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Abstract. We consider the sensitivity of real zeros of structured polynomial systems to
pertubations of their coefficients. In particular, we provide explicit estimates for condition
numbers of structured random real polynomial systems and extend these to a smoothed
analysis setting.

1. Introduction

Efficiently finding real roots of real polynomial systems is one of the main objectives of
computational algebraic geometry. There are numerous algorithms for this task, but the
core steps of these algorithms are easy to outline: They are some combination of algebraic
manipulation, a discrete/polyhedral computation, and a numerical iterative scheme.
From a computational complexity point of view, the cost of numerical iteration is much

less transparent than the cost of algebraic or discrete computation. This paper constitutes a
step toward understanding the complexity of numerically solving structured real polynomial
systems. Our main results are Theorems 1.14, 1.16, and 1.18 below but we will first need to
give some context for our results.

1.1. How to control accuracy and complexity of numerics in real algebraic geom-

etry? In the numerical linear algebra tradition, going back to von Neumann and Turing,
condition numbers play a central role in the speed of algorithms and the control of accuracy
(see, e.g., [3, 6] for further background). Shub and Smale initiated the use of condition num-
bers for polynomial system solving over the field of complex numbers [37, 38]. Subsequently,
condition numbers played a central role in the solution of Smale’s 17th problem [11, 6, 26].
The numerics of solving polynomial systems over the real numbers is more subtle than

complex case: small perturbations can cause the solution set to change cardinality. One can
even go from having no real zero to many real zeros by an arbitrarily small change in the
coefficients. This behaviour doesn’t appear over the complex numbers as one has theorems
(such as the Fundemantel Theorem of Algebra) proving that root counts are “generically”
constant. Luckily, a condition number theory that captures these subtleties was developed
by Cucker [12]. Now we set up the notation and present Cucker’s definition.

Definition 1.1 (Bombieri-Weyl Norm). We set xα := xα1
1 · · · xαn

n where α := (α1, . . . , αn),
and let P = (p1, . . . , pn−1) be a system of homogenous polynomials with degree pattern
d1, . . . , dn−1. Let ci,α denote the coefficient of xα in a pi. We define the Weyl-Bombieri
norms of pi and P to be, respectively,

‖pi‖W :=

√

∑

α1+···+αn=di

|ci,α|2
(

di
α

)
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and

‖P‖W :=

√

√

√

√

n−1
∑

i=1

‖pi‖2W .

The following is Cucker’s condition number definition [12].

Definition 1.2 (Real Condition Number). For a system of homogenous polynomials P =
(p1, . . . , pn−1) with degree pattern (d1, . . . , dn−1), let ∆n−1 be the diagonal matrix with entries√
d1, . . . ,

√

dn−1 and let

DP (x)|TxSn−1 : TxS
n−1 −→ R

m

denote the linear map between tangent spaces induced by the Jacobian matrix of the polyno-
mial system P evaluated at the point x ∈ Sn−1.
The local condition number of P at a point x ∈ Sn−1 is

κ̃(P, x) :=
‖P‖W

√

∥

∥DP (x)|−1
TxSn−1∆n−1

∥

∥

−2
+ ‖P (x)‖22

and the global condition number is

κ̃(P ) := sup
x∈Sn−1

κ̃(P, x).

An important feature of Cucker’s real condition number is the following geometric fact[14].

Theorem 1.3 (Real Condition Number Theorem). We use HD to denote the vector space of
homogenous polynomial systems with degree pattern (d1, . . . , dn−1), and equip this space with
the metric ρ(., .) induced by the Bombieri-Weyl norm. We define the set of ill-posed problems

to be: Σ := {P ∈ HD : P has a singular zero in Sn−1}. Then we have κ̃(P ) =
‖P‖W
ρ(P,Σ)

.

Cucker’s condition number is used in the design and analysis of a numerical algorithm
for real zero counting [13, 14, 15], in the series of papers for computing homology groups of
semialgebraic sets [16, 7, 8], and more recently in the analysis of a well-known algorithm for
meshing curves and surfaces (the Plantinga-Vegter algorithm) [10].
One important observation is that the complexity of a numerical algorithm over the real

numbers (imagine using bisection for finding real zeros of a given univariate polynomial)
varies depending on the geometry of the input, and not just the bit complexity of its vector
representation. Therefore it is more natural to go beyond worst-case analysis and seek
quantitative bounds for “typical” inputs. We now explain the existing attempts toward
mathematically modeling the intuitive phrase “typical input”.

Random and adverserial random models. Worst-case complexity theory, spearheaded
by the P vs. NP question, has been a driving force behing many algoritmic breaktrhorughs in
the last five decades. However, it has become clear that worst-case complexity theory fails to
capture the practical performance of algorithms. The unreasonable effectiveness of everyday
statistical methods are a case in point: the spotify app on cell phones solves instances of an
NP-Hard problem all the time!
Two dominant paradigms for going beyond the worst-case analysis of algorithms are as

follows: Assume an algorithm T operates on the input x ∈ R
k, with the cost of output

T(x) bounded from above by C(x). One then equips the input space R
k with a probability

measure µ and considers the average cost Ex∼µC(x), or smoothed analysis of the cost with
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parameter δ > 0: supx∈Rk Ey∼µC(x + δ ‖x‖ y). Clearly, as δ → 0, smoothed complexity
recovers worst-case complexity, and when δ −→ ∞ we recover average-case complexity. It is
also clear that to have a realistic complexity analysis, one should have a probability measure
µ that somehow reflects one’s context, and use theorems that allow a broad class of measures
µ. The idea of smoothed analysis originated in work of Spielman and Teng [39].

1.2. Existing results for average and smoothed analysis. Existing results for the
average analysis of real condition number from [15] can be roughly summarized as follows.

Theorem 1.4 (Cucker, Krick, Malajovich, Wschebor). Suppose

pi(x) :=
∑

α1+...+αn=di

c(i)α xα , i = 1, . . . , n− 1

are random polynomials where c
(i)
α are centered Gaussian random variables with variances

(

di
α

)

. Then, for the random polynomial system P = (p1, . . . , pn−1) and for all t ≥ 1, we have

P

{

κ̃(P ) ≥ t 8d
n+4
2 n5/2N1/2

}

≤ (1 + log(t))
1
2

t

where d = maxi di and N =
∑n−1

i=1

(

n+di−1
di

)

.

Recall the following smoothed analysis type result from [14]:

Theorem 1.5 (Cucker, Krick, Malajovich, Wschebore). Let Q be an arbitrary polynomial
system with degree pattern (d1, . . . , dn−1), let P = (p1, . . . , pn−1) be a random polynomial
system as defined above. Now for a parameter 0 < δ < 1 we define a random perturbation
of Q with (P, δ) as follows: G := Q+ δ ‖Q‖W P . Then we have

P

{

κ̃(G) ≥ t
13n2d2n+2N

δ

}

≤ 1

t
.

Remark 1.6. The randomness model considered in these seminal results has the following
restriction: the induced probability measure is invariant under the action of the orthogonal
group O(n) on the space of polynomials. The proof techniques used in the underlying papers
seems to be only applicable when one has this group invariance property. This creates an
obstruction against anaylsis on spaces of structured polynomials; spaces of structured poly-
nomials are not necessarily closed under the action of O(n), and hence do not support an
O(n)-invariant probability measure.

1.3. What about structured polynomials? Let Hdi be the vector space of homogenous
polynomials with n variables, and let HD be the vector space of polynomial systems with
degree pattern D = (d1, . . . , dn−1). Let Ei ⊂ Hdi be linear subspaces for i = 1, . . . , n − 1,
and let E = (E1, . . . , En−1) be the corresponding vector space of polynomial systems.
For virtually any application of real root finding algorithms, the user has a polyno-

mial system with a particular structure rather than a generic polynomial system with
N =

∑

i=1

(

n+di−1
di

)

many coefficients. Suppose a user has identified the linear structure
E that is present in the target equations, and would like to know about how much precision
is expected for round-off errors in the space E. One could induce a probability measure µ
on E and use EP∼µ log (κ̃(P )) to determine the expected precision of numerical solutions.
What could go wrong?
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Example 1.7. Let u, v ∈ Sn−1 be two vectors with u⊥v, and define the following subspaces:

Ei := {p ∈ Hdi : p(u) = 〈∇p(u), v〉 = 0} , i = 1, . . . , n− 1

where ∇p(u) denotes the the gradient of p evaluated at u. Ei are codimension 2 linear
subspaces of Hdi. Now consider the space of polynomials E := (E1, . . . , En−1); any polynomial
system in the space E has a singular real zero at u. Hence, for all P ∈ E the condition number
κ̃(P ) is infinite.

The preceding example illustrates that, for certain linear spaces E, the probabilistic analy-
sis of condition numbers is meaningless: It is possible for certain spaces E that all inhabitants
have infinite condition number. We will rule out these degenerate cases as follows.

Definition 1.8 (Non-degenerate linear space). We call a linear space Ei ⊂ Hdi non-
degenerate if for all v ∈ Sn−1, there exists an element pi ∈ Ei with pi(v) 6= 0. In other words,
Ei is non-degenerate if there is no base point v ∈ Sn−1 where all the elements of Ei vanish
all together. We call a space of polynomial systems E = (E1, . . . , En−1) non-degenerate if all
Ei are non-degenerate for i = 1, . . . , n− 1.

An easy corollary of Theorem 1.14 shows that the expected precision is finite for any
non-degenerate space E.

Corollary 1.9. Let E ⊂ HD be a non-degenerate linear space of polynomials. Let µ be a
probability measure supported on the space E that satisfies the assumptions listed in section
1.5. Then EP∼µ log (κ̃(P )) is finite.

This is clearly not the end of the story: a non-degenerate linear structure E may still be
close to being degenerate, and this would make every element in the space E ill-conditioned.
So we need to somehow quantify the numerical conditioning of a linear structure E. Next, we
introduce the notion of dispersion as a rough measure of conditioning of a linear structure.

1.4. The dispersion constant of a linear space. Suppose a linear subspace F ⊂ Hd is
given for some d > 1 together with an orthonormal basis uj(x) , j = 1, . . . ,m with respect
to Bombieri-Weyl norm. Now suppose for a particular point v0 ∈ Sn−1 all the basis elements
satisfy absuj(v0) < ε where ε > 0 is small. What kind of behavior one would expect from
elements of F at the point v0? This point v0 would behave like a base point (like if all
elements of F vanishes at v0) unless one employs rather high precision. This motivates the
following definition.

Definition 1.10 (Dispersion constant of a linear space of polynomials). Let F ⊂ Hd is given
for some d > 1, and let uj(x) , j = 1, . . . ,m be an orthonormal basis of F with respect to
Bombieri-Weyl norm. We define the following two quantities

σmin(F ) := min
v∈Sn−1

(

∑

j

uj(v)
2

)
1
2

, σmax(F ) := max
v∈Sn−1

(

∑

j

uj(v)
2

)
1
2

and the dispersion constant σ(F ) is their ratio:

σ(F ) :=
σmax(F )

σmin(F )

The quantity σmax is introduced to make things scale invariant. We generalize the defini-
tion to polynomial systems in a straight-forward manner.
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Definition 1.11 (Dispersion constant of a linear space of polynomial systems). Let Ei ⊂ Hdi

be linear spaces for i = 1, . . . , n − 1, and let E = (E1, . . . , En−1). We define the dispersion
constant σ(E) as follows: σ(E) := maxi σ(Ei).

Our estimates replace the dimension N in earlier results with the (potentially much
smaller) dimension of E, at the expense of involving the new quantity σ(E). So if a user has
a fixed structure E with small dimension and tame dispersion constant, then the expected
conditioning on E admits a much better bound than what earlier results suggest. On the
other hand, if one has a sparse but highly sensitive structure, the resulting average-case
conditioning could be a lot worse than the average over the entire space HD.

How big is the dispersion constant? To better understand the dispersion constant, let
us consider two examples at opposite extremes.

Example 1.12 (A subspace with minimal dispersion constant). Consider subspaces of poly-
nomials Fi ⊂ Pn,2di defined as the span of

u
(i)
kl = (x2

1 + · · ·+ x2
n)

di−1xkxl for 1 ≤ k, l ≤ n

and let F = (F1, . . . , Fn). It is easy to show that σ(F ) = 1.

Example 1.13 (A sparse but highly sensitive structure). Let E ⊂ Pn,d be the subspace of

polynomials spanned by the monomials xd
1, . . . , x

d
n. Then, we have σ(E) = n

d−1
2 .

One may wonder how big the dispersion constant for a “typical” linear space E is, for
say, E of dimension around n2 log d. Would a typical low-dimensional space look like the
second example or the first example? We address this question in Appendix A. For our main
theorems, we will allow E to be arbitrary and give bounds depending explicitly on the the
dispersion constant σ(E).

1.5. A general model of randomness for structured polynomial systems. In our
precursor paper [19] we obtained probabilistic condition number estimates for general mea-
sures (without any group invariance assumption). In this paper we present probabilistic
results for the same general family of measures, but this time supported on a structured
space E instead of HD. Note that here the structured space E will be fixed by the user, and
our results will give estimates for a random element from E. First, we introduce our general
model of randomness.
We say a random vector X ∈ R

n satisfies the Centering, sub-Gaussian, and Small Ball
properties, with constants K and c0, if the following hold true:

1. (Centering) For any θ ∈ Sn−1 we have E〈X, θ〉 = 0.1

2. (Sub-Gaussian) There is a K > 0 such that for every θ ∈ Sn−1 we have

Prob (|〈X, θ〉| ≥ t) ≤ 2e−t2/K2
for all t > 0.

3. (Small Ball) There is a c0 > 0 such that for every vector a ∈ R
n we have

Prob (|〈a,X〉| ≤ ε ‖a‖2) ≤ c0ε for all ε > 0.
We note that these three assumptions directly yield a relation between K and c0: We in fact
have Kc0 ≥ 1

4
(see [19] just before Section 3.2). Moreover, for a random variable X that

satisfies above assumptions with constants K and co, and a scalar λ > 0, the random varible
λX satisfies the above assumptions with constants λK and λ−1c0. In other words Kc0 is
invariant under scaling, hence one can hope for a universal lower bound of 1

4
.

1Equivalently, EX=O.
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Random vectors that satisfy these three properties form a large family of distributions,
including standard Gaussian vectors and uniform measures on a large family of convex bodies
called Ψ2-bodies (such as uniform measures on lp-balls for all p ≥ 2). We refer the reader to
the book of Vershynin [45] for more details. Discrete sub-Gaussian distributions, such as the
Bernoulli distribution, also satisfy an inequality similar to the small-ball inequality in our
assumptions. However, the small-ball type inequality satisfied by such discrete distributions
depends not only on the norm of the deterministic vector a but also on the arithmetic
structure of a. It is possible that our methods, combined with the work of Rudelson and
Veshynin on the Littlewood-Offord problem [33], can extend our main results to discrete
distributions such as the Bernoulli distribution. In this work, we will content ourselves with
continuous distributions.
The preceding examples of random vectors do not necessarily have independent coordi-

nates. This provides important extra flexibility. There are also interesting examples of
random vectors with independent coordinates. In particular, if X1, . . . , Xm are independent
centered random variables that each satisfy both the sub-Gaussian inequality with constant
K and the Small Ball condition with c0, then the random vector X = (X1, . . . , Xm) also
satisfies the sub-Gaussian and Small Ball inequalities with constants C1K and C2c0, where
C1 and C2 are universal constants. This is a relatively new result of Rudelson and Ver-
shynin [35]. The best possible universal constant C2 is discussed in [29, 32]. To create a
random variable satisfying the Small Ball and sub-Gaussian properties one can, for instance,
start by fixing any p ≥ 2 and then considering a random variable with density function
f(t) := cpe

−|t|p , for suitably chosen positive cp.

1.6. Our Results. We present estimates for random structured polynomial systems, where
the randomness model is the one introduced in the preceding section.

Average-case condition number estimates for structured polynomial systems

Theorem 1.14. Let Ei ⊆ Hdi be non-degenerate linear subspaces, and let E = (E1, . . . , En−1).
Assume dim(E) ≥ n log(ed) and n ≥ 3. Let pi ∈ Ei be independent random elements of Ei

that satisfy the Centering property, the sub-Gaussian property with constant K, and the
Small Ball property with constant c0, each with respect to the Bombieri-Weyl inner product.
We set d := maxi di and M := nK

√

dim(E)(c0CKd2 log(ed)σ(E))2n−2, where C ≥ 4 is a
universal constant. Then for the random polynomial system P = (p1, . . . , pn−1), we have

Prob(κ̃(P ) ≥ tM) ≤
{

3t−
1
2 ; if 1 ≤ t ≤ e2n log (ed)

(e2 + 1)t−
1
2
+ 1

4 log(ed) ; if e2n log (ed) ≤ t

Moreover, for 0 < q < 1
2
− 1

2 log(ed)
, we have E(κ̃(P )q) ≤ M q(1 + 4q log(ed)). In particular,

E log(κ̃(P )) ≤ 1 + logM .

Smoothed analysis for structured polynomial systems For smoothed analysis we
need to introduce a slightly stronger assumption on the random input. This slightly stronger
property is called the Anti-Concentration Property and it replaces the Small Ball assumption
in our model of randomness. We will need a bit of terminology to define anti-concentration.

Definition 1.15 (Anti-Concentration Property). For any real-valued random variable Z and
t≥0, the concentration function, F (Z, t), is defined as F (Z, t) := maxu∈R Prob{|Z−u| ≤ t}.
Let 〈·, ·〉 denote the standard inner product on R

n. We then say a random vector X ∈ R
n

satisfies the Anti-Concentration Property with constant c0 if we have F (〈X, θ〉, ε) ≤ c0ε for
all θ ∈ Sn−1. ⋄
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It is easy to check that if the random variable Z has bounded density f then F (Z, t) ≤ ‖f‖∞t.
Moreover, the Lebesgue Differentiation theorem states that upper bounds for the function
t−1F (Z, t) for all t imply upper bounds for ‖f‖∞. See [34] for the details.

Theorem 1.16. Let E ⊆ HD be a non-degenerate linear subspace for D = (d1, . . . , dn−1).
Assume dim(E) ≥ n log2(ed) and n ≥ 3. Let Q ∈ E be a fixed (deterministic) polynomial
system let G ∈ E be a random polynomial system given by the same model of randomness
as in Theorem 1.14, but with the Small Ball Property replaced by the Anti-Concentration
Property. Set d := maxi di, and

M := nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2
(

1 +
‖Q‖W√

nK log(ed)

)2n−1

where C ≥ 4 is a universal constant. Then for the randomly perturbed polynomial system
P = Q+G, we have

Prob(κ̃(P ) ≥ tM) ≤
{

3t−
1
2 ; if 1 ≤ t ≤ e2n log (ed)

(e2 + 1)t−
1
2
+ 1

4 log(ed) ; if e2n log (ed) ≤ t

Moreover, for 0 < q < 1
2
− 1

2 log(ed)
, we have

E(κ̃(P )q) ≤ M q(1 + 4q log(ed)).

In particular, E log(κ̃(P )) ≤ 1 + logM .

We would like to consider a corollary to make the result easier to parse.

Corollary 1.17. Let E ⊆ HD be a non-degenerate linear subspace for D = (d1, . . . , dn−1).
Assume dim(E) ≥ n log(ed)2 and n ≥ 3. Let Q ∈ E be a fixed (deterministic) polynomial
system, and let G ∈ E be a random polynomial system given by the model of randomness as
in Theorem 1.16, but with fixed K = 1. Now let 0 < δ < 1 be a parameter and consider the
polynomial system

P := Q+ δ ‖Q‖W G

We set d := maxi di, and

M := n
√

dim(E)
(

c0Cd2 log(ed)σ(E)
)2n−2

δ ‖Q‖W
(

1 +
1

δ
√
n log(ed)

)2n−1

where C ≥ 4 is a universal constant. Then, we have

Prob(κ̃(P ) ≥ tM) ≤
{

3t−
1
2 ; if 1 ≤ t ≤ e2n log (ed)

(e2 + 1)t−
1
2
+ 1

4 log(ed) ; if e2n log (ed) ≤ t

An interesting consequence As a corollary of the smoothed analysis estimate in Theorem
1.16, we derive the following structural result.

Theorem 1.18. Let Ei ⊆ Hdi be full linear subspaces, let E = (E1, . . . , En−1), and let
Q ∈ E. Then, for every 0 < ε < 1, there is a polynomial system Pε ∈ E with the following
properties:

‖Pε −Q‖W ≤ ε ‖Q‖W

(

√

dim(E)

log(ed)
√
n

)

and

κ̃(Pε) ≤
√
n
√

dim(E)

(

d2C log(ed)σ(E)

ε

)2n−2
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for a universal constant C.

One can view this result as a metric entropy statement as follows: Suppose we are given
a bounded set T ⊂ E with supP∈T ‖P‖W ≤ 1, and we would like to cover T with balls of
radius δ, i.e., T =

⋃

i B(pi, δ). Moreover, suppose we want the ball-centers pi to have a
controlled condition number. We can start with an arbitrary δ

2
covering T =

⋃

i B(pi,
δ
2
),

and use Theorem 1.18 with ε = δ
√
n

2
√

dim(E)
to find a pi with controlled condition number in

each one of the balls B(pi,
δ
2
). Then T =

⋃

i B(pi, δ) gives a δ-covering of T where pi has
controlled condition number.

2. Background and Basic Estimates

We first present a simple lemma for a single random polynomial.

Lemma 2.1. Let F ⊂ Hd be non-degenerate linear subspace of degree d homogenous poly-
nomials. We equip F with Bombieri-Weyl norm. Suppose p ∈ F is a random element that
satisfies centering property, sub-Gaussian property with constant K, and small probability
with constant co each with respect to Bombieri inner product. Then for all w ∈ Sn−1 the
following estimates hold:

Prob (|p(w)| ≥ tσmax(F )) ≤ exp

(

1− t2

K2

)

Prob (|p(w)| ≤ εσmin(F )) ≤ c0ε.

Proof. Suppose u1, . . . , um is an orthonormal basis of F with respect to Bombieri-Weyl inner
product. Let f ∈ F be a polynomial with f(x) =

∑

i fiui(x), then for any v ∈ Sn−1,
clearly f(v) =

∑

i aiui(v). In other words, if we set qv :=
∑

i ui(v)ui(x) then we have
f(v) = 〈f, qv〉W . Also note since ui is an orthonormal basis with respect to Bombieri norm,

we have ‖qv‖W = (
∑

i ui(v)
2)

1
2 .

Now let p ∈ E ′ be the random element described above. The reasoning in the preceding
paragraph gives us the following estimates for any fixed point v ∈ Sn−1:

Prob (|p(v)| ≥ t ‖qv‖W ) ≤ exp

(

1− t2

K2

)

Prob (|p(v)| ≤ ε ‖qv‖W ) ≤ c0ε.

By the definition of σmax(F ) and σmin(F ) these pointwise estimates yield the desired result.
�

The following is the generalization of Lemma 2.1 to systems of polynomials.

Lemma 2.2. Let D = (d1, . . . , dn−1) ∈ N
n−1. For all i ∈ {1, . . . , n − 1} let Ei ⊆ Hdi be

non-degenerate linear subspaces, and let E := (E1, . . . , En−1). For each i, let pi be chosen
from Ei via a distribution satisfying the Centering Property, the Sub-Gaussian Property with
constant K, and the Small Ball Property with constant c0 (each with respect to the Bombieri-
Weyl inner product). Then, for the random polynomial system P = (p1, . . . , pn−1), and all
v ∈ Sn−1, the following estimates hold:

Prob
(

‖P (v)‖2 ≥ tσmax(E)
√
n− 1

)

≤ exp

(

1− a1t
2(n− 1)

K2

)
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and Prob
(

‖P (v)‖2 ≤ εσmin(E)
√
n− 1

)

≤ (a2c0ε)
n−1,

where a1 and a2 are absolute constants.

For the proof of Lemma 2.2 we need to recall some theorems from probability theory and
some basic tools developed in our earlier work [19]. These basic lemmata will also be used
throughout the paper. We start with a theorem which is reminiscent of Hoeffding’s classical
inequality [20].

Theorem 2.3. [47, Prop. 5.10] There is an absolute constant c̃1 > 0 with the following
property: If X1, . . . , Xn are centered, sub-Gaussian random variables with constant K, a =
(a1, . . . , an) ∈ R

n and t ≥ 0, then

Prob

(∣

∣

∣

∣

∣

∑

i

aiXi

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−c̃1t
2

K2 ‖a‖22

)

. �

We will also need the following standard lemma (see, e.g., [33, Lemma 2.2]).

Lemma 2.4. Assume Z1, . . . , Zn are independent random variables that have the property
that F (Zi, t)) ≤ c0t for all t > 0. Then for t > 0 we have F (W, t

√
n) ≤ (cc0t)

n, where
W := ‖(Z1, . . . , Zn)‖2. Moreover, if ξ1, . . . , ξk are independent random variables such that,
for every ε > 0, we have Prob (|ξi| ≤ ε) ≤ c0ε. Then there is a universal constant c̃ > 0 such

that for every ε > 0 we have Prob
(

√

ξ21 + · · ·+ ξ2k ≤ ε
√
k
)

≤ (c̃c0ε)
k. �

Now that we have our basic probabilistic tools we proceed to deriving some deterministic
inequalities.
The lemma below was proved in our earlier paper [19], generalizing a classical The-

orem of Kellog [21]. To state the lemma we need a bit of terminology: For any sys-
tem of homogeneous polynomials P := (p1, . . . , pn−1) ∈ (R[x1, . . . , xn])

n−1 define ‖P‖∞ :=

supx∈Sn−1

√

∑n−1
i=1 pi(x)2. Let DP (x) denote the Jacobian matrix of the polynomial system

at point x, let DP (x)(u) denote the image of the vector u under the linear operator DP (x),
and set

∥

∥D(1)P
∥

∥

∞ := supx,u∈Sn−1 ‖DP (x)(u)‖2. (Alternatively, the last quantity can be

written supx,u∈Sn−1

√

∑n−1
i=1 〈∇pi(x), u〉2.)

Lemma 2.5. Let P := (p1, . . . , pn−1) ∈ (R[x1, . . . , xn])
n−1 be a polynomial system with pi

homogeneous of degree di for each i and set d :=maxi di. Then:

(1) We have
∥

∥D(1)P
∥

∥

∞ ≤ d2 ‖P‖∞ and, for any mutually orthogonal x, y∈Sn−1, we also
have ‖DP (x)(y)‖2 ≤ d ‖P‖∞.

(2) If deg(pi) = d for all i ∈ {1, . . . , n− 1} then we also have
∥

∥D(1)P
∥

∥

∞ ≤ d ‖P‖∞. �

The final lemma we need is a discretization tool for homogenous polynomial systems that
was developed in [19] based on Lemma 2.5. We need a bit of terminology to state the lemma.

Definition 2.6. Let K be a compact set in a metric space (X, d), then a set A ⊆ K with
finitely many elements is called a δ-net if for every x ∈ K there exists y ∈ A with d(x, y) ≤ δ.

For the unit sphere in R
n, equipped with the standard Euclidean metric, there are known

bounds for the size of a δ-net. We recall one such bound below.

Lemma 2.7. Let Sn−1 be the unit sphere in R
n with respect to standard euclidean metric.

Then for every δ > 0, there exist a δ-net N ⊂ Sn−1 with size at most 2n(1 + 2
δ
)n−1.
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Lemma 2.7 is almost folklore: a proof appears in Proposition 2.1 of [34].

Lemma 2.8. Let P = (p1, . . . , pn−1) be a system of homogenous polynomials pi with n
variables and deg(pi) = di. Let N be a δ-net on Sn−1. Let maxN (P ) = supy∈N ‖P (y)‖2 and
‖P‖∞ = supx∈Sn−1 ‖P (x)‖2. Similarly let us define,

max
N k+1

(D(k)P ) = sup
x,u1,...,uk∈N

∥

∥D(k)P (x)(u1, . . . , uk)
∥

∥

2

and
∥

∥D(k)P
∥

∥

∞ = sup
x,u1,...,uk∈Sn−1

∥

∥D(k)P (x)(u1, . . . , uk)
∥

∥

2
.

Then

(1) When deg(pi) = d for all i ∈ {1, . . . ,m} we have ‖P‖∞ ≤ maxN (P )
1−dδ

and
∥

∥D(k)P
∥

∥

∞ ≤ max
Nk+1 (D

(k)P )

1−δd
√
k+1

.

(2) When maxi{deg(pi)} ≤ d we have ‖P‖∞ ≤ maxN (P )
1−d2δ

and
∥

∥D(k)P
∥

∥

∞ ≤ max
Nk+1 (D

(k)P )

1−δd2
√
k+1

. �

Proof of Lemma 2.2: We begin with the first claim. Using Lemma 2.1 and the fact that
σmax(E) ≥ σmax(Ei) for all i, we get the following estimate for any pi ∈ Ei and w ∈ Sn−1:

Prob (|pi(w)| ≥ sσmax(E)) ≤ exp

(

1− s2

K2

)

.

Now let a = (a1, . . . , an−1) ∈ R
n−1 with ‖a‖2 = 1, and apply Lemma 2.3 to the sub-Gaussian

random variables pi(w)
σmax(E)

and the vector a. We then get

Prob

(∣

∣

∣

∣

∣

∑

i

aipi(w)

∣

∣

∣

∣

∣

≥ sσmax(E)

)

≤ exp

(

1− c̃1s
2

K2

)

.

Observe that ‖P (w)‖2 = maxa∈Sn−2 |〈a, P (w)〉|. For any fixed point w ∈ Sn−1 and a free
variable a ∈ R

n, we have that 〈a, P (w)〉 is a linear polynomial on a. We then use Lemma
2.8 on this linear polynomial, which gives us the following estimate:

Prob

(

‖P (w)‖2 ≥
sσmax(E)

1− δ

)

≤ |N | exp
(

1− c̃1s
2

K2

)

.

We then use Lemma 2.7 to control the cardinality of the δ-net and get

|N | ≤ 2n(1 +
2

δ
)n−1 ≤ e(n−1)c̃ log( 1

δ
),

for some absolute constant c̃. So we set t = 2s
√
n− 1, δ = 1

2
, and obtain the following

estimate for some universal constant a1.

Prob
(

‖P (w)‖2 ≥ tσmax(E)
√
n− 1

)

≤ exp

(

1− a1t
2(n− 1)

K2

)

.

We continue with the proof of the second claim. Using Lemma 2.1 and the fact that
σmin(E) ≤ σmin(Ei) for all i, we deduce the following estimate for all pi and for any ε > 0:

Prob

(∣

∣

∣

∣

pi(w)

σmin(E)

∣

∣

∣

∣

≤ ε

)

≤ c0ε.

Using Lemma 2.4 on the random variables
∣

∣

∣

pi(w)
σmin(E)

∣

∣

∣
gives the following estimate:

Prob
(

‖P (w)‖2 ≤ εσmin(E)
√
n− 1

)

≤ (c̃2c0ε)
n−1. �
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3. Operator Norm Type Estimates

In this section we will estimate the absolute maximum norm of a random polynomial
system on the sphere. Recall that for a homogenous polynomial system P = (p1, . . . , pn−1)
the sup-norm is defined as ‖P‖∞ = supx∈Sn−1 ‖P (x)‖2. The following lemma is our sup-norm
estimate for a random polynomial system P .

Lemma 3.1. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates, let Ei ⊆
Hdi be full linear subspaces, and let E = (E1, . . . , En−1). Let pi ∈ Ei be independent random
elements of Ei that satisfy the Centering Property, the Sub-Gaussian Property with constant
K, and the Small Ball Property with constant c0, each with respect to Bombieri-Weyl inner
product. Let N be a δ-net on Sn−1. Then for P = (p1, . . . , pn−1) we have

Prob

(

max
x∈N

‖P (x)‖2 ≥ tσmax(E)
√
n

)

≤ |N | exp
(

1− a1t
2n

K2

)

,

where a1 is a universal constant. In particular, for d = maxi deg(pi), δ = 1
3d2

, and t =
s log(ed) with s ≥ 1 this gives us the following estimate

Prob
(

‖P‖∞ ≥ sσmax(E)
√
n log(ed)

)

≤ exp

(

1− a3s
2n log(ed)2

K2

)

where a3 is a universal constant.

Proof. The first statement is proven by just taking a union bound over N and using Lemma
2.2. The second part of the statement immediately follows by using the first part and Lemma
2.8. �

4. Small Ball Type Estimates

We define the following quantity for later convenience.

L(x, y) :=
√

‖∆−1
m D(1)P (x)(y)‖22 + ‖P (x)‖22

It follows directly that

‖P‖W
κ̃(P, x)

=

√

‖P‖2W µ̃norm(P, x)−2 + ‖P (x)‖22 = inf
y⊥x

y∈Sn−1

L(x, y)

So we set L(P, x) =
‖P‖W
κ̃(P,x)

and L(P ) = minx∈Sn−1 L(P, x). We then have the following

equalities:

L(P, x) = inf
y⊥x

y∈Sn−1

L(x, y) , κ̃(P, x) = ‖P‖W
L(P, x)

and, finally

κ̃(P ) =
‖P‖W
L(P )

.

In this section, we prove a small-ball type estimate to control behavior of the denominator
L(p). We first need to recall a technical lemma from our earlier paper [19], which builds on
an idea of Nguyen [31].
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Lemma 4.1. Let n ≥ 2, let P := (p1, . . . , pn−1) be a system of n-variate homogenous
polynomials, and assume ‖P‖∞ ≤ γ. Let x, y ∈ Sn−1 be mutually orthogonal vectors with
L(x, y) ≤ α, and let r ∈ [−1, 1]. Then for every w with w = x+βry+β2z for some z ∈ Bn

2 ,
we have the following inequalities:

(1) If d := maxi di and 0 < β ≤ d−4 then ‖P (w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ2).

(2) If deg(pi) = d for all i ∈ [n− 1] and 0 < β ≤ d−2 then ‖P (w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ2). �

We also need to state and prove the following simple Lemma for the clarity of succeeding
proofs.

Lemma 4.2. Let n ≥ 1 be an integer. Then for 0 ≤ x ≤ 1
n
we have (1 + x)n ≤ 1 + 3nx.

Proof. For every 0 ≤ y ≤ 1 we have 1+3y ≥ ey. This can be seen by setting f(y) = 1+3y−ey,
observing f

′

(y) > 0 for all 0 ≤ y ≤ 1 and f(1) > 0, f(0) = 0. With a similar reasoning one
can prove ex ≥ 1 + x, and hence enx ≥ (1 + x)n for all 0 ≤ x ≤ 1. Using y = nx completes
the proof. �

Theorem 4.3. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates, let
Ei ⊆ Hdi be full linear subspaces, and let E = (E1, . . . , En−1). Let pi ∈ Ei be independent
random elements of Ei that satisfy the Centering Property, the Sub-Gaussian Property with
constant K, and the Small Ball Property with constant c0, each with respect to Bombieri-
Weyl inner product. Let γ ≥ 1, d := maxi di, and assume α ≤ min{d−8, n−1}. Then for
P = (p1, . . . , pn−1) we have

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + cα
1
2
√
n

(

c0d
2γC

σmin(E)
√
n

)n−1

where C is a universal constant.

The proof of Theorem 4.3 is similar to a proof in our earlier paper [19]. We reproduce the
proof here due to the importance of Theorem 4.3 in the flow of our current paper.

Proof. We assume the hypotheses of Assertion (1) in Lemma 4.1: Let α, γ > 0 and β ≤ d−4.
Let B : = {P | ‖P‖∞ ≤ γ} and let

L := {P | L(P ) ≤ α} = {P | There exist x, y∈Sn−1 with x ⊥ y and L(x, y) ≤ α}.
Let Γ := 8(α2 + (2 + e4)β4d4γ2) and let Bn

2 denote the unit ℓ2-ball in R
n.

Lemma 4.1 implies that if the event B ∩ L occurs then there exists a non-empty set

Vx,y := {w ∈ R
n : w = x+ βry + β2z, x ⊥ y, |r| ≤ 1, z ⊥ y, z ∈ Bn

2 } \Bn
2

such that ‖P (w)‖22 ≤ Γ for every w in this set. Let V := Vol(Vx,y). Note that for w ∈ Vx,y

we have ‖w‖22 = ‖x+ β2z‖22 + ‖βy‖22 ≤ 1 + 4β2. Hence we have ‖w‖2 ≤ 1 + 2β2. Since
Vx,y ⊆ (1 + 2β2)Bn

2 \Bn
2 , we have showed that

B ∩ L ⊆ {P | Vol({x ∈ (1 + 2β2)Bn
2 \Bn

2 | ‖P (x)‖22 ≤ Γ}) ≥ V }.
Using Markov’s Inequality, Fubini’s Theorem, and Lemma 2.2, we can estimate the proba-
bility of this event. Indeed,
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Prob (Vol({x ∈ (1 + 2β2)Bn
2 \Bn

2 : ‖P (x)‖22 ≤ Γ}) ≥ V )

≤ 1

V
EVol

(

{x ∈ (1 + 2β2)Bn
2 \Bn

2 : ‖P (x)‖22 ≤ Γ}
)

≤ 1

V

∫

(1+2β2)Bn
2 \Bn

2

Prob
(

‖P (x)‖22 ≤ Γ
)

dx

≤ Vol((1 + 2β2)Bn
2 \Bn

2 )

V
max

x∈(1+2β2)Bn
2 \Bn

2

Prob
(

‖P (x)‖22 ≤ Γ
)

.

Now recall that Vol(Bn
2 ) =

πn/2

Γ(n
2
+1)

. Then
Vol(Bn

2 )

Vol(Bn−1
2 )

≤ c′√
n
for some constant c′ > 0. If we

assume that that β2 ≤ 1
2n
, then Lemma 4.2 implies (1 + 2β2)n ≤ 1 + 6nβ2, and we obtain

Vol((1 + 2β2)Bn
2 \Bn

2 )

V
≤ Vol(Bn

2 ) ((1 + 2β2)n − 1)

β(β2)n−1Vol(Bn−1
2 )

≤ c
√
nββ2−2n,

for some absolute constant c > 0. Note that here, for a lower bound on V , we used the fact
that Vx,y contains more than half of a cylinder with base having radius β2 and height 2β.
Writing x̃ := x

‖x‖2 for any x 6= 0 we then obtain, for z /∈ Bn
2 , that

‖P (z)‖22 =
m
∑

j=1

|pj(z)|2 =
m
∑

j=1

|pj(z̃)|2‖z‖2dj2 ≥
m
∑

j=1

|pj(z̃)|2 = ‖P (z̃)‖22.

This implies, via Lemma 2.2, that for every w∈(1 + 2β2)Bn
2 \Bn

2 we have

Prob
(

‖P (w)‖22 ≤ Γ
)

≤ Prob
(

‖P (w̃)‖22 ≤ Γ
)

≤
(

cc0

√

Γ

nσmin(E)2

)n−1

.

So we conclude that Prob (B ∩ L) ≤ c
√
nβ3−2n

(

cc0
√

Γ
nσmin(E)2

)n−1

. Since Prob (L(P ) ≤ α) ≤
Prob (‖P‖∞ ≥ γ) + Prob(B ∩ L) we then have

Prob (L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
nβ3−2n

(

cc0

√

Γ

nσmin(E)2

)n−1

Recall that Γ = 8(α2+(5+ e4)β4d4γ2). We set β2 := α. Our choice of β and the assumption
that γ ≥ 1 then imply that Γ ≤ Cα2γ2d4 for some constant C. So we obtain

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
n(α)

3
2
−n

(

c0Cαd2γ

σmin(E)
√
n

)n−1

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
n(α)

1
2

(

c0d
2γC

σmin(E)
√
n

)n−1

and our proof is complete. �

5. Proof of Theorem 1.14

We first need to estimate Bombieri norm of a random polynomial system. The following
lemma is more or less standard, and it follows from Lemma 2.3.



14 ALPEREN A. ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

Lemma 5.1. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates, let Ei ⊆
Hdi be full linear subspaces, and let E = (E1, . . . , En−1). Let pi ∈ Ei be random elements of
Ei that satisfy the Centering Property and the Sub-Gaussian Property with constant K, each
with respect to Bombieri-Weyl inner product. Then for all t ≥ 1, we have

Prob
(

‖pi‖W ≥ t
√

dim(Ei)
)

≤ exp

(

1− t2 dim(Ei)

K2

)

and for the random polynomial system P = (p1, . . . , pn−1) we have

Prob
(

‖P‖W ≥ t
√

dim(E)
)

≤ exp

(

1− t2 dim(E)

K2

)

. �

Now we have all the necessary tools to prove our probabilistic condition number theorem.
We will prove the following statement:

Theorem 5.2. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates, let
Ei ⊆ Hdi be non-degenerate linear subspaces, and let E = (E1, . . . , En−1). We assume that
dim(E) ≥ n log(ed) and n ≥ 3. Let pi ∈ Ei be independent random elements of Ei that
satisfy the Centering Property, the Sub-Gaussian Property with constant K, and the Small
Ball Property with constant c0, each with respect to the Bombieri-Weyl inner product. We
set d := maxi di, and

M := nK
√

dim(E)(c0d
2CK log(ed)2σ(E))2n−2

where C ≥ 4 is a universal constant. Then for P = (p1, . . . , pn−1), we have

Prob(κ̃(P ) ≥ tM) ≤







3√
t

; if 1 ≤ t ≤ e2n log (ed)

e2+1√
t

(

log t
2n log (ed)

)
n
2

; if e2n log (ed) ≤ t

For notational simplictiy we set m = dim(E). To start the proof we observe the following:

Prob (κ̃(P ) ≥ tM) ≤ Prob
(

‖P‖W ≥ sK
√
m
)

+ Prob

(

L(P ) ≤ sK
√
m

tM

)

The first probability on the right hand side will be controlled by Lemma 5.1, and the sec-
ond will be controlled by Theorem 4.3. Theorem 4.3 states that for any γ ≥ 1 and for
sK

√
m

tM
≤ min{d−8, n−1}, we have

Prob

(

L(P ) ≤ sK
√
m

tM

)

≤ Prob (‖P‖∞ ≥ γ) +

(

sK
√
m

tM

)
1
2 √

n

(

c0Cγd2

σmin(E)
√
n

)n−1

To have sK
√
m

tM
≤ min{d−8, n−1} is equivalent to tM min{d−8, n−1} ≥ sK

√
m. We will check

this condition at the end of the proof. Now, for γ = uσmax(E)
√
n log(ed)K with u ≥ 1, from

Lemma 3.1 we have Prob (‖P‖∞ ≥ uσmax(E)
√
n log(ed)K) ≤ exp(1− a3u

2n log(ed)2). That
is, for γ = uσmax(E)

√
n log(ed)K, we have the following estimate:

Prob

(

L(P ) ≤ sK
√
m

tM

)

≤ exp(1−a3u
2n log(ed)2)+

(

sK
√
m

tM

)
1
2 √

n

(

c0Cuσmax(E) log(ed)d2K

σmin(E)

)n−1

.
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Since σ(E) = σmax(E)
σmin(E)

and M = n
√
nK(c0C log(ed)d2Kσ(E))2n−2, we have

Prob

(

L(P ) ≤ sK
√
m

tM

)

≤ exp(1− a3u
2n log(ed)) +

(s

t

)
1
2
un−1.

Using Lemma 5.1 and the assumption that m ≥ n log(ed) we then obtain

Prob (κ̃(P ) ≥ tM) ≤ exp(1− s2n log(ed)2) + exp(1− a3u
2n log(ed)) +

(s

t

)
1
2
un−1.

If t ≤ e2n log(ed) then setting s = u = 1 gives the desired inequality. If t ≥ e2n log(ed) then we

set s = u2 = log(t)
2ãn log(ed)

, where ã > a3 > 0 is a constant greater than 1. We then obtain

Prob (κ̃(P ) ≥ tM) ≤ exp

(

2− 1

2
log(t)

)

+

(

log(t)

2n log(ed)

)
n
2 1√

t
.

Observe that exp
(

2− 1
2
log t

)

= e2√
t
. So we have Prob (κ̃(P ) ≥ tM) ≤

(

log(t)
2n log(ed)

)
n
2 e2+1√

t
. To

finalize our proof we need to check if tM min{d−8, n−1} ≥ sK
√
m. So we check the following:

tKn
√
m(c0C log(ed)d2Kσ(E))2n−2 min{d−8, n−1}

?

≥ log(t)

2n log(ed)
K
√
m.

For n ≥ 3 we have (d2 log(ed))2n−2 > d8. Since Kc0 ≥ 1
4
, C ≥ 4, and σ(E) ≥ 1, we have

(c0C log(ed)d2Kσ(E))2n−2 > d8.

Hence, it suffices to check if t ≥ log(t)
2n log(ed)

, which is clear.

We would like to complete the proof of Theorem 1.14 as it was stated in the introduction,
for which the following easy observation suffices.

Lemma 5.3. For t ≥ e2n log(ed), we have
(

log(t)
2n log(ed)

)
n
2 ≤ t

1
4 log(ed) .

Proof. Let t = xe2n log(ed) where x ≥ 1. Then
(

log(t)

2n log(ed)

)
n
2

=

(

1 +
log(x)

2n log(ed)

)
n
2

≤ e
log(x)

4 log(ed) = x
1

4 log(ed)

Since x ≤ t, we are done. �

We now state the resulting bounds on the expectation of the condition number.

Corollary 5.4. Under the assumptions of Theorem 5.2, 0 < q < 1
2
− 1

2 log(ed)
implies that

E(κ̃(P )q) ≤ M q(1 + 4q log(ed)). In particular, E log(κ̃(P )) ≤ 1 + logM .

Proof. Observe that

E(κ̃(P )q) = M q + qM q

∫ ∞

t=1

P{κ̃(P ) ≥ tM} tq−1 dt.

For t ≥ e2n log(ed), we have

P{κ̃(P ) ≥ tM}tq−1 ≤ tq+
1

4 log(ed)
− 3

2 ≤ t−1− 1
4 log(ed) .
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For t ≤ e2n log(ed) we have even stronger tail bounds:

E(κ̃(P )q) ≤ M q

(

1 + q

∫ ∞

t=1

t−1− 1
4 log(ed) dt

)

.

This proves the first claim. The second claim follows by sending q → 0 and using Jensen’s
inequality. �

6. Proof of Theorem 1.16

Let Ei ⊆ Hdi be non-degenerate linear spaces, and let E = (E1, . . . , En−1). Suppose
Q ∈ E is a fixed polynomial system. Let gi ∈ Ei be independent random elements of
Ei that satisfy the Centering Property, the Sub-Gaussian Property with constant K, and
the Anti-Concentration Property with constant c0, each with respect to the Bombieri-Weyl
inner product. Let G := (g1, . . . , gn−1) be the corresponding polynomial system. We define
random perturbation of Q as follows: P := Q + G. We will use this notation for P , Q and
G for the rest of this section.

Lemma 6.1. Let Q ∈ E be a polynomial system, let G be a random polynomial system in
E that satisfies the Centering, sub-Gaussian, and Anti-Concentration hypotheses, and let
P = Q+G. Then we have

Prob
(

‖P‖∞ ≥ sσmax(E)
√
n log(ed) + ‖Q‖∞

)

≤ exp

(

1− a3s
2n log(ed)

K2

)

where a3 is an absolute constant.

Proof. The triangle inequality implies ‖P‖∞ ≤ ‖Q‖∞ + ‖G‖∞. We complete the proof by
using Lemma 3.1 for the random system G. �

Lemma 6.2. Let Q ∈ E be a polynomial system, let G be a random polynomial system in
E that satisfies the Centering, sub-Gaussian, and Anti-Concentration hypotheses, and let
P = Q+G. Then, for all ε > 0, and for any w ∈ Sn−1 we have

Prob
(

‖P (w)‖2 ≤ εσmin(E)
√
n− 1

)

≤ (a2c0ε)
n−1

where a2 is an absolute constant.

Proof. By the Anti-Concentration Property, for all 1 ≤ i ≤ n− 1, we have

Prob{|gi(w) + qi(w)| ≤ c0εσmin(Ei)} ≤ c0ε

We then use Lemma 2.4 with the random variables gi(w) + qi(w). �

Lemma 6.3. Let Q ∈ E be a polynomial system, let G be a random polynomial system in
E that satisfies the Centering, sub-Gaussian, and Anti-Concentration hypotheses, and let
P = Q+G. Then for all t ≥ 1, we have

Prob
(

‖P‖W ≥ tK
√

dim(E) + ‖Q‖W
)

≤ exp(1− t2m).

Proof. For all 1 ≤ i ≤ n − 1, by triangle inequality ‖pi‖W ≤ ‖qi‖W + ‖gCi
‖W . So using the

first claim of Lemma 5.1 gives

Prob
(

‖pi‖W ≥ t
√

dim(Ei) + ‖qi‖W
)

≤ exp

(

1− t2 dim(Ei)

K2

)

Note that ‖P‖W = max‖w‖2=1 abs〈w, (p1, . . . , pn−1). So proceding as in the proof of Lemma
2.2 completes the proof. �
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Theorem 6.4. Let Q ∈ E be a polynomial system, let G be a random polynomial system
in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration hypotheses, and let
P = Q+G. Now let γ ≥ 1, d := maxi di, and assume α ≤ min{d−8, n−1}. Then

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + cα
1
2
√
n

(

c0d
2γC

σmin(E)
√
n

)n−1

where C is a universal constant.

The proof of Theorem 6.4 is identical to Theorem 4.3, so we skip it. Now we are ready to
state main theorem of this section.

Theorem 6.5. Let Q ∈ E be a polynomial system, let G be a random polynomial system
in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration hypotheses, and let
P = Q+G. Also let d := maxi di, and set

M = nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2
(

1 +
‖Q‖W√

nK log(ed)

)2n−1

where C ≥ 4 is a universal constant. Assume also that dim(E) ≥ n log(ed)2 and n ≥ 3.
Then

Prob(κ̃(P ) ≥ tM) ≤







3√
t

; if 1 ≤ t ≤ e2n log (ed)

e2+1√
t

(

log t
2n log (ed)

)
n
2

; if e2n log (ed) ≤ t.

Proof. We need a quick observation before we start our proof: For any Q ∈ E and w ∈ Sn−1,
we have ‖Q(w)‖22 ≤

∑n−1
i=1 ‖qi‖2W σmax(Ei)

2 ≤ ‖Q‖2W σmax(E)2. So we have

‖Q‖∞ ≤ ‖Q‖W σmax(E).

Using this upper bound on ‖Q‖∞ and the assumption that dim(E) ≥ n log(ed)2, we deduce

M ≥ nK
√

dim(E) (c0d
2CK log(ed)σ(E))

2n−2

(

1 +
‖Q‖W

nK
√

dim(E)

)

(

1 +
‖Q‖∞√

n log(ed)Kσmax(E)

)2n−2

.

We will use this lower bound on M later in our proof. Now let m = dim(E). We start our
proof with the following observation:

Prob (κ̃(P ) ≥ tM) ≤ Prob (‖P‖W ≥ sK
√
m+ ‖Q‖W ) + Prob

(

L(P ) ≤ sK
√
m+‖Q‖W
tM

)

.

Lemma 6.3 states that

Prob
(

‖P‖W ≥ sK
√
m+ ‖Q‖W

)

≤ exp(1− s2m).

Theorem 6.4 states that for
sK

√
m+‖Q‖W
tM

≤ min{d−8, n−1} we have

Prob
(

L(P ) ≤ sK
√
m+‖Q‖W
tM

)

≤ Prob (‖P‖∞ ≥ γ) + c(
sK

√
m+‖Q‖W
tM

)
1
2
√
n
(

c0d2γC
σmin(E)

√
n

)n−1

.

We set γ = uσmax(E)
√
n log(ed)K + ‖Q‖∞. From Lemma 6.1, we have

Prob
(

‖P‖∞ ≥ uσmax(E)
√
n log(ed)K + ‖Q‖∞

)

≤ exp(1− a3u
2n log(ed)).

We also have
(

c0d
2γC

σmin(E)
√
n

)n−1

=
(

c0ud
2CK log(ed)σ(E)

)n−1
(

1 +
‖Q‖∞

u
√
n log(ed)Kσmax(E)

)n−1

.

Using u ≥ 1, s ≥ 1, m ≥ n log(ed)2, and the lower obtained on M , we obtain

Prob (κ̃(P ) ≥ tM) ≤ exp(1− s2n log(ed)) + exp(1− a3u
2n log(ed)) +

(s

t

)
1
2
un−1
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The rest of the proof is identical to the proof of Theorem 5.2. �

7. Proof of Theorem 1.18

Define a random polynomial system Fε = Q+G where G is Gaussian random polynomial

system with K =
ε‖Q‖W√
n log(ed)

and c0K = 1√
2π
. Using Lemma 5.1 with t = 1, we have with

probability at least 1− exp(1− dim(E)) that

‖Fε −Q‖W = ‖G‖W ≤ ε ‖Q‖W
√

dim(E)√
n log(ed)

.

For the condition estimate we will use Theorem 6.5: First note that with K =
ε‖Q‖W√
n log(ed)

and

c0K = 1√
2π
, the quantity M in Theorem 6.5 is the following:

M =
ε
√
n
√

dim(E)

log(ed)

(

d2C log(ed)σ(E)√
2π

)2n−2(

1 +
1

ε

)2n−1

.

So we have M ≤ 2
√
n
√

dim(E)
(

2
ε

)2n−2
(

d2C log(ed)σ(E)√
2π

)2n−2

. Using Theorem 6.5 with t = 36

we deduce that with probability greater than 1
2
we have

κ̃(Fε) ≤ 2
√
n
√

dim(E)

(

d2C log(ed)σ(E)

ε

)2n−2

.

Since the union of the complement of these two events has measure less than
1
2
+ exp(1− dim(E)), their intersection has positive measure, and the proof is completed. �

Remark 7.1. The proof of Theorem 6.4 actually works for

M = nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2
(1+‖Q‖W )

(

1 +
‖Q‖∞√

n log(ed)Kσmax(E)

)2n−2

,

which is often much more smaller than the M used in the theorem statement. ⋄

8. Appendix A

In this part we address the question how big the dispersion constant is for a typical
low-dimensional linear space. Imagine we fixed a dimension m ∼ n log(d) and considered
subspaces of dimension m inside Hd (the vector space homogenous polynomials of degree d).
How does the dispersion constant vary among these subspaces? We know that some of these
subspaces will be degenerate and will have infinite dispersion constant. Can we argue this
high dispersion constant behaviour is rare?
What we do in this section is the following: we represent the space of m-dimensional linear

subspaces of Hd by the Grassmannian variety, Gr(m, dim(Hd)), and this space comes with
a Haar measure. We will analyze the measure of the set of subspaces in Gr(m, dim(Hd))
that has high dispersion constant with respect to the Haar measure on Gr(m, dim(Hd)) (see
Corollary 8.4 below).
We need to use the following notion from high-dimensional probability.

Definition 8.1 (Gaussian Complexity). Let X ⊆ R
n be a set, then the Gaussian complexity

of X denoted by γ(X) is defined as follows:

γ(X) := E sup
x∈X

|〈G, x〉|
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where G is distributed according to standard normal distribution N (0, I) on R
n.

The use of the term complexity in definition 8.1 might look unorthodox to readers with a
computational complexity theory background. The rationale behind this standard terminol-
ogy in high dimensional probability is that the Gaussian complexity of a set X is known to
control the complexity of stochastic processes indexed on the set X (see for instance [45]).
A corollary of Lemma 2.1 and Lemma 2.8 is the following.

Corollary 8.2 (Gaussian Complexity of the Veronese Embedding). Let Hd be the vector
space of degree d homogenous polynomials in n variables. Let ui i = 1, . . . ,

(

n+d−1
d

)

be an
orthonormal basis for the vector space Hd with respect to the Bombieri-Weyl norm. For every
v ∈ Sn−1, we define the following polynomial qv:

qv(x) :=
∑

i

ui(v)ui(x)

and the following set created out of qv:

Bd := {qv : v ∈ Sn−1}
Then, we have γ(Bd) ≤ c

√
n log(ed) for a universal constant c.

Proof. We need to consider a Gaussian element G in the vector space Hd. Note that for

G ∼ N (0, I) in Hd we have

〈

G,
√

(

d
α

)

xα

〉

W

∼ N (0, 1) since
√

(

d
α

)

xα is an orthonormal

basis with respect to the Weyl-Bombieri inner product. This means Gaussian elements of
Hd are included in our model of randomness for the special case K = 1. Since σmax(Hd) = 1,
Lemma 2.1 gives us the following estimate for pointwise evaluations of the Gaussian element
G ∼ N (0, I) in Hd:

Prob{|G(v)| ≥ t} ≤ exp

(

1− t2

2

)

.

Note that ‖G‖∞ = maxv∈Sn−1 |G(v)| = maxqv∈Bd
|〈G, qv〉|. So to estimate Gaussian complex-

ity of the Veronese embedding Bd, we need to estimate E ‖G‖∞. Let N be a δ-net on the
sphere Sn−1. Using a union bound, we then have

Prob{max
v∈N

|G(v)| ≥ t} ≤ |N | exp
(

1− t2

2

)

.

Setting δ = 1
d
and using Lemma 2.8 for t ≥ a1

√
n log(ed) then gives the following:

Prob{‖G‖∞ ≥ a1t
√
n log(ed)} ≤ |N | exp

(

1− a21t
2n log(ed)

2

)

It is known that |N | ≤ exp(a0n log d). So we have

|N | exp
(

1− a21t
2n log(ed)

2

)

≤ exp(1− a2t
2n log(ed))

for some constant a2. So Prob{‖G‖∞ ≥ a1t
√
n log(ed)} ≤ exp(1− a2t

2n log(ed)). Using this
inequality one can routinely derive the estimate for E ‖G‖∞. �

Since Talagrand proved his celebrated “majorizing measure theorem” (see [42]) it has
been observed that for a set X and a random k × n sub-Gaussian matrix A the deviation
supx∈X |‖Ax‖2 − E‖Ax‖2| is controlled by γ(X). There is a series of papers that established
several variants of this fact, mainly in [41], [43] and more recently in [40] and [44]. Vershynin
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has devoted the 9th chapter in his recent book [45] on these results and their applications.
The version that we will used has been established in [43] but not stated explicitly. The
authors devoted the last pages of their paper to present the proof. The following statement
can been found in ([45] pages 221-222).

Theorem 8.3. Let F be a random m dimensional subspace of Rn drawn from Haar measure
on Gr(m,n), and let PF be orthogonal projection map on F . Let X ⊆ R

n be a set. Then
there is a universal constant C such that

sup
x∈X

∣

∣

√
n ‖PF (x)‖ −

√
m ‖x‖

∣

∣ ≤ Ctγ(X)

with probability greater than 1− e−t2.

Corollary 8.4. Let F be a random m dimensional subspace of Hd drawn from the Haar
measure on Gr(m, dim(Hd)), where m ≥ 16Cn log(ed)2. Then

σ(F ) ≤
√
m+ Ct

√
n log(ed)√

m− Ct
√
n log(ed)

with probability greater than 1− e−t2, where C is the absolute constant from Theorem 8.3.

Proof. Since ‖qv‖W = 1 for all v ∈ Sn−1, applying Theorem 8.3 to the set Bd implies that

sup
x∈Bd

∣

∣

∣

∣

∣

(

n+ d− 1

d

)
1
2

‖ΠF (x)‖ −
√
m

∣

∣

∣

∣

∣

≤ Ct
√
n log(ed)

with probability greater than 1 − e−t2 for all t ≥ 1. Since σmin(F ) = minx∈Bd
‖ΠF (x)‖ and

σmax(F ) = maxx∈Bd
‖ΠF (x)‖, we have

√
m− Ct

√
n log(ed)

(

n+d−1
d

)

1
2

≤ σmin(F ) ≤ σmax(F ) ≤
√
m+ Ct

√
n log(ed)

(

n+d−1
d

)

1
2

with probability greater than 1− e−t2 . �
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