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ABSTRACT
Thanks to earlier work of Koiran, it is known that the truth of the

Generalized Riemann Hypothesis (GRH) implies that the dimension

of algebraic sets over the complex numbers can be determined

within the polynomial-hierarchy. The truth of GRH thus provides a

direct connection between a concrete algebraic geometry problem

and the P vs. NP Problem, in a radically different direction from

the geometric complexity theory approach to VP vs. VNP. We

explore more plausible hypotheses yielding the same speed-up.

One minimalist hypothesis we derive involves improving the error

term (as a function of the degree, coefficient height, and x ) on the

fraction of primes p ≤ x for which a polynomial has roots mod p.
A second minimalist hypothesis involves sharpening current zero-

free regions for Dedekind zeta functions. Both our hypotheses allow

failures of GRH but still enable complex dimension computation in

the polynomial hierarchy.
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1 INTRODUCTION
The subtlety of computational complexity in algebraic geometry persists

in some of its most basic problems. For instance, let FEASC denote the

problem of deciding whether an input polynomial system
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F ∈
⋃

k,n∈Z
(Z[x1, . . . ,xn])

k

has a complex root. While the implication FEASC ∈P =⇒ P=NP has
long been known, the inverse implication FEASC < P =⇒ P,NP
remains unknown. Proving the implication FEASC < P =⇒ P,NP
would shed new light on the P vs. NP Problem, and may be easier

than attempting to prove the complexity lower bound FEASC < P
(whose truth is still unknown).

Detecting complex roots is the D=0 case of the following more

general problem:

DIMC: Given (D, F ) ∈N ×
⋃

k,n∈Z

(Z[x1, . . . ,xn])
k
,

decide whether the complex zero set of F has

dimension at least D. ⋄

In particular, FEASC < P =⇒DIMC < P. Recall the containment of

complexity classes P⊆NP⊆AM⊆ PNP
NP
⊆ PSPACE, and that the

question P ?

= PSPACE remains open [Pap95, AB09]. That P = NP
implies the collapse P = NP = coNP = AM = PNP

NP
is a basic fact

from complexity theory (see, e.g., [AB09, Thm. 5.4, pp. 97–98]. (We

briefly review these complexity classes in the next section.) DIMC
(and thus FEASC) has been known to lie in PSPACE at least since

[GH93], and the underlying algorithms have important precursors

in [CG84, Can88, Ren92].

But in 1996, Koiran [Koi96] proved that the truth of the

Generalized Riemann Hypothesis (GRH) implies that DIMC ∈AM. In

particular, one obtains that the truth of GRH yields the

implication DIMC < P =⇒ P , NP. Thus, if one can prove that

computing the dimension of complex algebraic sets is hard, one can

solve the P vs. NP Problem. An interesting application of Koiran’s

result is that it is a key step in the proof that the truth of GRH

implies that knottedness (of a curve defined by a knot diagram) can

be decided in NP [Kup14].

Here, we prove that DIMC ∈ PNP
NP

under either of two new

hypotheses: See Theorem 1 below. Each of our hypotheses is implied

by GRH, but can still hold true under certain failures of GRH.

Remark. To the best of our knowledge, the only other work on
improving Koiran’s conditional speed-up has focussed on proving
unconditional speed-ups (from PSPACE to PNP

NP
or NP) for special

families of polynomial systems. See, e.g., [Che07, Roj07]. For instance,
thanks to the first paper, the special case of FEASC involving inputs
of the form ( f ,xD

1
− 1) with (D, f ) ∈N × Z[x1] is NP-complete. ⋄

To state our first and most plausible hypothesis, let f ∈Z[x1] be
an irreducible polynomial of degree d with coefficients of absolute

value at most 2
σ
for some σ ∈N. Let πf (x ) denote the number of

primes p for which the mod p reduction of f has a root mod p and

https://doi.org/10.475/123_4
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p ≤x . Note that πx1 (x ) is thus simply the number of primes p ≤x ,
i.e., the well-known prime-counting function π (x ). In what follows,

all O- and Ω- constants are absolute (i.e., they really are constants)

and effectively computable.

Modular RootHypothesis (MRH). There is a constant C >1 such that
for any f as above we have

πf (x ) ≥ x *.
,

1

d log x −
1

exp

(
(logx )1/C

(log(d2σ+d3 ))C

) +/
-
.

for x = Ω
(
exp

(
4(log(d2σ + d3))2+C

2
))
.

That πf (x ) is asymptotic to
x

sf log x
for some positive integer sf ≤d

goes back to classical work of Frobenius [Fro96] (see also [LS96]

for an excellent historical discussion). More to the point, as we’ll

see in our proofs, the behavior of πf is intimately related to the

distribution of prime ideals in the ring OK of algebraic integers in

the number field K :=Q[x1]/⟨f ⟩, and the error term is where all the

difficulty enters: MRH is not currently known to be true. However,

MRH can still hold even if GRH fails (see Theorem 1 below). In

particular, while the truth of GRH implies that the 1/exponential

term in our lower bound above can be decreased toO
(
d log(∆x )
√
x

)
in

absolute value, we will see later that our looser bound still suffices

for our algorithmic purposes. (Note that
1√
x
=o

(
1

exp((log x )1/C )

)
for

any C >1.)
Our second hypothesis is a statement intermediate betweenMRH

and GRH in plausibility. Recall that the Dedekind zeta
function, ζK (s ), is the analytic continuation (to C \ {1}) of the

function

∑
a

1

(N a)s , where the summation is taken over all

integral ideals a of OK and Na is the norm of a [IK04]. (So ζQ (s )
is the classical Riemann zeta function ζ (s ), defined from the sum

∞∑
n=1

1

ns .) We call a root ρ = β + γ
√
−1 (with β,γ ∈ R) of ζK a

non-trivial zero if and only if 0 < β < 1. GRH is then following

statement:

(GRH) All the non-trivial zeroes ρ = β + γ
√
−1 of ζK

lie on the vertical line defined by β = 1/2. ⋄

Let ∆ denote the absolute value of the discriminant ofK . Our second
hypothesis allows infinitely many zeroes off the line β = 1

2
, provided

they don’t approach the boundary of the critical region too quickly

(as a function of (d,∆)). We review the number theory we need in

the next section.

Minimalist Dedekind Zero Hypothesis (MDZH). There is a
constant C >4 such that for any number field K , the Dedekind zeta
function ζK (s ) has no zeroes ρ = β + γ

√
−1 in the region

|γ | ≥ (1 + 4 log∆)−1

β ≥ 1 − (log(d log(3∆))C log( |γ | + 2))−1

and no real zeroes in the open interval
(
1 − log(d log(3∆))−C , 1

)
.

The main motivation for our two preceding hypotheses is the

following chain of implications, which form our main result.

Theorem 1. The following three implications hold:
(1) GRH=⇒MDZH , (2) MDZH=⇒MRH , (3) MRH=⇒DIMC ∈PNP

NP
.

We prove Theorem 1 in Section 3. We briefly review some com-

plexity theoretic notation in Section 2.1, and in Section 2.2 we

review some algebraic tools we need to relate polynomial systems

to number fields. It is important to recall that, like Koiran’s origi-

nal approach in [Koi96], our algorithm is completely distinct from

numerical continuation, or the usual computational algebra tech-

niques like Gröbner bases, resultants, or non-Archimedean Newton

Iteration. In particular, we use random sampling to study the den-

sity of primes p for which the mod p reduction of a polynomial

system has roots over the finite field Fp .

2 TECHNICAL BACKGROUND
Our approach begins by naturally associating a number field K
to a polynomial system F = ( f1, . . . , fk ) ∈Z[x1, . . . ,xn]. Then, the
distribution of prime ideals of OK forces the existence of complex

roots for F to imply (unconditionally) the existence of roots over

Fp for a positive density of mod p reductions of F . Conversely, if F
has no complex roots, then there are (unconditionally) only finitely

many primes p such that the mod p reduction of F has a root over

Fp . These observations, along with a clever random-sampling trick

that formed the first algorithm for computing complex dimension

in the polynomial-hierarchy (assuming GRH), go back to Koiran

[Koi96]. Our key contribution is thus isolating the minimal number-

theoretic hypotheses (“strictly” more plausible than GRH) sufficient

to make a positive density of primes observable via efficient random

sampling.

2.1 Some Complexity Theory
Our underlying computational model will be the classical Turing

machine, which, informally, can be assumed to be anyone’s laptop

computer, augmented with infinite memory and a flawless operat-

ing system. Our notion of input size is the following:

Definition 1. The bit-size (or sparse size) of a polynomial sys-
tem F B ( f1, · · · , fk ) ∈ Z[x1, . . . ,xn], is defined to be the total
number of bits in the binary expansions of all the coefficients and
exponents of the monomial term expansions of all the fi .

Recall that an oracle in A is a special machine that runs, in unit

time, an algorithm with complexity in A. Our complexity classes

can then be summarized as follows (and found properly defined in

[Pap95, AB09]).

P The family of decision problems which can be done within

time polynomial in the input size.

NP The family of decision problems where a “yes” answer can
be certified within time polynomial in the input size.

#P The family of enumerative problems P admitting an NP
problem Q such that the answer to every instance of P is

exactly the number of “yes” instances of Q.
NPNP The family of decision problems polynomial-time equivalent

to deciding quantified Boolean sentences of the form

∃x1 · · · ∃xℓ∀y1 · · · ∀ym B (x1, . . . ,xℓ ,y1, . . . ,ym ).

PNP
NP

The family of decision problems solvable within time polyno-

mial in the input size, with as many calls to an NPNP-oracle
as allowed by the time bound.
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PSPACE The family of decision problems solvable within time poly-

nomial in the input size, provided a number of processors

exponential in the input size is allowed.

Finally, let us recall the following important approximation result

of Stockmeyer.

Theorem 2 ([Sto85]). Any enumerative problem E in #P admits
an algorithm in PNP

NP
which decides if the output of an instance of

E exceeds an inputM ∈N by a factor of 2.

One can thus, in the preceding decisional sense, do constant-factor

approximation of functions in #P within the polynomial-hierarchy.

2.2 Rational Univariate Reduction and an
Arithmetic Nullstellensatz

In this section, we develop tools that will reduce the feasibility of

polynomial systems to algebra involving “large” univariate polyno-

mials. The resulting quantitative bounds are essential in construct-

ing our algorithm.

Our first lemma is a slight refinement of earlier work on rational

univariate reduction (see, e.g., [Can88, Roj00, Mai00]), so we leave

its proof for the full version of this paper.

Lemma 1. Let F be our polynomial system and ZF denote the zero
set of F inCn . Then there are univariate polynomialsu1, · · · ,un ,UF ∈
Z[t] and positive integers r1, · · · , rn such that

(1) The number of irreducible components of ZF is bounded above
by degUF , and deg(ui ) ≤ deg(UF ) ≤ Dn for all 1 ≤ i ≤ n.

(2) For any root θ of UF , we have F
(
u1 (θ )
r1 , · · · ,

un (θ )
rn

)
= 0, and

every irreducible component of ZF contains at least one point
that can be expressed in this way.

(3) The coefficients of UF have absolute value no greater than
2
O (Dn

[σ (F )+n logD]) . □

If F has finitely many roots then (UF ,u1, r1, . . . ,un , rn ) will cap-
ture all the roots of F in the sense above. Let f be the square-free

part of UF . Note that if p ∤ lcm(r1, · · · , rn ) and f mod p has a root,

then F mod p also has a root.

Now consider the following recently refined effective arithmetic

version of Hilbert’s Nullstellensatz. Recall that the height of a
polynomial f , denoted by h( f ), is defined as the logarithm of the

maximum of the absolute value of its coefficients.

Proposition 1 ([DKS13]). LetD = maxi deg( fi ), andh = maxi h( fi ).
Then the polynomial system F has no roots in Cn if and only if there
exist polynomials д1, · · · ,дk ∈ Z[x1, · · · ,xn] and a positive integer
α satisfying the Bezóut identity f1д1 + · · · + fkдk = α , and

(1) deg(дi ) ≤ 4nDn ,
(2) h(α ),h(дi ) ≤ 4n(n + 1)Dn (h + logk + (n + 7) log(n + 1)D).

If the mod p reduction of F has a root over Fp , then p divides

α . There are at most 1 + logα many prime factors of an integer α ,
hence

Theorem 3. If F has no complex root then the mod p reduction of
F has a root over Fp for no more than AF primes p, where

AF = 4n(n + 1)Dn (h + logk + (n + 7) log(n + 1)D). □

If we can somehow certify that the mod p reduction of F has

roots over Fp for at leastAF + 1many primes p, then we can certify

that F has complex roots.

Example. The following system F of two univariate polynomials:
f
1
= x120017 + 4x110001 + 19x110000 − 3x101208 + x100000 − 47x25018 + 37x20017

− 188x15002 − 893x15001 + 148x10001 + 703x10000 + 141x6209 − 47x5001 − 111x1208 + 37

f
2
= 19x210017 + 76x200001 + 361x200000 − 57x191208 + 19x190000 + 2x30016 − 7x20017

+ 8x20000 + 38x19999 − 6x11207 − 28x10001 − 133x1000 + 2x9999 + 21x1208 − 7,

has a complex root. It is easy to compute that AF ≈ 1.9567 × 1012.
However, as it is a small system, we can get a better bound on the
Bezóut constant α by computing the determinant of the corresponding
Sylvester matrix. Moreover, we can use a finer result due to Robin
([Rob83]) on ω (α ) (the number of prime factors of α ).

ω (α ) <
logα

log logα
+

logα

(log logα )2
+ 2.89726

logα

(log logα )3
,

for α ≥ 3. Therefore, to determine if F has a C root, it suffices to check
if the number of primes p such that the mod p reduction of F has a
root in Fp is more than 163, 317. In fact, such p comprise roughly 2/3

of the first 163, 317 primes. ⋄

2.3 Prime Ideals
In what follows, p always denotes a prime in N, and p a prime ideal

in the number ring OK .

For any number fieldK , let πK (x ) denote the number of p satisfy-

ingNp ≤ x . Recall that the ideal norm is defined to beNa B |OK /a |.
The classical Prime Ideal Theorem [IK04] states that for any number

field K , πK (x ) is asymptotic to
x

log x .

Let πF (x ) be the number of primes p such that the mod p reduc-

tion of F has a root over Fp and p ≤x . (So our earlier πf was the

univariate version of πF .) The main idea behind proving that GRH

implies MDZH is an approximation, with an explicit error term, of

the weighted prime-power-counting functionψK (x ) associated to

πK (x ), defined by

ψK (x ) =
∑
p

logNp.

Here the sum is taken over the unramified primes such that Npm ≤
x for some m. To start, we first quote the following important

lemmas:

Lemma 2 ([LO77], Lemma 7.1). Let ρ = β + γ
√
−1 denote a non-

trivial zero of ζK (so 0 < β < 1). For x ≥ 2, and T ≥ 2, define

S (x ,T ) =
∑
|γ |<T

xρ

ρ
−

∑
|ρ |< 1

2

1

ρ
.

Then

ψK (x ) − x + S (x ,T ) ≪
x logx +T

T
log∆ + d logx +

dx logx logT

T

+ logx log∆ + dxT−1 (logx )2.

Lemma 3 ([LO77] in the proof of Thm 9.2). Using the notation
above,

(1) ζK has at most one non-trivial zero ρ in the region

|γ | ≤ (4 log∆)−1

β ≥ 1 − (4 log∆)−1.
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This zero, if it exists, has to be real and simple. If it exists and
we call it β0 then it must satisfy

x1−β0

1 − β0
+

1

1 − β0
= xσ logx ≤ x1/2 logx

for some 0 ≤ σ ≤ 1 − β0.
(2) For ρ , β0, we have∑

ρ,1−β0
|ρ |< 1

2

(
xρ

ρ
−

1

ρ

)
≪ x1/2

∑
ρ,1−β0
|ρ |< 1

2

�����
1

ρ

�����
≪ x1/2 (log∆)2

(3) If we have further that T ≥ 2 then∑
|ρ | ≥ 1

2

|γ |<T

�����
1

ρ

�����
≪ logT log(∆Td )

Remark. An earlier unconditional zero-free region is the following
([LO77]):

|γ | ≥ (1 + 4 log∆)−1

β ≥ 1 − ε (log∆ + log( |γ | + 2))−1,

for some constant ε > 0. It is easily checked that for any fixed C
(and any sufficiently large d and ∆) the preceding region is strictly
contained in the zero-free region of MDZH. Unfortunately, the un-
conditional region of [LO77], and even the best current unconditional
refinements, are too small to guarantee that our upcoming algorithm
is in the polynomial-hierarchy. ⋄

Remark. We call the β0 from Lemma 2 a Siegel-Landau zero.
Observe that β0 is a potential counterexample to GRH since it is known
that

β0 ≥ 1 − (4 log∆)−1,

and the right-hand side is at least 3/4 for sufficently large ∆, thus
contradicting GRH. By using Lemma 3 in the following discussion, we
take into account the possibility of a Siegel-Landau zero. ⋄

Proposition 2. Assuming MDZH with constant C , there is an
effectively computable positive function c2 (C ) such that if

x ≥ exp

(
4(log log(3∆))2 log(d log(3∆))C

2

)
then

ψK (x ) = x −
xβ0

β0
+ R (x )

where

|R (x ) | ≤ x exp*
,
−c2 (C )

(logx )1/C

(log(d log(3∆)))C
+
-

and the term x β0
β0

only occurs if ζK (s ) has a Siegel-Landau zero β0.

Proof. By simply applying the Lemma 3, we have

S (x ,T ) −
xβ0

β0
≤

x1−β0

1 − β0
+

1

1 − β0
+

∑
ρ,1−β0
|ρ |< 1

2

(
xρ

ρ
−

1

ρ

)
+

∑
|ρ | ≥ 1

2

|γ |<T

xρ

ρ

≪ x1/2 logx + x1/2 (log∆)2 +
∑
|ρ | ≥ 1

2

|γ |<T

xρ

ρ

≪ x1/2 logx + x1/2 (log∆)2 + logT log(∆Td ) max

|ρ | ≥ 1

2

|γ |<T

|xρ |.

On the other hand, let ρ = β + iγ be a non-trivial zero of ζK (s ) with
|γ | ≤ T , and ρ is not a Siegel-Landau zero. As MDZH assumes a

zero-free region dependent on a given constant C ,

|xρ | = xβ ≤ x exp

(
−c3

logx

log log(3∆) + (log(d log(3∆)))2C logT

)
for some constant c3. Now take

T = exp

(
(log(d log(3∆)))−C (logx )1−1/C − log log(3∆)

)
.

The estimate of the theorem then follows from the above computa-

tion, and Lemma 2. □

3 THE PROOF OF THEOREM 1
Since GRH trivially implies MDZH, Assertion (1) tautologically true.

So we now proceed with proving Assertions (2) and (3).

3.1 The Proof of Assertion (2): MDZH =⇒MRH
Define θK (x ) =

∑
logNp where the summation is over all the

unramified prime p such that Np ≤ x . There are at most d ideals

pm of a given norm in K , hence

0 ≤ ψK (x ) − θK (x ) =
∑

Npm ≤x,m≥2
logNp

≤

log
2
x∑

m=2
dx1/m logx ≤ 3d

√
x logx .

The error term R (x ) still dominates this discrepancy, so the esti-

mates in Proposition 2 still holds whenψK (x ) is replaced by θK (x ).
By a standard partial summation trick we have:

�����
πK (x ) −

x

logx

�����
≤

xβ0

β0 logx
+O*

,
x exp(−

(logx )1/C

(log(d log(3∆)))C
)+
-
,

for

x ≥ exp

(
4(log log(3∆))2 log(d log(3∆))C

2

)
.

By the last assertion of MDZH, the error arising from the possible

existence of the Siegel-Landau zero β0 is dominated by R (x ) for x
in the range of x we are using. Therefore,

πK (x ) ≥ x *
,

1

logx
−O*

,
exp

*
,
−

(logx )1/C

(log(d log(3∆)))C
+
-
+
-
+
-
.

LetW (p) be the number of linear factors of f mod p. The key
fact we observe now is that if p ∤ ∆ thenW (p) equals the number

of prime ideals p of K of degree 1 that lie over p. Thus,
∑
p≤xW (p)

counts the number of p of degree 1 with norm up to x . As the
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prime ideals of degree greater than 1 must lie over a prime number

p ≤ x1/2, and there are no more than d such p, we have

πK (x ) −
∑
p≤x

W (p) = O (dx1/2).

Note that if p divides the discriminant of f , the correspondence
between p of degree 1, and the linear factors of f mod p will break.

But there are no more than log∆ such p. However, the error term
coming from R (x ) still dominates. Therefore,

∑
p≤xW (p) satisfies

the same estimate as πK (x ).
Let r (p) = 1 if f has a root in Fp and 0 otherwise. As f is

irreducible of degree d , so f mod p is non-trivial. Then

πf (x ) =
∑
p≤x

r (p) ≥
∑
p≤x

W (p)/d,

and MRH thus follows upon recalling that log∆ = O (d2σ + d3)
[Roj01]. □

Remark. We will deal later with square-free polynomial that are
possibly reducible. In this case, we write f (x ) =

∏
fi (x ), with fi (x )

irreducible, and apply the same argument to each summand of

Q[x]/⟨f (x )⟩ � ⊕Q[x]/⟨fi (x )⟩.

Therefore, we can replace the “irreducible” assumption in MRH with
“square-free”. ⋄

3.2 The Proof of Assertion (3): MRH =⇒
DIMC ∈PNP

NP

Let u1, · · · ,un ,UF ∈ Z[t] and r1, · · · , rn respectively be the poly-

nomials and integers arising from a rational univariate reduction of

F . Let K = Q[x]/⟨f ⟩, where f is the square-free part of UF . Then
d = deg f ≤ Dn

. Moreover, assuming the coefficients of UF have

absolute value no greater than 2
σ (F )

, we can effectively bound the

discriminant of f : log∆ = O ((degUF )
2σ (UF ) + (degUF )

3) [Roj01].
Note that if p ∤ lcm(r1, · · · , rn ), then Assertion (2) of Lemma 1

continues to hold modulo p. That is, if in addition f has a root in

Fp , then F has a root over Fp . Hence we have πF (x ) ≥ πf (x ).
Recall from Theorem 3 that if F has no complex solutions, then

the mod p reduction of F has a root over Fp for at most AF many

primes p. On the other hand, we have the following result:

Proposition 3. If F has a complex root then there is a positive
function t (F ) such that πF (x ) ≥ 7AF for every x ≥ t (F ). In particular,
log t (F ) is polynomial in the bit-size of F .

Proof of Proposition 3: Recall from MRH that the asymptotic

formula for πf (x ), and thus πF (x ), only holds for x sufficiently

large. In particular, we need

x ≥ exp

(
4(log log(3∆))2 log(d log(3∆))C

2

)
.

Let t1 denote this lower bound and let σ (F ) denote the bit-size of F .
It is easy to see that for C ≥ 2,

log t1 ≤ O
(
log(D3n (σ (F ) + n logD))C

2

)
= O

(
(3σ (F )2 + 2 logσ (F ))C

2

)
= O

(
σ (F )4C

2

)
,

which is polynomial in σ (F ).

On the other hand, by applying the numerical bounds from

Lemma 1, and MRH with constant C , we see that πF (x ) ≥ 7AF if:

x *
,

1

d logx
− exp*

,
−

(logx )1/C

(log(d log(3∆)))C
+
-
+
-

≥ 28n(n + 1)Dn (h + logk + (n + 7) log(n + 1)D).

Necessarily,

1

Dn
x

logx
≫ x exp(−

(logx )1/C

(log(Dn
log∆))C

) (n + k )2Dn+1 (σ (F ) + n logn)).

Now with log∆ = O (degUFσ (UF )+d
2) = O (D2n (σ (F )+n logD)),

and n logD ≤ (n + logD)2 ≤ σ (F )2, we have

⇐
x

logx
≫ x exp(−

(logx )1/C

(2 log(D3nσ (F )2)C
) (n + k )2D2n+1σ (F )2,

⇐ logx ≫ log logx + logx −
(logx )1/C

(2 log(D3nσ (F )2)C
+ 7σ (F )2,

⇐
(logx )1/C

(6σ (F ))2C
≫ log logx + 7σ (F )2,

which holds if logx ≥ log t2 B O (σ (F )4C
2

). The proposition fol-

lows by letting t (F ) := max(t1, t2). □
Continuing our proof of Assertion (3) of Theorem 1, consider

the following algorithm:

PHFEAS
Input A k×n polynomial system F with integer coefficients.

Output A true declaration whether F has a complex root.

Step 1 Compute AF and t (F ) from Theorem 3 and Proposi-

tion 3.

Step 2 Use Stockmeyer’s algorithm as in Theorem 2, to ap-

proximate the numberM of primes p ∈ {1, · · · , t (F )},
such that the mod p reduction of F has a root over

Fp .
Step 3 IfM > 3AF , then declare that F has a complex root.

Otherwise, declare that F has no complex root.

Since DIMC can be reduced in BPP to FEASC, and BPP ⊆ AM
[Pap95, AB09], it suffices to prove that algorithm PHFEAS is correct

and runs in time PNP
NP
.

Toward this end, observe that if F has no complex root, then

there are no more than AF primes p such that the mod p reduction

of F has a root over Fp . By Proposition 3 and assuming MRH,

if F has a complex root, then there are at least 7AF primes p ≤
t (F ) such that F mod p has a root. Such primes have bit-size no

greater than O (log t (F )). It is also easy to check that logAF is also

polynomial in σ (F ). Moreover, primality checking can be done in

P, and the existence of roots of F over Fp can be done in NP. Hence
the number of primes we are approximating is computable in #P.
So the algorithm is correct and runs in time PNP

NP
. □
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