The Connectivity of $S O(n)$

J. Maurice Rojas ${ }^{1}$

September 18, 2013

Abstract

We give a proof, based on unitary diagonalization, that the (real) special orthogonal group $S O(n)$ is path-connected.

Recall that an $n \times n$ unitary matrix is a matrix $U \in \mathbb{C}^{n \times n}$ satisfying $U U^{*}=U^{*} U=I_{n}$ where $(\cdot)^{*}$ denotes conjugate transpose and I_{n} is the $n \times n$ identity matrix. Recall also that $S O(n)$ is the group of all real unitary $n \times n$ matrices with determinant 1 . We begin with a basic linear algebra fact, following easily from a classical theorem of Schur (see, e.g., [Pra94, pg. 86]).

Lemma 0.1 Given any unitary matrix U we can find a unitary matrix V such that $\Lambda:=$ $V^{*} U V$ is diagonal and all the diagonal entries of Λ have absolute value 1. In particular, U is diagonalizable, its eigenvectors are (unitarily) orthogonal, and all its eigenvalues have norm 1.

Corollary 0.2 Given any matrix $M \in S O(n)$, there is a real orthogonal $n \times n$ matrix A such that $A^{\top} M A$ is block-diagonal, with each block either a 2×2 rotation matrix or 1 .

Note that $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ is actually the matrix corresponding to rotating \mathbb{R}^{2} by an angle of π radians. So we can fact have -1 s along the diagonal of the matrix asserted above, but their number must be even.
Proof of Corollary 0.2: Let Λ be the diagonal matrix consisting of the eigenvalues of M and V the corresponding matrix of eigenvectors. By Lemma 0.1, we see that $\Lambda=V^{*} M V$. Now note that the characteristic polynomial of M has all its coefficients real. This implies that the non-real eigenvalues of M come in conjugate pairs. Clearly then, we can order the entries of Λ from upper-left to lower-right so that the non-real eigenvalues come in conjugate pairs, followed by any -1 s , then followed by any 1 s . Similarly, we may assume that the eigenvectors come in the corresponding order.

Let $\{\lambda, \bar{\lambda}\}$ be any conjugate pair of non-real eigenvalues. Since M is real, the corresponding eigenvectors must be of the form $\{v, \bar{v}\}$, i.e., each coordinate of one eigenvector is the conjugate of the corresponding coordinate of the other.

Now observe that $w_{+}:=(v+\bar{v}) / \sqrt{2}$ and $w_{-}:=(v-\bar{v}) / \sqrt{-2}$ are real vectors that are linearly independent and generate (over \mathbb{C}) the same subspace as $\{v, \bar{v}\}$. In particular, $\left[w_{+}, w_{-}\right]=[v, \bar{v}] S$, where

$$
S:=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{-2} \\
1 / \sqrt{2} & -1 / \sqrt{-2}
\end{array}\right] .
$$

[^0]Note also that S is unitary and

$$
S^{*}\left[\begin{array}{ll}
\lambda & 0 \\
0 & \bar{\lambda}
\end{array}\right] S=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

for some real angle $\theta \in(0,2 \pi)$. Letting Σ denote the $n \times n$ block-diagonal matrix whose blocks are either 1 or S (corresponding to eigenvalues of M that are 1 or not 1), we then see that $\Sigma \Lambda \Sigma^{*}$ is the block-diagonal matrix we seek. Furthermore, by our earlier application of Lemma 0.1 , our desired block-diagonal matrix is also equal to $\Sigma^{*} V^{*} M V \Sigma$. Note in particular that $V \Sigma$ is orthogonal since it is real, as well as a product of unitary matrices. So we can take $A=V \Sigma$.

We can now prove our desired connectivity result very quickly.
Theorem 0.3 The (real) special orthogonal group $S O(n)$ is path-connected.
Proof: It will clearly suffice to show that any $M \in S O(n)$ can be connected by a path in $S O(n)$ to the $n \times n$ identity matrix. In particular, by Corollary 0.2, we can rewrite $M=A R A^{\top}$ where A is orthogonal and R is a block-diagonal matrix with each block either a 2×2 rotation matrix or 1 .

Suppose the underlying rotation angles are $\theta_{1}, \ldots, \theta_{n^{\prime}}$. Clearly, $n^{\prime} \leq n / 2$. We now construct our path as follows: Let $R(t)$ denote the matrix obtained by replacing θ_{i} by $(1-t) \theta_{i}$ in R. Finally, let $M(t):=A R(t) A^{\top}$. Clearly, $M(0)=M$ and $M(1)=I_{n}$. Furthermore, the entries of $M(t)$ are clearly continuous functions of t. So we are done.

References

[Pra94] Prasolov, V. V., Problems and Theorems in Linear Algebra, translations of mathematical monographs, vol. 134, AMS Press, 1994.

[^0]: ${ }^{1}$ Department of Mathematics, Texas A\&M University TAMU 3368, College Station, Texas 77843-3368, USA. e-mail: rojas@math.tamu.edu , web page: www.math.tamu.edu/~rojas .

