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1. Introduction

As young children, we all quickly develop a rudimentary intuition for
gravity. But it is not until we’ve played games of chance – and perhaps
not until we’ve lost in a rigged game – that we have some inkling of what
randomness is. To be fair, one eventually learns in school that gravity has at
least as many mysteries as the definition of randomness. But the question
remains: What is randomness?

A mathematically satisfying answer can be found in the book under re-
view (henceforth [SUV], from the authors’ initials). [SUV] presents a rich
account of numerous earlier definitions of randomness, their interconnection
with algorithmic complexity, and their applications. Before exploring [SUV]
further, let us first see some concrete examples of the boundary between
randomness and non-randomness.

2. Adversaries and Pseudorandom Generators

If one makes a yes/no decision via a coin flip, while standing in the mid-
dle of a gusting windstorm, then one may be inclined to believe that this
decision method is random, and that either outcome is equally likely. On
the other hand, if an experienced gambler picks your coin, and tosses it for
you in his private casino, then you would be less inclined to believe that the
outcome will be random. The key difference between these two coin-tossing
scenarios is predictability: One can argue that the necessary measurements
and calculations to predict the coin flip in the first scenario make prediction
completely impractical. On the other hand, making predictable coin tosses
in controlled settings has been known long enough in the gambling world
that mathematicians have finally written papers on it (see, e.g., [DHM07]).
Our two toy scenarios (inspired by a similar discussion in [BM84]) thus sug-
gest that a suitable definition of randomness should include some notion of
unpredictability.

Our two toy scenarios also hint at the deep connection between random-
ness and physics. (See [Rue93] for a beautiful exposition on the connections
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between dynamics, physics, and randomness.) Furthermore, it becomes ap-
parent that computational power is a factor behind predicting (or deran-
domizing) a sequence of events that is intended to be random. More to the
point, we can use computational complexity to define pseudorandomness,
and perhaps sidestep the question of how to reliably extract randomness
from some physical process.

The algorithmic construction of unpredictable sequences of bits has nu-
merous applications, especially if certain natural efficiency and equidistri-
bution properties are also guaranteed. For instance, in cryptography, such
sequences can be used1 to safely send messages that need to be kept secret
from an adversary. Also, in some statistical applications, the only way to
practically estimate the mean of a quantity over a large population is to aver-
age over a smaller, well-distributed sample. Pseudorandomness attempts to
capture the most useful aspects of randomness in an algorithmically efficient
way, but its definition is best preceded with an explicit example.

2.1. Pseudorandom Bit Streams from the Discrete Logarithm Prob-
lem. Consider the following famous construction, by Blum and Micali [BM84],
of a family of (putatively) unpredictable sequences of bits. In what follows,
n is a positive integer, p∈{2n−1 + 1, . . . , 2n − 1} is an odd prime (so p has
exactly n bits in its binary expansion), g is a generator for the multiplicative
group F

∗
p of nonzero integers mod p, and x0∈{0, . . . , p− 2} is called the seed

for our bit stream. Letting Mp : {1, . . . , p− 1} −→ {0, 1} denote the func-
tion satisfying Mp(a)=1 if and only if a≥(p− 1)/2 (so Mp(a) is akin to the
most significant bit of a), we then define a sequence (x0, x1, . . . , xN ) with,
say, N :=n10, via the recurrence xj+1 :=gxj mod p, valid for all j≥0.2 Our
pseudorandom sequence of bits — an instance of the Blum-Micali pseudo-
random generator (PRG) — is then

B(p, g, x0) :=(Mp(xN ),Mp(xN−1), . . . ,Mp(x1)).

Letting (b1, . . . , bN ) :=B(p, g, x0), a remarkable property of the Blum-Micali
PRG is that it can be proved that bi+1 is unpredictable from bi (and even
xN−i+1), provided a well-known number-theoretic problem is hard to solve.
To properly define unpredictability and hardness, let us first recall the fol-
lowing problem:

The Discrete Logarithm Problem (DLP) Given an n-bit prime p, a
generator g for the multiplicative group F

∗
p, and an integer h∈{1, . . . , p−1},

find an ℓ∈{0, . . . , p− 2} with gℓ=h mod p. ⋄

We call the ℓ in the definition above the mod p base-g discrete logarithm of
h, and think of n as a rough measure of the size of an instance (p, g, h) of

1via the ancient idea of a one-time pad
2The length N=n

10 is somewhat arbitrary: One can in fact use N=n
k for any positive

integer k [Blu19], although this was not explicitly stated in [BM84].
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DLP. In what follows, we will use the usual number-theoretic/computer sci-
ence notations O(·), o(·), Ω(·), and ω(·) for asymptotic growth comparisons
(see, e.g., [AB09, pp. 3–4]). For instance, if we say that that a function

f : N −→ N satisfies f(n)=nω(1) then this means that for any real c, there
is an n0(c)∈N such that f(n)≥nc for all n≥n0(c), i.e., f ultimately grows
faster than any polynomial.

It is easy to compute h = gℓ mod p, given (p, g, ℓ) as above, in near-

quadratic time: n2+o(1) bit operations suffice (see, e.g., [BS96, pp. 43 &
102–104]). However, computing the discrete logarithm ℓ from (p, g, h) in

time nO(1) remains an open problem: The best general complexity bound

is eO(n1/3(logn)2/3), via refinements of the index calculus method (see, e.g.,
[HPS14, Sec. 3.8] and [A+19]), and the underlying algorithm uses random-
ization. In particular, DLP is conjectured to be hard in the following sense:

DLP Hardness Assumption For any k, n ∈ N, let Cn,k be any boolean

circuit that solves DLP for at least 1
nk of the n-bit primes p. Then the size

of Cn,k is nω(1). ⋄

Basic complexity theory (see, e.g., [AB09, Ch. 6]) tells us that the existence
of an algorithm for solving DLP in time polynomial in n would imply that
there is a family of boolean circuits {Cn}n∈N such that Cn solves DLP for

any input (p, g, h), with p an n-bit prime, and Cn has size nO(1). So the
DLP Hardness Assumption rules out such a family of circuits, as well as
polynomial-time algorithms for DLP in the classical Turing model.3

To better understand this hardness assumption, recall that a boolean cir-
cuit C is an acyclic directed graph with nodes (also called gates) consisting of
one of five types: (0) input nodes (having in-degree 0 and finite out-degree),
(1) output nodes (having in-degree 1 and out-degree 0), (2) a not gate

(having in-degree and out-degree 1), (3) an and gate (having in-degree

2 and out-degree 1, and (4) an or gate (having in-degree 2 and out-

degree 1). The size of C is simply the number of vertices in the underlying
graph, and the number of inputs is the number of input nodes. Identify-
ing 1 and 0 respectively with “True” and “False”, and labelling the input
nodes with variables, we then obtain a natural interpretation of boolean cir-
cuits as implementations of logical formulae. For instance, the circuit below
(with 2 input nodes and size 8) computes the well-known XOR function
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2):

1

2x

x

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

3One motivation for stating the hardness of DLP more stringently, in terms of families
of circuits, comes from cryptography: One wants PRGs that evade prediction not just by
polynomial-time algorithms but also by special purpose hardware.
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Abusing notation slightly, we then say that a function
F : {0, . . . , 2n − 1} −→ {0, . . . , 2m − 1}

is computed by a boolean circuit if and only if there are boolean circuits
computing each of the m bits of F (x) from the binary expansion of x ∈
{0, . . . , 2n − 1}.

The (conditional) unpredictability of the Blum-Micali PRG can then be
phrased as follows:

Blum-Micali Theorem [BM84] Assume the DLP Hardness Assumption
is true, and let C := {Cn} be any family of boolean circuits, with n ∈ N

and Cn having exactly 3n inputs and size nO(1). Considering the uniform
distribution over the set of all (p, g, h) with p an n-bit prime, g a generator
for F

∗
p, and h∈F

∗
p, let ρ

C
n be the probability that Cn(p, g, h) =Mp(ℓ), where

h=gℓ mod p. Then ρCn<
1
2 + 1

nω(1) .

In other words, if DLP is hard, then no (classical) polynomial-time algorithm
can do much better than coin-tossing to guess the (i+1)st bit of an instance
of the Blum-Micali PRG, even if one knows p, g, and the element of F∗

p whose
discrete logarithm yielded the ith bit. Curiously, as of June 2019, there is
still no known polynomial-time construction that attains unpredictability in
the preceding sense without unproven hypotheses.

2.2. A Rigorous Definition of Pseudorandomness. The Blum-Micali
PRG, under the DLP Hardness Assumption, is actually an instance of a
more general construction by Blum and Micali [BM84]. Following [BM84],
and a refinement from [Nis92a], one can define a more general class of PRGs
as follows:

Definition 2.1. 4 A pseudorandom generator (PRG) for class Γ is a family

of functions G :=
{

Gn : {0, 1}n −→ {0, 1}Q(n)
}

n∈N
such that Q : N −→ N is

an increasing function and, writing (y1, . . . , yQ(n)) :=Gn(x1, . . . , xn), satis-
fies the following property: For each i∈{0, . . . , Q(n)−1} and every algorithm
A in Γ, we have:

∣

∣

∣

∣

Prob
(x1,...,xn)∈{0,1}n

[A(y1, . . . , yi)=yi+1]−
1
2

∣

∣

∣

∣

= 1
nω(1) . ⋄

Remark 2.1. The function Q(n)
n (which is bounded from below by 1, thanks

to our definition) is sometimes called the stretch-factor of the PRG and is
a useful measure of how the PRG amplifies randomness, i.e., simulates a
long stream of uniformly random bits from just a small number of “truly”
uniformly random bits. Turning this around, we can also view a PRG as
a means of compressing the sequence (y1, . . . , yQ(n)) into the shorter repre-
sentation (x1, . . . , xn). This leads to the notion of Kolmogorov Complexity,
which is a central theme in the book under review. ⋄

4To be more precise, the definition from [BM84] took Γ = P/poly and assumed that
each function Gn is computable in time polynomial in n. Here we make no restriction on
the complexity of computing the Gn.
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The existence of PRGs (for the complexity classes P/poly or P) with
polynomial stretch-factor can be proved quite easily. Technically, this is a
rephrasing of the classical containment of complexity classes BPP ⊆ P/poly

(see, e.g., [Adl78, BG81] and [AB09, Sec. 7.5]). Much how probabilistic
methods yield non-constructive proofs in combinatorics, there are still no
proven explicit constructions of such PRGs, unless one uses unproved hy-
potheses (like our earlier Blum-Micali example). The subtlety of finding

explicit PRGs is also revealed by how the famous P
?
= BPP question from

complexity theory [IW97, IK04] can be reformulated as the construction of
a PRG for P with exponential stretch-factor (and the complexity of Gn,
say, exponential in n) [Gol11]. One should also be aware of the fact that

the existence of PRGs for P, with stretch-factor nω(1) and Gn computable
in time polynomial in n, implies an even more famous conjecture: P 6=NP
(see, e.g., [Vad11, Sec. 7.2]).

In closing our discussion of pseudorandomness, we point out that there
has been important recent progress on explicit constructions of PRGs (for
complexity classes lower than P) with exponential stretch: see, e.g., [Nis92b,
MZ13, GKM18]. Further background on pseudorandomness can be found
in [Yao82, Kab04, Vad11].

3. The Book of Shen, Uspensky, and Vereshchagin

3.1. Two Initial Definitions for Randomness. Since pseudorandom bit-
streams can be defined by unpredictability against an adversary with com-
putational power determined by a complexity class Γ, why not try to define
randomness by letting Γ=RE?5 Alternatively, why not define randomness
in terms of equidistribution of the 0s and 1s within subsequences? These two
approaches, which we’ll respectively call U and S, for unpredictability and
stochasticity, correspond to early to mid-20th century approaches detailed
in [SUV].

Stochasticity, which has roots in 1919 work of von Mises, turns out to
be the looser notion. In particular, as detailed in Appendix 2 of [SUV],
one can show that approach S strictly includes the sequences defined by
approach U. However, a complication with approach S is defining the kinds
of subsequences one should examine for limiting frequencies. For instance,
while the 1s in the sequence 010101010101010101010101 . . . appear to have
a limiting frequency of 1

2 , the limiting frequency of 1s for the entries of
even index is 1. (That this sequence also does not “look random” to most
mathematicians is more than a coincidence.) More to the point, what kinds
of increasing functions f : N −→ N should we consider when we examine
the sequence (bi)i∈N and insist that

5
RE is the class of decision problems where a “Yes” answer can be verified by a Turing

machine in finite time. (So the machine might never halt if the answer is “No.”) In other
words, a PRG for class RE has the property that even unlimited computational time
makes the next bit no more predictable than a fair coin-toss.
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lim
n→∞

|{i | bf(i)=1 , i∈{1,...,n}}|

n = 1
2?

Church (in 1940) and Kolmogorov (in 1963) proposed formalizations that
led to separate definitions of S, with Kolmogorov’s definition strictly more
general.

Approach U can be defined via a gambling metaphor, reminiscent of our
description of pseudorandomness through “fooling” adversaries: Imagine
a bit-stream (bi)i∈N corresponding to a sequence of coin-flips in a casino,
where a player can bet vi dollars just before seeing the value of bi. After
the ith coin-flip, a player receives vi dollars if he/she guesses bi correctly,
and loses vi dollars if he/she errs. If there is no strategy that allows one
to start with 1 dollar and approach infinite winnings as i −→ ∞, then we
declare the sequence to be unpredictable. The notion of strategy is also
formalized in Appendix 2 of [SUV] and, in Chapter 9 of [SUV], one sees
that approach U is known as Kolmogorov-Loveland randomness (which goes
back to 1963–1966).

3.2. Kolmogorov Complexity. Approaches S and U have their appeal,
but the most influential approach to randomness — independently discov-
ered by Solomonoff, Kolmogorov, and Chaitin in the 1960s — is based on
optimal compression. More precisely, just as pseudorandomness stretches
short sequences of “truly” random bits into long sequences that “look ran-
dom” to observers (and algorithms) with low computational power, random-
ness for a finite bit-stream can be measured by its lack of compressibility.6

For instance, the trait common to the following 3 examples of bit-streams
of length 41, 943, 042:

0000000000000000000000 · · · 00
1010101010101010101010 · · · 10
0110111001011101111000 · · · 11

is that each can be easily generated by a very short C++ program.7 (We will
soon see that the underlying language will not matter.)

Now suppose we encode programs into bit-streams (assuming one fixes
the underlying encoding of programs and the underlying programming lan-
guage), and we try to compress our sequence (bi)i∈{1,...,n} by replacing it
with a program of minimal length that generates (bi)i∈{1,...,n}. One can then
consider the finite sequence (bi)i∈N to be far from random if and only if it
is not compressible in the preceding sense. The Linux command gzip is
an example of this kind of compression: One can check on any recent ver-
sion of Linux that the first two examples can be compressed by a factor of

6One must be careful: Strictly speaking, randomness for a sequence of bits only makes
sense for infinite sequences. What one can do with finite sequences is define quantities
that lead to suitable definitions of randomness as the sequence length tends to infinity.

7The last sequence is simply the concatenation of the binary expansions of 0, 1, 2, 3,
..., 221 − 1.
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around one million, thus suggesting that our first two examples are far from
random.8

Needless to say, our preceding description is far from rigorous. How-
ever, the key insight derived independently by Solomonoff, Kolmogorov,
and Chaitin is that one can formalize the notion of compressibility, and do
so in an invariant way. More precisely, consider any partial computable
function D : {0, 1}∗ −→ {0, 1}∗, where {0, 1}∗ denotes the set of all finite
binary strings, and partial computable means that D is computable by a
Turing machine that may not terminate on certain inputs. The Kolmogorov
complexity of an x ∈ {0, 1}∗, with respect to the decompressor D, is then
defined to be

CD(x) :=min{L(y) | D(y)=x , y∈{0, 1}∗},
where L(y) denotes the length of the string y ∈ {0, 1}∗. In particular, Sol-
monoff and Kolmogorov proved independently that there are optimal de-
compressors D in the sense that for all x ∈ {0, 1}∗, and all decompressors
D′, we have CD(x)≤CD′(x)+O(1). In other words, we can fix some optimal
decompressor D once and for all, and write Kolmogorov complexity without
mentioning any decompressor, by setting C(x) :=CD(x).

A surprising aspect of Kolmogorov complexity is that it is simultaneously
hard to compute but possesses numerous natural functorial properties. For
example, while it is easy to show that C(x)≤n+O(1) for all x∈{0, 1}n, the
length of the shortest bit-stream x with C(x)=n is a Turing-uncomputable
function of n (see Theorem 15 of [SUV]). On the other hand, one can nat-
urally conjecture that Kolmogorov complexity is sub-additive with respect
to concatenation of strings. And, indeed, writing xy for the concatena-
tion of two bit-streams x and y, one has a property close to sub-additivity:
C(xy)≤C(x) + C(y) + 2 log2(C(x)) +O(1) (see Theorem 4 of [SUV]).

More importantly, Kolmogorov complexity leads us to new perspectives
not just on randomness but also on information theory, algorithmic complex-
ity, and probability theory. Indeed, Chapter 8 is a tasty dessert in the middle
of [SUV] highlighting important applications of Kolmogorov complexity in
several other areas of mathematics.

3.3. Final Comments. The account of Kolmogorov Complexity and ran-
domness in [SUV] is masterful. Perhaps the first question that comes to
mind, if deciding whether to purchase [SUV], is how it compares to the clas-
sic text by Li and Vitányi [LV08]. My answer would be to buy both books:
While [LV08] has the advantage of additional polishing (having gone through
3 editions in 14 years), [SUV] maintains amazing clarity while geting quickly
to the heart of almost everything one needs from Kolmogorov complexity
and its variants. The exercises in [SUV] are also elegantly designed, well
accented by hints, and nicely amplify the development.

8The same can be said for our third example, and we leave the precise compression
factor as an exercise.
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