
RANDOMIZED POLYNOMIAL-TIME ROOT COUNTING IN PRIME
POWER RINGS

LEANN KOPP, NATALIE RANDALL, J. MAURICE ROJAS, AND YUYU ZHU

Abstract. Suppose k, p∈N with p prime and f ∈Z[x] is a univariate polynomial with de-
gree d and all coefficients having absolute value less than pk. We give a Las Vegas randomized
algorithm that computes the number of roots of f in Z/

(

pk
)

within time d3(k log p)2+o(1).
(We in fact prove a more intricate complexity bound that is slightly better.) The best pre-
vious general algorithm had (deterministic) complexity exponential in k. We also present
some experimental data evincing the potential practicality of our algorithm.

1. Introduction

Suppose k, p∈N with p prime and f ∈Z[x] is a univariate polynomial with degree d≥1 and
all coefficients having absolute value less than pk. Let Np,k(f) denote the number of roots of
f in Z/

(

pk
)

(see, e.g., [25, 23, 2, 19, 15, 29] for further background on prime power rings).
Computing Np,k(f) is a fundamental problem occuring in polynomial factoring [22, 10, 5, 26,
16], coding theory [3], and cryptography [20]. The function Np,k(f) is also a basic ingredient
in the study of Igusa zeta functions and algorithms over Qp [17, 12, 11, 5, 31, 6, 21, 30, 7, 1].
In spite of the fundamental nature of computing Np,k(f), the fastest earlier general al-

gorithms had complexity exponential in k: [9] gave a deterministic algorithm taking time
(

d log(p) + 2k
)O(1)

. While the O-constant was not stated in [9], the proof of the main the-

orem there indicates that the dependence on k in their algorithm is linear in ek. Note that
counting the roots via brute-force takes time dpk(k log p)1+o(1), so the algorithm from [9] is
preferable, at least theoretically, for p≥ 3. Here, we present a simpler, dramatically faster
randomized algorithm (Algorithm 2.3 of the next section) that appears practical for all p.

Theorem 1.1. Following the notation above, there is a Las Vegas randomized algorithm that

computes Np,k(f) in time kd3(k log p)1+o(1) +
(

dk log2 p
)1+o(1)

. In particular, the number of
random bits needed is O(dk log(dk) log p), and the space needed is O(dk2 log p) bits.

We prove Theorem 1.1 in Section 3 below. In our context, Las Vegas randomized means that,
with a fixed error probability (which we can take to be, say, 1

3
), our algorithm under-estimates

the number of roots. Our algorithm otherwise gives a correct root count, and always correctly
announces whether the output count is correct or not. This type of randomization is standard
in many number-theoretic algorithms, such as the fastest current algorithms for factoring
polynomials over finite fields or primality checking (see, e.g., [2, 18, 8]).
At a high level, our algorithm here and the algorithm from [9] are similar in that they

reduce the main problem to a collection of computations, mostly in the finite field Z/(p),
indexed by the nodes of a tree of size depending on f and k. Also, both algorithms count
by partitioning the roots in Z/

(

pk
)

into clusters having the same mod p reduction. One

subtlety to be aware of is that we compute the number of roots in Z/
(

pk
)

, without listing

all of them. Indeed, the number of roots in Z/
(

pk
)

can be as high as, say, pk−⌈k/2⌉ (when

k≥d=2) or pd/p (when d=kp): simply consider the polynomials x2 and (xp − x)d/p. So we
can’t attain a time or space bound sub-exponential in k unless we do something more clever
than naively store every root (see Remark 1.2 below).

Partially supported by NSF grant CCF-1409020, and NSF REU grants DMS-1757872 and DMS-1460766.
1



2 LEANN KOPP, NATALIE RANDALL, J. MAURICE ROJAS, AND YUYU ZHU

In finer detail, the algorithm from [9] solves a “small” polynomial system at each node of a
recursion tree (using a specially tailored Gröbner basis computation [13]), while our algorithm
performs a univariate factorization in (Z/(p))[x] at each node of a smaller recursion tree.
Our use of fast factorization (as in [18]) is why we avail to randomness, but this pays off:
Gaining access to individual roots in Z/(p) (as suggested in [9]) enables us to give a more
streamlined algorithm.

Remark 1.2. von zur Gathen and Hartlieb presented in [15] a randomized polynomial-
time algorithm to compute all factorizations of certain f ∈ (Z/(pk))[x]. (Examples like
x2 = (x − p)(x + p) ∈ (Z/(p2))[x] show that unique factorization fails badly for k ≥ 2, and
the number of possible factorizations can be exponential in k.) Their algorithm is particu-
larly interesting since it uses a compact data structure to encode all the (possibly exponen-
tially many) factorizations of f . Unfortunately, their algorithm has the restriction that pk

not divide the discriminant of f . Their complexity bound, in our notation, is the sum of
d7k log(p)(k log(p)+ log d)2 and a term involving the complexity of finding the mod pk reduc-
tion of a factorization over Zp[x] (see Remarks 4.10–4.12 from [15]). The complexity of just
counting the number of possible factorizations (or just the number of possible linear factors)
of f from their data structure does not appear to be stated. ⋄

Creating an efficient classification of the roots of f in Z/
(

pk
)

(and improving the data
structure from [15] by removing all restrictions on f), within time polynomial in d+ k log p,
is a problem we hope to address in future work.
For the reader interested in implementations, we have a preliminary Maple implementation

of Algorithm 2.3 freely downloadable from www.math.tamu.edu/~rojas/count.map . A few
timings (all done on a Dell XPS13 Laptop with 8Gb RAM and a 256Gb ssd, running Maple

2015 within Ubuntu Linux 14.04) are listed below:
f(x) pk Brute-force1 Algorithm 2.3

Random degree 15 2250 ≈2× 1062 years 0.077sec.
Random degree 75 1000915 ≈5× 1047 years 0.116sec.

(x− 1234)3(x− 7193)4(x− 2030)12 1234567911 9min. 18sec. 20.075sec
(x− 1234)3(x− 7193)4(x− 2030)12 12345679123 ≈10173 years 1min. 50.323sec.

Our Maple implementations of brute-force and Algorithm 2.3 here are 5 lines long and 16
lines long, respectively. In particular, our random f above were generated by taking uni-
formly random integer coefficients in {0, . . . , pk − 1} and then multiplying 5 (or 25) random
cubic examples together: This results in longer timings for our code than directly picking
a single random polynomial of high degree. The actual numbers of roots in the last two
examples are respectively 3 and
83524650739763670783591272793501499347381420700990366689774050080031654011699848668752654
473531540039924209209663876325122031629580404523246324540823308088725469492593973.

1.1. A Recurrence from Partial Factorizations. Throughout this paper, we will use
the integers {0, . . . , pk−1} to represent elements of Z/

(

pk
)

, unless otherwise specified. With
this understanding, we will use the following notation:

Definition 1.3. For any f ∈Z[x] we let f̃ denote the mod p reduction of f and, for any root

ζ0∈{0, . . . , p− 1} of f̃ , we call ζ0 degenerate if and only if f ′(ζ0)=0 mod p. Letting ordp :

1The timings in years were based on extrapolating (without counting the necessary expansion of laptop
memory beyond 8Gb) from examples with much smaller k already taking over an hour.



RANDOMIZED POLYNOMIAL-TIME ROOT COUNTING IN PRIME POWER RINGS 3

Z −→ N ∪ {0} denote the usual p-adic valuation with ordp(p)= 1, we then define s(f, ε) :=

min
j≥0

{

j + ordp
f (j)(ε)

j!

}

for any ε∈{0, . . . , p−1}. Finally, fixing k∈N, let us inductively define

a set Tp,k(f) of pairs (fi,ζ , ki,ζ)∈Z[x] × N as follows: We set (f0,0, k0,0) := (f, k). Then, for

any i≥1 with (fi−1,µ, ki−1,µ)∈Tp,k(f) and any degenerate root ζi−1∈{0, . . . , p− 1} of f̃i−1,µ

with si−1 :=s(fi−1,µ, ζi−1)∈{2, . . . , ki−1,µ − 1}, we define ζ :=µ+ pi−1ζi−1, ki,ζ :=ki−1,µ − si−1

and fi,ζ(x) :=
[

1
psi−1 fi−1,µ(ζi−1 + px)

]

mod pki,ζ . ⋄

The “perturbations” fi,ζ of f will help us keep track of how the roots of f in Z/
(

pk
)

cluster

(in a p-adic metric sense) about the roots of f̃ . Since f (j)(ε)
j!

is merely the coefficient of xj

in the Taylor expansion of f(x + ε) about x=0, it is clear that f (j)(ε)
j!

is always an integer

(under the assumptions above) provided ε∈Z.
We will see in the next section how Tp,k(f) can be identified with a finite rooted directed

tree. In particular, it is easy to see that the set Tp,k(f) is always finite since, by construction,
only fi,ζ with i≤ ⌊(k − 1)/2⌋ and ζ ∈ Z/(p) are possible (see also Lemma 3.6 of Section 3
below).

Example 1.4. Let us take p=3, k=7, and f(x) :=x10−10x+738. A simple calculation then

shows that f̃0,0(x)=x(x− 1)9, which has roots {0, 1} in Z/(3). The root 0 is non-degenerate
so the only possible f1,ζ would be an f1,1=f1,0+1.
In particular, s(f0,0, 1)= 4 and thus k1,1 =3 and f1,1(x)= 21x4 + 13x3 + 5x2 + 9 mod 33.

Since f̃1,1(x)=x2(x− 1) and 1 is a non-degenerate root of f̃1,1, we see that the only possible
f2,ζ would be an f2,1=f2,1+0.
Since s(f1,1, 0)=2 we then obtain k2,1=1, and f2,1(x)=2(x− 1)(x− 2) mod 3, which has

only non-degenerate roots. So by Definition 1.3 there can be no f3,ζ and thus our collection
of pairs Tp,k(f) consists of just 3 pairs. ⋄

Using base-p expansion, there is an obvious bijection between the ring Zp of p-adic integers
and the set of root-based paths in an infinite p-ary tree Tp. It is then natural to use the leafs
of a finite subtree of Tp to store the roots of f in Z/

(

pk
)

. This type of tree structure was
studied earlier by Schmidt and Stewart in [27, 28], from the point of view of classification
and (in our notation) upper bounds on Np,k(f). However, it will be more algorithmically
efficient to instead endow our set Tp,k(f) with a tree structure. The following fundamental
lemma relates Np,k(f) to a recursion tree structure on Tp,k(f).

Lemma 1.5. Following the notation above, let np(f0,0) denote the number of non-degenerate

roots of f̃0,0 in Z/(p). Then, provided k ≥ 2 and f0,0 is not identically 0 in (Z/(p))[x], we
have

Np,k(f0,0) = np(f0,0) +









∑

ζ0∈Z/(p)
s(f0,0,ζ0)≥k

pk−1









+
∑

ζ0∈Z/(p)
s(f0,0,ζ0)∈{2,...,k−1}

ps(f0,0,ζ0)−1Np,k−s(f0,0,ζ0)(f1,ζ0).

We prove Lemma 1.5 in the next section, where it will immediately follow that Lemma 1.5
applies recursively, i.e., our root counting formula still holds if one replaces (f0,0, k, f1,ζ0 , ζ0)
with (fi−1,µ, ki−1,µ, fi,µ+pi−1ζi−1

, ζi−1). There we also show how Lemma 1.5 leads to our recur-
sive algorithm (Algorithm 2.3) for computing Np,k(f). In essence, the third sum term above
is what creates children for a node corresponding to fi−1,µ.



4 LEANN KOPP, NATALIE RANDALL, J. MAURICE ROJAS, AND YUYU ZHU

Note that by construction, s(f, ζ0)≥2 implies that ζ0 is a degenerate root of f̃ . So the last
two sum terms in the formula (from Lemma 1.5 above) range over certain degenerate roots

of f̃ . Note also that Np,k(f) depends only on the residue class of f mod pk, so we will often
abuse the notations Np,k(f) and s(f, ζ0) by allowing f ∈

(

Z/
(

pk
))

[x] as well. The following
example illustrates how Np,k(f) can be computed recursively.

Example 1.6.
Revisiting Example 1.4, let us count the roots in Z/(37) of
f(x) := x10 − 10x + 738. Lemma 1.5 and our earlier compu-
tation of Tp,k(f) then tell us that N3,7(f) = 1 + 33N3,3(f1,1) and
N3,3(f1,1) = 1 + 31N3,1(f2,1) where f2,1(x) = 2(x − 1)(x − 2). So
we obtain N3,7(f) = 1 + 33(1 + 31 · 2) = 190. (Our Maple im-
plementation confirmed this count in under 4 milliseconds.) We
illustrate the corresponding tree structure (defined in Section 3
below) on the right. Note that the powers of 3 in the expression
1 + 33(1 + 31 · 2) appear as edge labels in our tree, but the con-
tribution of non-degenerate roots to our count is not notated on
our tree. ⋄

(f0,0, 7)

33

(f1,1, 3)

31

(f2,1, 1)

While the tree from our example above has just 3 nodes, the earlier tree structure from
[27, 28] would have resulted in over 190 nodes. We will now fully detail how to efficiently
reduce root counting over Z/

(

pk
)

to computing p-adic valuations and factoring in (Z/(p))[x].

2. Algebraic Preliminaries and Our Algorithm

Let us first recall the following version of Hensel’s Lemma:

Lemma 2.1. (See, e.g., [24, Thm. 2.3, Pg. 87, Sec. 2.6].) Suppose k ∈N, f ∈ Z[x] is not

identically 0 in (Z/(p))[x], and ζ0 ∈ Z/(p) is a non-degenerate root of f̃ . Then there is a
unique ζ∈Z/

(

pk
)

with ζ=ζ0 mod p and f(ζ)=0 mod pk. �

The following lemma enables us to understand the lifts of degenerate roots of f̃ .

Lemma 2.2. Following the notation of Lemma 2.1, suppose instead that ζ0∈Z/(p) is a root

of f̃ of (finite) multiplicity m≥2. Suppose also that k≥2 and that there is a ζ∈Z/
(

pk
)

with

ζ=ζ0 mod p and f(ζ)=0 mod pk. Then s(f, ζ0)∈{2, . . . ,m}.

Proof of Lemma 2.2: We may assume, by base-p expansion that ζ=ζ0+pζ1+· · ·+pk−1ζk−1

for some ζ1, . . . , ζk−1 ∈ {0, . . . , p − 1}. Note that f ′(ζ0) = 0 mod p since ζ0 is a degenerate

root. Note also that j +ordp
f (j)(ζ0)

j!
≥2 for all j≥2. Letting σ :=ζ1 + pζ2 + · · ·+ pk−2ζk−1 we

then see by Taylor expansion that f(ζ)=f(ζ0) + f ′(ζ0)pσ + · · ·+ f (k−1)

(k−1)!
pk−1σk−1 mod pk. So

f(ζ)=0 mod pk implies that f(ζ0)=0 mod p2 and thus s(f, ζ0)≥2.
To conclude, by Taylor expansion about ζ0, our multiplicity assumption implies that

f (m)(ζ0)
m!

is an integer not divisible by p. So m+ ordp
f (m)(ζ0)

m!
=m and thus s(f, ζ0)≤m. �

We are now ready to state our main algorithm.



RANDOMIZED POLYNOMIAL-TIME ROOT COUNTING IN PRIME POWER RINGS 5

Algorithm 2.3 (RandomizedPrimePowerRootCounting(f, p, k)).
Input. (f, p, k)∈Z[x]× N× N with p prime and f(x)=c0 + · · ·+ cdx

d.
Output. An integer M≤Np,k(f) that, with probability at least 2

3
, is exactly Np,k(f).

Description.
1: Let v := min

i∈{0,...,d}
ordpci and f0,0 :=f .

2: If v≥k
3: Let M :=pk. Return.
4: Elseif v∈{1, . . . , k − 1}

5: Let M :=pvRandomizedPrimePowerRootCounting
(

f0,0(x)

pv
, p, k − v

)

. Return.

6: End(If).

7: Let M :=deg gcd(f̃0,0/ gcd(f̃0,0, f̃
′
0,0), x

p − x).

8: For ζ0∈Z/(p) a degenerate root of f̃0,0 do2

9: Let s :=s(f0,0, ζ0).
10: If s≥k
11: Let M :=M + pk−1.
12: Elseif s∈ {2, . . . , k − 1}
13: Let M :=M + ps−1RandomizedPrimePowerRootCounting(f1,ζ0 , p, k − s).
14: End(If).
15: End(For).

16: If the preceding For loop did not access all the degenerate roots of f̃0,0
17: Print ‘‘Sorry, your Las Vegas factoring method failed.

You have an under-count so you should try re-running.’’

18: End(If).
19: Print ‘‘If you’ve seen no under-count messages then your count is correct!’’

20: Return.

Before proving the correctness of Algorithm 2.3, it will be important to prove our earlier
key lemma.

Proof of Lemma 1.5: Proving our formula clearly reduces to determining how many lifts
each possible root ζ0 ∈Z/(p) of f̃0,0 has to a root of f0,0 in Z/

(

pk
)

. Toward this end, note

that Lemma 2.1 implies that each non-degenerate ζ0 lifts to a unique root of f0,0 in Z/
(

pk
)

.
In particular, this accounts for the summand np(f0,0) in our formula. So now we merely need
to count the lifts of the degenerate roots.
Assume ζ0∈Z/(p) is a degenerate root of f̃0,0, write ζ=ζ0 + pζ1 + · · ·+ pk−1ζk−1∈Z/

(

pk
)

via base-p expansion as before, set σ :=ζ1+pζ2+· · ·+pk−2ζk−1, and let s :=s(f0,0, ζ0). Clearly
then, f0,0(ζ)=psf1,ζ0(σ) mod pk and, by construction, f1,ζ0 ∈Z[x] and is not identically 0 in
(Z/(p))[x].
If s ≥ k then f0,0(ζ) = 0 mod pk independent of σ. So there are exactly pk−1 values of

ζ∈Z/
(

pk
)

with ζ=ζ0 mod p. This accounts for the second summand in our formula.

If s≤k − 1 then ζ is a root of f0,0 with ζ= ζ0 mod p if and only if f1,ζ0(σ)=0 mod pk−s.
Also, s≥ 2 (thanks to Lemma 2.2) because ζ0 is a degenerate root. Since the base-p digits
ζk−s+1, . . . , ζk−1 do not appear in the last equality, the number of possible lifts ζ of ζ0 is thus

2Here we use the fastest available Las Vegas factoring algorithm over (Z/(p))[x] (currently [18]) to isolate

the degenerate roots of f̃ . Such factoring algorithms enable us to correctly announce failure to find all the
degenerate roots, should this occur. We describe in the next section how to efficiently control the error
probability.



6 LEANN KOPP, NATALIE RANDALL, J. MAURICE ROJAS, AND YUYU ZHU

exactly ps−1 times the number of roots ζ1+ pζ2+ · · ·+ pk−s−1ζk−s∈Z/
(

pk−s
)

of f1,ζ0 . So this
accounts for the third summand in our formula and we are done. �

We are at last ready to prove the correctness of Algorithm 2.3.

Proof of Correctness of Algorithm 2.3: Assume temporarily that Algorithm 2.3 is
correct when f0,0 is not identically 0 in (Z/(p))[x]. Since (for any integers a, x, y with a≤k)
pax = pay mod pk ⇐⇒ x = y mod pk−a, Steps 1–6 of our algorithm then clearly correctly
dispose of the case where f is identically 0 in (Z/(p))[x]. So let us now prove correctness
when f is not identically 0 in (Z/(p))[x]. Applying Lemma 1.5, we then see that it is enough
to prove that the value of M is the value of our formula for Np,k(f) when the For loops of
Algorithm 2.3 runs correctly.
Step 7 ensures that the value of M is initialized as np(f). Steps 8–15 (once the For loop

is completed) then simply add the second and third summands of our formula to M thus
ensuring that M =Np,k(f), provided the For loop has run correctly, along with all the For
loops in the recursive calls to RandomizedPrimePowerRootCounting. Should any of these
For loops run incorrectly, Steps 16–20 ensure that our algorithm correctly announces an
under-count.3 So we are done. �

3. Our Complexity Bound: Proving Theorem 1.1

Let us now introduce a tree structure on Tp,k(f) that will enable our complexity analysis.

Definition 3.1. Let us identify the elements of Tp,k(f) with nodes of a labelled rooted directed
tree Tp,k(f) defined inductively as follows:

(1) We set f0,0 :=f , k0,0 :=k, and let (f0,0, k0,0) be the label of the root node of Tp,k(f).
(2) The non-root nodes of Tp,k(f) are uniquely labelled by each (fi,ζ , ki,ζ) ∈ Tp,k(f) with

i≥1.
(3) There is an edge from node (fi′,ζ′ , ki′,ζ′) to node (fi,ζ , ki,ζ) if and only if i′= i− 1 and

there is a degenerate root ζi−1 ∈ Z/(p) of f̃i′,ζ′ with s(fi′,ζ′ , ζi−1) ∈ {2, . . . , ki′,ζ′ − 1}
and ζ=ζ ′ + pi−1ζi−1∈Z/(pi).

(4) The label of a directed edge from node (fi′,ζ′ , ki′,ζ′) to node (fi,ζ , ki,ζ) is p
s
(

fi′,ζ′ ,(ζ−ζ′)/pi
′
)

−1
.

In particular, the edges are labelled by powers of p in {p1, . . . , pk−2}, and the labels of the
nodes lie in Z[x]× N. ⋄

Example 3.2. Letting g(x) :=x5−8x4+25x3−38x2+28x−8,
the tree T17,100(g) is drawn to the right: Note that T17,100(g)
has depth ⌊(100− 1)/2⌋ = 49 and exactly 1 + ⌊(100− 1)/2⌋ +
⌊(100− 1)/3⌋= 83 nodes. To count the roots of g in Z/(17100)
one can then easily calculate that g0,0(x) = (x − 1)2(x − 2)3,
g1,1(x)=x2(4913x3 − 867x2 + 51x− 1) and g1,2(x)=x3(289x2 + 34x+ 1).
The last two polynomials have no nonzero roots mod 17. A bit

(g0,0, 100)

171 172

(g1,1, 98) (g1,2, 97)

171 172

171

172

(g49,1, 2)

(g33,2, 1)

more computation then yields g̃i,1(x)=−x2 for all i∈{1, . . . , 49}
and g̃j,2(x)=x3 for all j∈{1, . . . , 33}. Also, N17,2(g49,1)=17 by Lemma
1.5 and N17,1(g33,2)=1 trivially. So by Lemma 1.5 once more, g0,0
has exactly 17·1749·1+172·(172)32·1=1750+1766 roots in Z/(17100). Expanded in base-10, this
count is 1620424537653706124196923258781575759359875675913436470380245486276378993995166018. ⋄

3Note that checking for an under-count can be reduced to an irreducibility check in Fp[x], which can be
done in deterministic polynomial-time: See, e.g., [15, Cor. 14.35, Algor. 14.36, & Thm. 14.37, pp. 406–408].



RANDOMIZED POLYNOMIAL-TIME ROOT COUNTING IN PRIME POWER RINGS 7

Remark 3.3. Our trees Tp,k(·) thus encode algebraic expressions for our desired root counts
Np,k(·). In particular, the children of a node labelled (fi, ki) yield terms (corresponding to the
child nodes) that one sums to get the root count Np,ki(fi), and the edge labels yield weights
multiplying the corresponding terms. (The contribution from non-degenerate roots is not
visible from the tree but does influence each Np,ki(fi), as detailed by Lemma 1.5.) ⋄

Example 3.4. Suppose we set p=31, k=7, and we define h(x) to be
x12 − 60x11 − 4420x10 + 275040x9 + 8287728x8 − 502626240x7 − 8802489280x6 − 10069291727x5

−6168330858x4 − 10982634616x3 + 6650045702x2 − 4862117081x− 6450915579.
Then the tree T31,7(h) has the following structure:

(h0,0, 7)

313

313
313

(h1,1, 3) (h1,15, 3) (h1,30, 3)

311 311 311 311 311 311

(h2,32, 1) (h2,931, 1) (h2,46, 1) (h2,945, 1) (h2,61, 1) (h2,960, 1)

In particular, the polynomials corresponding to the depth 1 nodes are exactly
h1,1=9610x6 + 13640x5 + 25563x4 + 2511x3 + 9417x2 + 13640x+ 14992,
h1,15=22103x6 + 1674x5 + 11825x4 + 26443x3 + 29205x2 + 1674x+ 26240, and
h1,30=24986x6 + 28520x5 + 22228x4 + 2542x3 + 29541x2 + 28520x+ 12618.

Also, the polynomials corresponding to the depth 2 nodes are exactly h2,1+1·31 = h2,1+30·31 =
14x2 and h2,15+1·31 = h2,15+30·31 = h2,30+1·31 = h2,30+30·31 =4x2. So Lemma 1.5 tells us that h
has exactly 6 · 314 · 1=5541126 roots in Z/(317).

The following lemma will be central in our complexity analysis.

Lemma 3.5. Suppose k, p ∈ N with p prime, f ∈ Z[x] has degree d, and (fi−1,µ, ki−1,µ) is

any node of Tp,k(f). Then
∑

deg f̃i,ζ ≤ deg f̃i−1,µ, where the sum ranges over all child nodes
(fi,ζ , ki,ζ) of (fi−1,µ, ki−1,µ). �

Lemma 3.5 follows immediately from the last sentence of Assertion (3) of the more refined
lemma below:

Lemma 3.6. Following the notation of Lemma 3.5, we have that:

(1) The depth of Tp,k(f) is at most ⌊(k − 1)/2⌋.
(2) The degree of the root node of Tp,k(f) is at most ⌊d/2⌋.
(3) The degree of any non-root node of Tp,k(f) labelled (fi,ζ , ki,ζ), with parent (fi−1,µ, ki−1,µ)

and ζi−1 := (ζ − µ)/pi−1, is at most ⌊s(fi−1,µ, ζi−1)/2⌋. In particular,

deg f̃i,ζ≤s(fi−1,µ, ζi−1)≤ki−1,µ − 1≤k − 1 and
∑

(fi,ζ ,ki,ζ) a child

of (fi−1,µ,ki−1,µ)

s(fi−1,µ, ζi−1) ≤ deg f̃i−1,µ.

(4) Tp,k(f) has at most
⌊

d
2

⌋

nodes at depth i ≥ 1, and thus a total of no more than

1 +
⌊

d
2

⌋ ⌊

k−1
2

⌋

nodes.



8 LEANN KOPP, NATALIE RANDALL, J. MAURICE ROJAS, AND YUYU ZHU

Proof of Lemma 3.6:

Assertion (1): By Definitions 1.3 and 3.1, the labels (fi,ζ , ki,ζ) satisfy
2≤ki−1,µ − ki,ζ ≤ki−1,µ − 1 for any child (fi,ζ , ki,ζ) of (fi−1,µ, ki−1,µ), and 1≤ki,ζ ≤k − 2 for
all i≥1. So considering any root to leaf path in Tp,k(f), it is clear that the depth of Tp,k(f)
can be no greater than 1 + ⌊(k − 2− 1)/2⌋=⌊(k − 1)/2⌋. �

Assertion (2): Since f̃0,0= f̃ has degree ≤d, and the multiplicity of any degenerate root of

f̃0,0 is at least 2, we see that f̃0,0 has no more than ⌊d/2⌋ degenerate roots in Z/(p). Every
edge emanating from the root node of Tp,k(f) corresponds to a unique degenerate root of

f̃0,0 (and not every degenerate root of f̃ need yield a valid edge emanating from the root of
Tp,k(f)), so we are done. �

Assertion (3): The degree bound for non-root nodes follows similarly to the degree bound

for the root node: Letting s :=s(fi−1,µ, ζi−1), it suffices to prove that deg f̃i,ζ≤s for all i≥1.
Note that we must have

s= min
j∈{0,...,ki,ζ−1}

{

j + ordp
f
(j)
i−1,µ(ζi−1)

j!

}

,

since fi,ζ ∈
(

Z/
(

pki,ζ
))

[x] for i≥ 1. So then, the coefficient of xℓ in fi−1,µ(ζi−1 + px) must

be divisible by ps+1 for all ℓ≥ s + 1. In other words, the coefficient of xℓ in fi,ζ(x) must be

divisible by p for all ℓ≥ s + 1, and thus deg f̃i,ζ ≤ s. That s≤ ki−1,µ − 1 follows from the
definition of s(f, ζ), and ki−1,µ≤k since k0,0 :=k and (thanks to Definition 1.3) ki−1,µ>ki,ζ.
To prove the final bound, note that Lemma 2.2 implies that each term s(fi−1,µ, ζi−1) in the

sum is at most the multiplicity of the root ζi−1 of f̃i−1,µ. Since the sum of the multiplicities

of the degenerate roots of f̃i−1,µ is no greater than deg f̃i−1,µ, we are done. �

Assertion (4): By Assertion (3), the sum of the degrees of the f̃1,ζ0 (as (f1,ζ0 , k1,ζ0) ranges

over all depth 1 node labels of Tp,k(f)) is no greater than deg f̃0,0, which is at most d.

By applying Assertion (3) to all nodes of depth i≥ 2, the sum of the degrees of the f̃i,ζ
(as (fi,ζ , ki,ζ) ranges over all depth i node labels of Tp,k(f)) is no greater than the sum of the

degrees of the f̃i−1,µ (as (fi−1,µ, ki−1,µ) ranges over all depth i− 1 node labels of Tp,k(f)).

Since deg f̃0,0≤d we thus obtain that, for every depth i, the sum of the degrees of the f̃i,ζ
(as (fi,ζ , ki,ζ) ranges over all depth i node labels of Tp,k(f)) is no greater than d. So by the
final part of Assertion (3), our tree Tp,k(f) has no more than ⌊d/2⌋ nodes at any fixed depth
≥1. So by Assertion (1) we are done. �

We are at last ready to prove our main theorem.

Proof of Theorem 1.1: Since we already proved at the end of the last section that Algorithm
2.3 is correct, it suffices to prove the stated complexity bound for Algorithm 2.3. Proving that
Algorithm 2.3 runs as fast as stated will follow easily from (a) the fast randomized Kedlaya-
Umans factoring algorithm from [18] and (b) applying Lemmata 3.5 and 3.6 to show that the
number of necessary factorizations and p-adic valuation calculations is well-bounded.
More precisely, the For loops and recursive calls of Algorithm 2.3 can be interpreted as a

depth-first search of Tp,k(f), with Tp,k(f) being built along the way. In particular, we begin at

the root node by factoring f̃0,0= f̃ in (Z/(p))[x] via [18], in order to find the degenerate roots of

f̃ . (Factoring in fact dominates the complexity of the gcd computation that gives us np(f0,0),
if we use a deterministic near linear-time gcd algorithm such as that of Knuth and Schönhage



RANDOMIZED POLYNOMIAL-TIME ROOT COUNTING IN PRIME POWER RINGS 9

(see, e.g., [4, Ch. 3]).) This factorization takes time (d1.5 log p)
1+o(1)

+
(

d log2 p
)1+o(1)

and
requires O(d log p) random bits.
Now, in order to continue the recursion, we need to compute p-adic valuations of poly-

nomial coefficients in order to find the s(f0,0, ζ0) and determine the edges emanating from
our root. Expanding each f0,0(ζ0 + px) can clearly be done mod pk, so each such expansion
takes time no worse than d2(k log p)1+o(1) via Horner’s method and fast finite ring arithmetic
(see, e.g., [2, 14]). Computing s(f0,0, ζ0) then takes time no worse than d(k log p)1+o(1) using,
say, the standard binary method for evaluating powers of p. There are no more than ⌊d/2⌋
possible ζ0 (thanks to Lemma 3.6), so the total work so far is

d3(k log p)1+o(1) +
(

d log2 p
)1+o(1)

.

(To simplify our bound, we are rolling multiplicative constants into the exponent, at the price
of a negligible increase in the little-o(·) terms in the exponent.) Note that now, computing

the expansion f0,0(ζ0 + px) dominates the factorization of f̃0,0.
The remaining work can then be bounded similarly, but with one small twist: By Assertion

(4) of Lemma 3.6, the number of nodes at depth i of our tree is never more than ⌊d/2⌋ and,

by Lemma 3.5, the sum of the degrees of the f̃i,ζ at level i is no greater than d.
Now observe that (for i≥2) the amount of work needed to compute the s(fi−1,µ, ζi−1) at level

i − 1 (which are used to define the polynomials at level i) is no greater than
d · d(k log p)1+o(1), and this will be dominated by the subsequent computations of the expan-
sions of the fi,ζ. In particular, by the basic calculus inequality rt1 + · · ·+ rtℓ≤(r1 + · · ·+ rℓ)

t

(valid for any r, t≥ 1), the total amount of work for the factorizations for each subsequent
level of Tp,k(f) will be

d1.5(log p)1+o(1) +
(

d log2 p
)1+o(1)

,

with O(d log p) random bits needed. The expansions of the fi,ζ at level i will take time no
greater than d3(k log p)1+o(1) to compute. So our total work at each subsequent level is then

d3(k log p)1+o(1) +
(

d log2 p
)1+o(1)

.

So then, the total amount of work for our entire tree will be

kd3(k log p)1+o(1) + k
(

d log2 p
)1+o(1)

.

and the number of random bits needed is O(dk log p).
We are nearly done, but we must still ensure that our algorithm has the correct Las Vegas

properties. In particular, while finite field factoring can be assumed to succeed with probability
≥ 2/3, we use multiple calls to finite field factoring, each of which could fail. The simplest
solution is to simply run our finite field factoring algorithm sufficiently many times to reduce
the over-all error probability. In particular, thanks to Lemma 3.6, and the basic union bound
for probabilities, it is enough to enforce a success probability of O

(

1
dk

)

for each application
of finite field factoring. This implies that we should run the algorithm from [18] O(log(dk))
many times each time we need a factorization over (Z/(p))[x]. So, multiplying our last total
by log(dk), this yields a final complexity bound of

kd3(k log p)1+o(1) +
(

dk log2 p
)1+o(1)

(since computing the expansions of the fi,µ(ζi−1 + x) dominates our complexity) and a total
number of O(dk log(dk) log p) random bits needed.



10 LEANN KOPP, NATALIE RANDALL, J. MAURICE ROJAS, AND YUYU ZHU

To conclude, note that as our algorithm proceeds with depth first search, we need only
keep track of collections of fi,ζ occuring along a root-to-leaf path in Tp,k(f). A polynomial of
degree d with integer coefficients all of absolute value less than pk requires O(dk log p) bits to
store, and Lemma 3.6 tells us that the depth of Tp,k(f) is O(k). So we never need more than
O(dk2 log p) bits of memory. �

Acknowledgements

We are grateful to Qi Cheng, Shuhong Gao, and Daqing Wan for many useful conversa-
tions. We also humbly thank Joachim von zur Gathen for his kind encouragement, and the
referee for suggestions that clarified our exposition.

References

[1] Mart́ın Avendaño; Ashraf Ibrahim; J. Maurice Rojas; and Korben Rusek, “Faster p-adic Feasibility for
Certain Multivariate Sparse Polynomials,” Journal of Symbolic Computation, special issue in honor of
60th birthday of Joachim von zur Gathen, vol. 47, no. 4, pp. 454–479 (April 2012).

[2] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. I: Efficient Algorithms, MIT Press, Cam-
bridge, MA, 1996.

[3] Jérémy Berthomieu; Grégoire Lecerf; and Guillaume Quintin, “Polynomial root finding over local rings
and application to error correcting codes,” Applicable Algebra in Engineering, Communication, and
Computing, December 2013, Volume 24, Issue 6, pp. 413–443.

[4] P. Bürgisser, M. Clausen, and M.A. Shokrollahi, Algebraic complexity theory, with the collaboration of
Thomas Lickteig, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], 315, Springer-Verlag, Berlin, 1997.

[5] David G. Cantor and Daniel M. Gordon, “Factoring polynomials over p-adic fields,” Algorithmic number
theory (Leiden, 2000), pp. 185–208, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.

[6] Wouter Castryck; Jan Denef; and Frederik Vercauteren, “Computing Zeta Functions of Nondegenerate
Curves,” International Mathematics Research Papers, vol. 2006, article ID 72017, 2006.

[7] Antoine Chambert-Loir, “Compter (rapidement) le nombre de solutions d’équations dans les corps finis,”
Séminaire Bourbaki, Vol. 2006/2007, Astérisque No. 317 (2008), Exp. No. 968, vii, pp. 39-–90.

[8] Qi Cheng, “Primality Proving via One Round in ECPP and One Iteration in AKS,” Journal of Cryp-
tology, July 2007, Volume 20, Issue 3, pp. 375–387.

[9] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, “Counting Roots for Polynomials Modulo
Prime Powers,” Proceedings of ANTS XIII (Algorithmic Number Theory Symposium, July 16–20, 2018,
University of Wisconsin, Madison), Mathematical Sciences Publishers (Berkeley, California), to appear.

[10] Alexander L. Chistov, “Efficient Factoring [of ] Polynomials over Local Fields and its Applications,” in
I. Satake, editor, Proc. 1990 International Congress of Mathematicians, pp. 1509–1519, Springer-Verlag,
1991.

[11] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, 138,
Springer-Verlag, Berlin, 1993.

[12] Jan Denef, “Report on Igusa’s local zeta function,” Séminaire Bourbaki 1990/1991 (730-744) in
Astérisque 201–203 (1991), pp. 359–386.

[13] Shuhong Gao, Frank Volny IV, and Mingsheng Wang, “A new framework for computing Gröbner bases”,
Mathematics of Computation, 85 (2016), no. 297, 449–465.

[14] Joachim von zur Gathen and Jürgen Gerhard, “Modern Computer Algebra,” 3rd ed., Cambridge Uni-
versity Press, 2013.

[15] Joachim von zur Gathen and Silke Hartlieb, “Factoring Modular Polynomials,” J. Symbolic Computa-
tion (1998) 26, pp. 583–606.

[16] Jordi Guàrdia; Enric Nart; Sebastian Pauli, “Single-factor lifting and factorization of polynomials over
local fields,” Journal of Symbolic Computation 47 (2012), pp. 1318–1346.

[17] Jun-Ichi Igusa, “Complex powers and asymptotic expansions I: Functions of certain types,” Journal für
die reine und angewandte Mathematik, 1974 (268–269): 110–130.



RANDOMIZED POLYNOMIAL-TIME ROOT COUNTING IN PRIME POWER RINGS 11

[18] Kiran Kedlaya and Christopher Umans, “Fast polynomial factorization and modular composition,”
SIAM J. Comput., 40 (2011), no. 6, pp. 1767–1802.

[19] Adam R. Klivans, Factoring Polynomials Modulo Composites, Master’s Thesis, Carnegie Mellon Uni-
versity Computer Science Technical Report CMU-CS-97-136, 1997.

[20] Alan G. B. Lauder, “Counting solutions to equations in many variables over finite fields,” Found.
Comput. Math. 4 (2004), no. 3, pp. 221–267.

[21] Alan G. B. Lauder and Daqing Wan, “Counting points on varieties over finite fields of small charac-
teristic,” Algorithmic number theory: lattices, number fields, curves and cryptography, pp. 579-–612,
Math. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press, Cambridge, 2008.

[22] Arjen K. Lenstra; Hendrik W. Lenstra (Jr.); Laszlo Lovász, “Factoring polynomials with rational coef-
ficients,” Math. Ann. 261 (1982), no. 4, pp. 515–534.

[23] Bernard R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
[24] Ivan Niven; Herbert S. Zuckerman; and Hugh L. Montgomery, An Introduction to the Theory of Num-

bers, fifth edition, John Wiley & Sons, Inc., 1991.
[25] R. Raghavendran, “Finite associative rings,” Compositio Mathematica, tomme 21, no. 2 (1969), pp.

195–229.
[26] Ana Sălăgean, “Factoring polynomials over Z4 and over certain Galois rings,” Finite Fields and Their

Applications 11 (2005), pp. 56–70.
[27] Wolfgang M. Schmidt, “Solutions trees of polynomial congruences modulo prime powers,” Number the-

ory in progress (K. Györy, H. Iwaniec, J. Urbanowicz, eds.), Vol. 1, proceedings of a conference in honor
of 60th birthday of Andrzej Schnizel (Zakopane, Poland, June 30–July 9, 1997), Walter de Gruyter
GhmH & Co. KG, D-10785 Berlin, 1999.

[28] Wolfgang M. Schmidt and C. L. Stewart, “Congruences, Trees, and p-adic Integers,” Transactions of
the American Mathematical Society, vol. 349, No. 2, Feb. 1997, pp. 605–639.

[29] Carlo Sircana, Factoring polynomials over Z/(n), Ph.D. thesis, University of Pisa, Italy, 2016.
[30] Daqing Wan, “Algorithmic theory of zeta functions over finite fields,” Algorithmic number theory:

lattices, number fields, curves and cryptography, pp. 551–578, Math. Sci. Res. Inst. Publ., 44, Cambridge
Univ. Press, Cambridge, 2008.

[31] W. A. Zuniga-Galindo, “Computing Igusa’s Local Zeta Functions of Univariate Polynomials, and Linear
Feedback Shift Registers,” Journal of Integer Sequences, Vol. 6 (2003), Article 03.3.6.

Email address: LHK0002@auburn.edu

Mathematics Department, Auburn University, 221 Parker Hall, Auburn, Alabama 36849

Email address: natgrandall@gmail.com

Department of Mathematics, Austin College, 900 N. Grand Ave. Sherman, TX 75090

Email address: rojas@math.tamu.edu

TAMU 3368, College Station, TX 77843-3368

Email address: zhuyuyu@math.tamu.edu

TAMU 3368, College Station, TX 77843-3368


