On finding primitive roots in finite fields

Igor Shparlinski

School of MPCE, Macquarie University, Sydney, NSW 2109, Australia

Abstract

We show that in any finite field \(\mathbb{F}_q \) a primitive root can be found in time \(O(q^{1/4+\varepsilon}) \).

Let \(\mathbb{F}_q \) denote a finite field of \(q \) elements. An element \(\theta \in \mathbb{F}_q \) is called a primitive root if it generates the multiplicative group \(\mathbb{F}_q^* \).

We show that a combination of known results on distribution primitive roots and the factorization algorithm of [6] leads to a deterministic algorithm to find a primitive root of \(\mathbb{F}_q \) in time \(O(q^{1/4+\varepsilon}) \).

All implied constants in \(O \)-symbols depend on \(\varepsilon \) only that denotes and arbitrary positive number. Moreover, (and it is essential if we wish to get a real algorithm) all these constant can be evaluated effectively.

Lemma 1. For the smallest primitive root \(\theta_p \) modulo a prime \(p \),

\[\theta_p = O(p^{1/4+\varepsilon}). \]

Proof. See [1]. \(\square \)

Lemma 2. For any \(r \) there is a constant \(p_0(r, \varepsilon) \) such that for \(q = p^r \), where \(p \) is a prime number with \(p \geq p_0(r, \varepsilon) \) and any root \(\alpha \) of an irreducible polynomial of degree \(r \) over \(\mathbb{F}_p \) there exists some integer \(t \), \(0 \leq t \leq p^{1/2+\varepsilon} \) such that \(\alpha + t \) is a primitive root of \(\mathbb{F}_q \).

Proof. See [5] (or Theorem 3.5 of [10]). \(\square \)

Lemma 3. Let \(q = p^r \), where \(p \) is a prime number then in time \(p^{1+\varepsilon}rO(1) \) one can construct a set \(\mathcal{Y} \in \mathbb{F}_q \) of cardinality \(|\mathcal{Y}| = pr^O(1) \) containing at least one primitive element.

Proof. The result was proved in [8] and [9] independently (or [10, Theorem 2.4]). \(\square \)

Lemma 4. All prime divisors of integer \(m \) can be found in time \(O(m^{1/4+\varepsilon}) \).
Proof. See [6]. □

Theorem. There is a deterministic algorithm to find a primitive root of \(\mathbb{F}_q \) in time \(O(q^{1/4+\varepsilon}) \).

Proof. First of all we note that in time \(O(q^{1/4+\varepsilon}) \) one can construct a set \(\mathcal{M} \subset \mathbb{F}_q \) with \(|\mathcal{M}| = O(q^{1/4}) \) containing a primitive element of \(\mathbb{F}_q \).

Indeed, let \(q = p^r \), where \(p \) is a prime number.

For \(r = 1 \) and \(r \geq 4 \) our claim follows directly from Lemmas 1 and 3, respectively, (because \(pr^{O(1)} \leq q^{1/4} (\log q)^{O(1)} = O(q^{1/4+\varepsilon}) \) for \(r \geq 4 \)).

For \(2 \leq r \leq 3 \), Lemma 2 and the \(O(p^{1/2}r^{O(1)}) \)-algorithm of [7] to construct an irreducible polynomial \(f(x) \in \mathbb{F}_p[x] \) of degree \(r \) give the desired set in the form

\[
\mathcal{M} = \{ x + t \mid 0 \leq t \leq r p^{1/2+\varepsilon} \},
\]

where \(x \) is a root of \(f(x) \) (i.e. we consider the following model of \(\mathbb{F}_q \), \(\mathbb{F}_q \simeq \mathbb{F}_p[x]/f(x) \), the isomorphism between different models can be found in polynomial time, see [3]).

The cardinality of \(\mathcal{M} \) is \(|\mathcal{M}| = O(p^{1/2+\varepsilon}) = O(q^{1/4+\varepsilon}) \) and it can be constructed in time \(O(q^{1/4+\varepsilon}) \).

Now let us find all prime divisors \(I_1, \ldots, I_s \) of \(q - 1 \), in time \(O(q^{1/4+\varepsilon}) \) using the algorithm of Lemma 4.

It is evident that \(\mu \in \mathbb{F}_q \) is a primitive root if and only if \(\mu^{(q-1)/I_i} \neq 1 \) for every \(i = 1, \ldots, s \). Testing all elements of \(\mathcal{M} \) and taking into account that \(s = \omega(q - 1) = O(\log q) \) we get the desired algorithm. □

We note that using a more complicated version of the Sieve method (from [2], say) one can get an algorithm with slightly better running time \(q^{1/4} (\log q)^{O(1)} \).

Let us also mention that the present construction has three quite different bottle-necks with the same complexity \(O(q^{1/4+\varepsilon}) \):

1. factorization of \(q - 1 \) using [6],
2. finding a set containing a primitive root in case \(q = p \) using [1],
3. finding a set containing a primitive root in case \(q = p^2 \) using [5].

So it is very unlikely that it can be improved at the present time.

On the other hand, it should be mentioned that for many applications we do not actually need a primitive root. It is quite enough just to find a small set \(\mathcal{M} \) containing a primitive root and then use all its elements one by one (or even in parallel). In this case we get a better algorithm \(O(q^{1/6+\varepsilon}) \), at least under the Extended Riemann Hypothesis (as the cases \(q = p \) and \(q = p^2 \) can be drastically improved, see [8]).

Open Question 1. Find and algorithm to construct in polynomial time \((\log q)^{O(1)} \) a set \(\mathcal{M} \) of polynomial cardinality \(|\mathcal{M}| = (\log q)^{O(1)} \) containing a primitive root of \(\mathbb{F}_q \) for any \(q \) (under the the Extended Riemann Hypothesis).

Open Question 2. Combining approaches of [5] and [8, 9] obtain an analog of Lemma 3 with \(p^{1/2+\varepsilon} \) instead of \(p^{1+\varepsilon} \) (or maybe even with \(p^{1/4+\varepsilon} \) provided an appropriate generalization of [1] on non prime finite fields is found).
Also, our algorithm gives the solution of the exact problem for \mathbb{F}_q, $q = p^r$, when p and r are given. On the other hand, for many applications it would be enough to solve an approximate problem when the characteristic p and some integer R are given and we have to find a primitive root in some field \mathbb{F}_q, $q = p^r$, with r approximately equal to R (in various senses, say with $r \sim R$, or $R \leq r = O(R)$, or even $R \leq r = R^{O(1)}$). Moreover for some combinatorial constructions it would be enough to find a primitive root in a field \mathbb{F}_q with q approximately equal to some given integer Q (again in various senses, say with $q \sim Q$, or $Q \leq q = O(Q)$, or even $Q \leq q = Q^{O(1)}$). Some algorithms with running time $O(q^e)$ to solve some of these problems have been given in [11] (see also Section 2.2 of [10]).

More precisely, it was shown that for any p and R one can construct a field \mathbb{F}_q with $r = R + O(R^{1/2})$ and find its primitive root in time $p^{O(R^{1/2} \log \log R)}$, and for any Q one can construct a field \mathbb{F}_q with $q = Q + O(Q \exp[-(\log Q)^{-1/2}])$ and find its primitive root in time $\exp[O(\log Q / \log \log Q)]$.

For a survey of many other results on distribution and finding primitive roots see [4, Ch. 3] and [10, Chs. 2 and 3].

References