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Abstract

We give a proof, based on unitary diagonalization, that the (real) special orthogonal
group SO(n) is path-connected.

Recall that an n × n unitary matrix is a matrix U ∈ C
n×n satisfying UU∗ = U∗U = In

where (·)∗ denotes conjugate transpose and In is the n× n identity matrix. Recall also that
SO(n) is the group of all real unitary n× n matrices with determinant 1. We begin with a
basic linear algebra fact, following easily from a classical theorem of Schur (see, e.g., [Pra94,
pg. 86]).

Lemma 0.1 Given any unitary matrix U we can find a unitary matrix V such that Λ :=
V ∗UV is diagonal and all the diagonal entries of Λ have absolute value 1. In particular, U is
diagonalizable, its eigenvectors are (unitarily) orthogonal, and all its eigenvalues have norm
1. �

Corollary 0.2 Given any matrix M ∈SO(n), there is a real orthogonal n×n matrix A such
that A⊤MA is block-diagonal, with each block either a 2× 2 rotation matrix or 1.

Note that
[

−1 0
0 −1

]

is actually the matrix corresponding to rotating R
2 by an angle of π radians.

So we can fact have −1s along the diagonal of the matrix asserted above, but their number
must be even.

Proof of Corollary 0.2: Let Λ be the diagonal matrix consisting of the eigenvalues of M
and V the corresponding matrix of eigenvectors. By Lemma 0.1, we see that Λ = V ∗MV .
Now note that the characteristic polynomial of M has all its coefficients real. This implies
that the non-real eigenvalues of M come in conjugate pairs. Clearly then, we can order the
entries of Λ from upper-left to lower-right so that the non-real eigenvalues come in conjugate
pairs, followed by any −1s, then followed by any 1s. Similarly, we may assume that the
eigenvectors come in the corresponding order.

Let {λ, λ̄} be any conjugate pair of non-real eigenvalues. Since M is real, the correspond-
ing eigenvectors must be of the form {v, v̄}, i.e., each coordinate of one eigenvector is the
conjugate of the corresponding coordinate of the other.

Now observe that w+ := (v + v̄)/
√
2 and w− := (v − v̄)/

√
−2 are real vectors that are

linearly independent and generate (over C) the same subspace as {v, v̄}. In particular,
[w+, w−]=[v, v̄]S, where

S :=

[

1/
√
2 1/

√
−2

1/
√
2 −1/

√
−2

]

.
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Note also that S is unitary and

S∗

[

λ 0
0 λ̄

]

S =

[

cos θ sin θ
− sin θ cos θ

]

for some real angle θ ∈ (0, 2π). Letting Σ denote the n × n block-diagonal matrix whose
blocks are either 1 or S (corresponding to eigenvalues of M that are 1 or not 1), we then see
that ΣΛΣ∗ is the block-diagonal matrix we seek. Furthermore, by our earlier application of
Lemma 0.1, our desired block-diagonal matrix is also equal to Σ∗V ∗MV Σ. Note in particular
that V Σ is orthogonal since it is real, as well as a product of unitary matrices. So we can
take A=V Σ. �

We can now prove our desired connectivity result very quickly.

Theorem 0.3 The (real) special orthogonal group SO(n) is path-connected.

Proof: It will clearly suffice to show that any M ∈ SO(n) can be connected by a path
in SO(n) to the n × n identity matrix. In particular, by Corollary 0.2, we can rewrite
M =ARA⊤ where A is orthogonal and R is a block-diagonal matrix with each block either
a 2× 2 rotation matrix or 1.

Suppose the underlying rotation angles are θ1, . . . , θn′ . Clearly, n′ ≤ n/2. We now con-
struct our path as follows: Let R(t) denote the matrix obtained by replacing θi by (1− t)θi
in R. Finally, let M(t) :=AR(t)A⊤. Clearly, M(0) =M and M(1) = In. Furthermore, the
entries of M(t) are clearly continuous functions of t. So we are done. �
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