =
(a1, ...,am) be a random vector where each a; is an independent
random variable distributed according to
T'(ag,...,aq-1,Ho,...,Hy_1,u). Then for anyz€R and ¢ € (H 4)
we have

P{|by log || + - -
(Co being the constant from Corollary 1.10.) Since bl? > 1 for alli this
also yields

P{|b log|ag| +---

+bm log|am| — z| < ¢e|bl2} < Coe.

+ b log |am| — z| < eVm} < Coe.

2 WHICH SIDE ARE YOU ON?: CIRCUIT
DISCRIMINANTS AND THEIR SIGNS

Let us first recall a rational function of absolute values that is re-
lated to a particular class of A-discriminant polynomials.

DEFINITION 2.1. Suppose A ={ai,...,am+2} C Z" is such that

A= [ v ! ] e Znmt)x(m+2) pas distinet columns and
a - Adm+2

rank m+ 1 for somem<n. Let b eZ(m+2)x1 pe any generator of the

right Z-nullspace ofﬁ. We then call A a non-degenerate circuit if

and only if b has no zero coordinates (and a degenerate circuit other-

wise). Also, for any non-degenerate circuit ACR" of cardinality m+2,

and any nonzero real ci,. .., cme2, we define Exq(cy, ...,

(02 tea bl = 1.

In our setting, the ¢; will always be the coefficients of a polyno-
mial f supported on the circuit A. So we will often abuse notation
by writing Z4(f) instead of Z4(cq,...,cm+2), assuming f(x) =
c1X4 + -+« + ¢peox9m+2 When restricted to a suitable orthant in
R™2 our E4 is a monomial multiple of the A-discriminant poly-
nomial A # from [GKZ94, Ch. 9]. From the development of [GKZ94,
Ch. 9] (restricted to R) we have the following summary of the key
properties of E4 that we’ll need:

Cm+2) =

THEOREM 2.2. Suppose A={ay,..., am+2} C Z" is a non-degenerate
circuit of cardinalitym + 2, f € R[x . x;{l] is supported on A,
and f(x) =c1x® + -+ - + cppppx®mz, Then Z+(f) has a singularity
if and only if 24(f) =0 and sign(bicq) = - - = sign(bm+2cm+2). In
particular, when m=n, such a Z,(f) has at most 1 singular point. m
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EXAMPLE 2.3. A={0,2,7} C Z' is a non-degenerate circuit, and
we see that a suitable b€ Z3 isb=(5,-7,2)" (taking (-)7 to mean
transpose). Theorem 2.2 then tells us that f (x) :=cy+cax%+c3x” hasa
degeneratepositive root ifand only if [[c1,¢3>0>cg orcy, c3 <0<cz]
and| ‘ | |_7 ’ | =1]. Note that the last equality is equivalent to

5 log le1] — 71og|ca| + 2log |e3|=51og(5) — 7log(7) + 21log(2).
Note also that E4(5 — 7x? + 2x7) =0 here, and the unique degenerate
root of 5 — 7x% + 2x7 is 1. o

EXAMPLE 2.4. A={(0,0), (2,2),(7,7)} CZ? is also a non-degenerate
circuit of cardinality 3 and the same b€ Z> from Example 2.3 works
for this example as well We then get exactly the same criteria for
¢+ czxzxg + 03x1 2 to have a degenerate root as in Example 2.3.
However, 5 — 7x1 5+ 2x1 7 2 has infinitely many degenerate roots in

R2: They are all of the form (x1,x2) = (r, 1/r) forreRy. o

We let ConvA denote the convex hull of A, i.e., the smallest con-
vex set containing A.

THEOREM 2.5. [BRS09, Thm. 2.17] Following the notation of The-
orem 2.2, Z,(f) is empty if and only if at least one of the following
two conditions holds:

(1) All the c; have the same sign.
(2) ConvA is a simplex, sign(bicq) =- - - =sign(bmy2cm+2), and
Ea(f) + 1)582(5) < 1 where j is the unique index with
sign(b;b;) <0 foralli+j.
Furthermore, Z,.(f) consists of a single point if and only if the fol-
lowing conditions all hold: m =n, ConvA is a simplex, sign(bjc1) =
- =sign(bm+zcma+2), and E4(f)=0.m

REMARK 2.6. Unravelling the characterization above, we see that
unless all the c¢; have the same sign, and ConvA has a particular
shape, we will need to compare a high-degree monomial in the c;
against 1 to know if Z,(f) is empty. The latter calculation is then
clearly equivalent to computing the sign of bilog|c1/b1]| + -+ +
bm+2 10g |cma2/bm+2|. This is our central reduction to linear forms
in logarithms. o

EXAMPLE 2.7. Suppose A C Z3 consists of the columns of
24 68 —47 52 71

-85 -10 -51 11 87|. Then ConvA is a simplex, and Theorem 2.5
90 33 1 28 46

(along with a bit of Morse Theory [BDPRRR24]) tells us (assuming

€1, €2, €3, ¢5>0>cq) that
85, 68310333 4 oyt 551

52x11x28 +c5x

Zs (clx Xy 90 + coxy X3 + C4X] 71x87x46)
is empty, a smgle pomt, or isotopic to a 2-sphere, according as
Z?zl bilog |c;| is less than, equal to, or greater than Z?zl b;log |b;l,
where b= (43403, 600796, 150818, —1138887, 343870) " . This condition
can clearly be handled reasonably via floating calculation on a computer

— provided sufficient accuracy is used for the underlying logarithms. ¢

REMARK 2.8. We thus see that the sign of =4 (f) (or, equivalently,
the sign of log(E4(f) + 1)) appears to determine the isotopy type of
Z+(f), at least in certain orthants of coefficient space. We call the con-
nected components of the complement of the zero set of E4(f), in the
orthants of (R \ {0})™*2, discriminant chambers. One aspect of cir-
cuits that helps make computing the isotopy type of Z,(f) tractable
(for f a circuit polynomial) is that every orthant of R™*? contains at
most 2 discriminant chambers. So, in the circuit case, the topological
behavior of Z,(f) depends mainly on whether f € Zr(E4), or on
which “side” of Zr (E4) f lies. ¢
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The degenerate circuit analogue of Theorem 2.5 is similar. In
particular, recall that for any degenerate circuit A={ay, ..., am+2} C
R™ of cardinality m + 2, with corresponding right null vector b for
A, the subset B:= {ai | bi #0} is a non-degenerate circuit. We also
let fg(x) =234, eB cix¥.

THEOREM 2.9. [BRS09, Thm. 2.18] Following the notation above,
suppose A is a degenerate circuit, f € R[xlil, cel x,fl] is supported
on A, and f(x) =c1x® + -+ + cpox®m+2. Then Z,.(f) is empty if
and only if at least one of the following conditions holds:

(1) All the c; have the same sign.

(2) (a) ConvA is a simplex, (b) sign(bjc;) is constant as i ranges
over all indices with a; € B, (c) sign(c;c;) <0 for some i with
a;i¢B, and (d) (Eg(fp) + 1)58n(0)) <1 where j is the unique
index with bj #0 and sign(b;bj) <0 foralli#j. m

ExampLE 2.10. With A = {(0,0), (1,0),(2,0), (0,1)} it is easily
checked thatb=(1,-2,1,0)7 is a suitable right nullvectorforﬁ, and
the j from Theorem 2.9 is j=2. So, for f(x1,x2)=1—cx1 + xf + X7
and ¢ >0, we see that fg=1— cxy +xf, Zp(fp) +1= % sign(bj) =1,
and thus Z,(f) is empty if and only ifc<2.¢

So in the end, although the indexing is slightly more complicated,
we can again reduce detecting emptiness of Z,.(f) to checking the
sign of an integer linear form in logarithms of integers.

Before moving on, we must also recall an explicit bound on the
complexity of computing the sign of a linear form in logarithms.
First, we recall the following paraphrase of a bound of Matveev
[Mat00, Cor. 2.3], considerably strengthening earlier bounds of Baker
and Wustholtz [BW93]. (See also [BMS06, Thm. 9.4].)

THEOREM 2.11. SupposeK is a degreed real algebraic extension of
Q,c15...,cm€K\{0},andby, ..., by €Z\{0}. Let B:=max{|b1|,.. .,
|bm|} and logH; := max{dh(c;),|logc;|,0.16} for all i. Then
>m biloge; # 0 implies that log | Y™ bilogci| is strictly greater

m
than —1.4 - m*°30™3¢%(1 + log d) (1 + log B) n logH;. m
i=1
We must also recall the following classical fact on approximat-
ing logarithms via Arithmetic-Geometric Iteration:

THEOREM 2.12. [Ber03, Sec. 5] Given any positive x € Q of logarithmic
height h, and £ €N with £ > h, we can compute [logz max{1,log |x|}J
and the £ most significant bits of log x in time O(£log® £). m

Taking d = 1, an immediate consequence of the preceding two
bounds is the following algorithmic complexity bound:

COROLLARY 2.13. [Roj22, Proof of Lemma 4.2] We can compute the
sign of A(b, ¢) in time O((31log H)™ log(B) log?(log(B) log H)?). m

By combining Corollary 2.13 with Theorems 2.5 and 2.9, we imme-
diately obtain an explicit (deterministic) complexity bound for de-
tecting positive roots for circuit polynomials, i.e., the main results
of [BRS09]. However, the resulting complexity bound is exponen-
tial in n. Our entire goal is to reduce this time bound to polyno-
mial in n and, thanks to our probabilistic corollaries, we’ll at least
accomplish this for a large fraction of inputs. But first let us com-
plete our background by reviewing real root detection for a single
(n + 1)-nomial.
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2.1 A Brief Note on the Case k=n+1

We mentioned earlier that detecting real roots for an n-variate
(n + 1)-nomial is much easier than for a (n + 2)-nomial. This is
because of the following folkloric lemma:

LEmMMA 2.14. Suppose f € R[xlil, . .,x%l] can be written in the
form f(x)= Z;’:ll cix% where A={ay, ..., an+1} is the vertex set of

an n-simplex, i.e., the rank ofﬁ isn+1. Then Z,(f) is empty if and
only if all the c¢; have the same sign.

Proof: Substituting x; =e¥ for all i, we see that Z,(f) is empty if
and only if the real zero set, Zg (g), of the exponential sum g(y) :=

;’:11 cje%’'Y is empty. Since Zg (g) is invariant under translation
of A, we may assume a; is the origin.

Noting that the emptiness of Zg (g) is invariant under invertible
linear maps applied to the variables, we can substitute y +— My,
where we can consider y as a column vector, and let M be the in-
verse of the n X n matrix whose ith column is aj+1. (M is invertible
since the edge vectors of any vertex of a simplex are linearly in-
dependent.) So we may assume g(y) =c1 + c2eY! + - -+ + cpp1eYn.
Finally, since Z (g) is invariant under nonzero scaling of g, and the
emptiness of Zg (g) is invariant under translation of the variables,
we may assume g(y) = €1 + e2e¥' + - - - + ep1eY" where ¢ € {1}
has the same sign as c;. Letting u; =eYi for all i, we are reduced to
deciding the emptiness of Z, (&1 + e2u1 + - - - + ent1un). The latter
zero set is clearly empty if and only if all the ¢; have the same sign. m

3 THE PROOF OF THEOREM 1.4

First note that, out of the 2™*2 orthants of (cy, ..., cns2) € (R \
0})™*2, exactly two of these orthants satisfy the condition
y y

(%) sign(bycy) = - - =sign(bptacn+2).

For those orthants not satisfying Condition (x), Theorems 2.5 and
2.9 tell us that checking Z,(f) 2 0 is almost trivial: We merely
need to check whether all the ¢; have the same sign. Note also that
the sign of =4 (f) (or, equivalently, log(Z4 (f) + 1)) is independent

of the signs of the ¢;. So the inputs where checking Z, (f) Zois
harder are exactly the inputs where log(Z4(f) + 1) requires more
accuracy to evaluate. So by Corollary 1.10, we obtain that we can
decide Z,.(f) 2o easily on a fraction of 1 — O(ﬁ) of our input
f, since our underlying probability measure is uniform across all
orthants.

So now we must precisely quantify what we mean by “more ac-
curacy” and “easily”: Corollary 1.10 tells us that in the two orthants
satisfying Condition (), with probability 1 — O(1/H), we have:

n+2 n+2 \/—
n+2
(Z bilog |ci|) - (Z bilog |b,~|)
i=1 i=1

> =0

ny ny
> bilogleil# ) biloglbil.
i=1 i=1

In other words, we now know that for most inputs in our two spe-
cial orthants, “moderate” accuracy for each logarithm in the sums
above will suffice to correctly determine which of Z:l:z 1 bilog|ci| or
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Z?zzl b;log |b;| is bigger (or if they are equal). More precisely, sim-
ply let B:=max; |b;| and let L; and M; be rational numbers satisfy-

ing |L;—log|ci|| < 6‘;};}21 and |M; —log |b;|| < 6&;}21. Then by the Tri-

angle Inequality, the values of (Zf”z bilog |ci|) - (Z'.”Z bilog |b; |)

i=1 i=1

and (Z;’:lz Li) - (Z:’:lz Mi) differ by no more than “;}}'2, In other

words, to decide whether A(b, ¢) is negative, zero, or positive, we
merely check whether (Zf:lz Li> - ( ?:12 Mi) is less than — 2Y42

3H
inside of the open interval (— 1 3 "H+2, 1 5 "H+ 2 ) or greater than 23—'}?2

These are the only possibilities that can occur on our 1 — O(1/H)
fraction of inputs from our two orthants satisfying Condition (),
thanks to Corollary 1.10.

To conclude, observe that Cramer’s Rule (and Hadamard’s
Inequality for determinants) tells us that the height of b; is O(nlog(dn)).
So by Theorem 2.12, each log |c;| and log |b;| term can be approxi-
mated to our desired accuracy in time

O((n +log(dH) +log(H) + nlog(dn)) log? (nlog(ndH))),
which is simply O(n logS(ndH)). So computing L1, My, . . ., Lp+2, Mp42
takes time O(n?log®(ndH)). The computation of b takes time
n3-373 10g1+°(1> (nd) via fast integer linear algebra (see, e.g., [R0j22,
Lemma 2.1]). So our overall time bound is
0(n?log®(ndH)) + n>373 log**W (nd) =0(n*37 log® (ndH)). m

EXAMPLE 3.1. Suppose ACZ> consists of the columns of

—48 -70 -31 -41 8 —44 10
-13 -87 53 -93 -82 68 79
36 75 78 75 -59 -91 54 |.

76 95 —22 -93 68 30 -86
—46 96 47  -11 54 21 54

Then a suitable b vector is
(13114054985, 1804628444, 48927499024, 2016784302, 2855329886, ~51793775050, ~16924521591).
More to the point, let us consider the distribution of the values of
log(E4(f) + 1) as the coefficients of f range uniformly over {+1,...,+1000}:
After a sample of 107 random trials, we found a minimal value of
8498.1 forlog(Z4(f) + 1), attained at

(c1,...,c7)=(996,938, 176,703, 431, —783, —44).
A histogram for the values oflog(Z4(f) +1) from our trial is plotted
below:
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