COUNTING ROOTS FOR POLYNOMIALS MODULO PRIME POWERS

QI CHENG, SHUHONG GAO, J. MAURICE ROJAS, AND DAQING WAN

Abstract

Suppose p is a prime, t is a positive integer, and $f \in \mathbb{Z}[x]$ is a univariate polynomial of degree d with coefficients of absolute value $<p^{t}$. We show that for any fixed t, we can compute the number of roots in $\mathbb{Z} /\left(p^{t}\right)$ of f in deterministic time $(d \log p)^{O(1)}$. This fixed parameter tractability appears to be new for $t \geq 3$. A consequence for arithmetic geometry is that we can efficiently compute Igusa zeta functions Z, for univariate polynomials, assuming the degree of Z is fixed.

1. Introduction

Given a prime p, and a univariate polynomial $f \in \mathbb{Z}[x]$ of degree d with coefficients of absolute value $<p^{t}$, it is a basic problem to count the roots of f in $\mathbb{Z} /\left(p^{t}\right)$. Aside from its natural number theoretic relevance, counting roots in $\mathbb{Z} /\left(p^{t}\right)$ is closely related to error correcting codes [3] and factoring polynomials over the p-adic rationals $\mathbb{Q}_{p}[8,4,17]$, and the latter problem is fundamental in polynomial-time factoring over the rationals $\mathbb{Q}[24]$, the study of prime ideals in number fields [9 , Ch. $4 \& 6$], elliptic curve cryptography [22], the computation of zeta functions [5, 23, 30, 6], and the detection of rational points on curves [28].

There is surprisingly little written about root counting in $\mathbb{Z} /\left(p^{t}\right)$ for $t \geq 2$: While an algorithm for counting roots of f in $\mathbb{Z} /\left(p^{t}\right)$ in time polynomial in $d \log p$ has been known in the case $t=1$ for many decades (just compute the degree of $\operatorname{gcd}\left(x^{p}-x, f\right)$ in $\left.\mathbb{F}_{p}[x]\right)$, the case $t=2$ was just solved in 2017 by some of our students [18]. The cases $t \geq 3$, which we solve here, appeared to be completely open (see also [29, 27, 14] for further background). One complication with $t \geq 2$ is that polynomials in $\left(\mathbb{Z} /\left(p^{t}\right)\right)[x]$ do not have unique factorization, thus obstructing a simple use of polynomial gcd.

However, certain basic facts can be established quickly. For instance, the number of roots can be exponential in $\log p$. (It is natural to use $\log p$, among other parameters, to measure the size of a polynomial since it takes $O(d t \log p)$ bits to write down f.) The quadratic polynomial $x^{2}=0$, which has roots $0, p, 2 p, \ldots,(p-1) p$ in $\mathbb{Z} /\left(p^{2}\right)$, is such an example. This is why we focus on computing the number of roots of f, instead of listing or searching for the roots in $\mathbb{Z} /\left(p^{t}\right)$.

Let $N_{t}(f)$ denote the number of roots of f in $\mathbb{Z} /\left(p^{t}\right)$ (setting $\left.N_{0}(f):=1\right)$. The Poincare series for f is $P_{f}(x):=\sum_{t=0}^{\infty} N_{t}(f) x^{t}$. Assuming $P_{f}(x)$ is a rational function in x, one can reasonably recover $N_{t}(f)$ for any t via standard generating function techniques. That $P_{f}(x)$ is in fact a rational function of x (even for multivariate f) was first proved in 1974 by Igusa (in the course of deriving a new class of zeta functions [19]), applying resolution of singularities. Denef found a new proof (using p-adic cell decomposition [10]) leading to more algorithmic approaches later. While this in principle gives us a way to compute $N_{t}(f)$, there are few papers studying the computational complexity of Igusa zeta functions [31]. Our work here thus also contributes in the direction of arithmetic geometry by significantly improving [31], where P_{f} is computed in the special case where f is univariate and splits completely over \mathbb{Q}.

To better describe our results, let us start with a naive description of the first key idea: How do roots in \mathbb{F}_{p} lift to roots in $\mathbb{Z} /\left(p^{t}\right)$? A simple root of f in \mathbb{F}_{p} can be lifted uniquely to a root in $\mathbb{Z} /\left(p^{t}\right)$, according to the classical Hensel's lemma (see, e.g., [15]). But a root with multiplicity ≥ 2 in \mathbb{F}_{p} can potentially be the image (under mod p reduction) of many roots in $\mathbb{Z} /\left(p^{t}\right)$, as illustrated by our earlier example $f(x)=x^{2}$. Or a root may not be liftable at all, e.g., $x^{2}+p=0$ has no roots $\bmod p^{2}$, even though it has a root $\bmod p$. More to the point, if one wants a fast deterministic algorithm, one can not assume that one has access to individual roots. This is because it is still an open problem to find the roots of univariate polynomials modulo p in deterministic polynomial time (see, e.g., [11, 16]).

[^0]Nevertheless, we have overcome this difficulty and found a way to keep track of how to correctly lift roots of any multiplicity.

Theorem 1.1. There is a deterministic algorithm that computes the number of roots of f in $\mathbb{Z} /\left(p^{t}\right)$ in time $\left(d \log (p)+2^{t}\right)^{O(1)}$, where the implied constant in the big O notation is absolute.

We prove Theorem 1.1 in Section 5. Note that Theorem 1.1 implies that if $t=O(\log \log p)$ then there is a deterministic $(d \log p)^{O(1)}$ algorithm to count the roots of f in $\mathbb{Z} /\left(p^{t}\right)$. We are unaware of any earlier algorithm achieving this complexity bound, even if randomness is allowed. (A few weeks after our work here was presented at ANTS XIII, an improved complexity bound was obtained in the preprint [20].) It is worth noting that further speed-ups in terms of sparsity (e.g., polynomials with a fixed number of monomial terms) may be difficult to derive: Merely deciding the existence of roots in \mathbb{F}_{p} or \mathbb{Q}_{p} is already $\mathbf{N P}$-hard (under BPP-reductions) with respect to the sparse encoding $[1,7]$. An interesting open problem in this direction is then the following: If $c_{1}, c_{2}, c_{3}, a, b \in\left\{1, \ldots, p^{2}-1\right\}$ with $a<b<p^{2}-p$, can one decide if $c_{1}+c_{2} x^{a}+c_{3} x^{b}$ has a root in $\mathbb{Z} /\left(p^{2}\right)$ in time polynomial in $\log p$?

Our main technical innovations are the following:

- We use ideals in the ring $\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{k}\right]$ of multivariate polynomials over the p-adic integers to keep track of the roots of f in $\mathbb{Z} /\left(p^{t}\right)$. More precisely, from the expansion

$$
f\left(x_{1}+p x_{2}+\cdots+p^{k} x_{k-1}\right)=g_{1}\left(x_{1}\right)+p g_{2}\left(x_{1}, x_{2}\right)+p^{2} g_{3}\left(x_{1}, x_{2}, x_{3}\right)+\cdots
$$

we build a collection of ideals in $\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{k}\right]$, starting from $\left(g_{1}\left(x_{1}\right)\right)$. We then decompose the ideals according to multiplicity type and rationality. This process produces a tree of ideals which ultimately encode the summands making up our final root count.

- The expansion above is not unique. (For example, adding p to g_{1} and subtracting 1 from g_{2} gives us another expansion.) However, we manage to keep most of our computations within \mathbb{F}_{p}, and maintain uniformity for the roots of our intermediate ideals, by using Teichmüller lifting (described in Section 4).

2. Overview of Our Approach

To count the number of roots in $\mathbb{Z} /\left(p^{t}\right)$ of $f \in \mathbb{Z}[x]$, our algorithm follows a divide-and-conquer strategy. First, partially factor f over \mathbb{F}_{p} according to multiplicity and rationality as follows:

$$
\begin{equation*}
f=f_{1} f_{2}^{2} f_{3}^{3} \cdots f_{l}^{l} F \quad(\bmod p) \tag{1}
\end{equation*}
$$

where each $f_{i} \in \mathbb{F}_{p}[x]$ is monic and splits completely into a product of distinct linear factors over \mathbb{F}_{p}, the f_{i} are pairwise relatively prime, and F is free of linear factors in $\mathbb{F}_{p}[x]$. Such a factorization is classically known to be doable in deterministic polynomial-time (see, e.g., [2, pp. 170-171]). For an element $\alpha \in \mathbb{F}_{p}$, we call any element of its inverse image under the natural map $\mathbb{Z} \rightarrow \mathbb{F}_{p}$ a lift of α to \mathbb{Z}. Similarly, we can define a lift of α to \mathbb{Z}_{p} or to $\mathbb{Z} /\left(p^{t}\right)$, and we can naturally extend this concept to polynomials in $\mathbb{F}_{p}[x]$ as well. The core of our algorithm counts how many roots of f in $\mathbb{Z} /\left(p^{t}\right)$ are lifts of roots of f_{i} in \mathbb{F}_{p}, for each i. For f_{1}, by Hensel's lifting lemma, the answer should be $\operatorname{deg} f_{1}$ for all t. For other f_{i}, however, Hensel's lemma will not apply, so we run our algorithm on the pair (f, m), where m is the lift of (a factor of) f_{i} to $\mathbb{Z}[x]^{1}$, for each $i \in\{2, \ldots, l\}$, to see how many lifts (to roots of f in $\mathbb{Z} /\left(p^{t}\right)$) are produced by the roots of the f_{i} in \mathbb{F}_{p}. The final count is then the summation of the results over all the f_{i}, since the roots of f in $\mathbb{Z} /\left(p^{t}\right)$ are partitioned by the roots of the f_{i}.

Remark 2.1. If one instead uses a randomized factorization algorithm (e.g., [21]) to find roots of f in \mathbb{F}_{p} in polynomial time then one may assume $\operatorname{deg} m=1$, and greatly simplify the analysis of our algorithm.

[^1]Since $m \mid f$ (and in fact $\left.m^{2} \mid f\right)$ in $\mathbb{F}_{p}[x]$, we have $f(x)=0(\bmod (m(x), p))$ and, in $\mathbb{Z}\left[x_{1}, x_{2}\right]$, we have the containment

$$
f\left(x_{1}+p x_{2}\right) \in\left(m\left(x_{1}\right), p\right) .
$$

If we have the refined containment $f\left(x_{1}+p x_{2}\right) \in\left(m\left(x_{1}\right), p^{t}\right)$ then for any root r_{1} of m in $\mathbb{Z} /\left(p^{t}\right)$, and any integer $0 \leq r_{2}<p^{t-1}, f\left(r_{1}+p r_{2}\right)=0\left(\bmod p^{t}\right)$. Thus each root of m in \mathbb{F}_{p} lifts to exactly p^{t-1} roots of f in $\mathbb{Z} /\left(p^{t}\right)$, and the counting problem for (f, m) is solved. Otherwise we can efficiently find an integer $s \in\{1, \ldots, t-1\}$ and a $g \in \mathbb{Z}\left[x_{1}, x_{2}\right]$ such that

$$
\begin{equation*}
f\left(x_{1}+p x_{2}\right)=p^{s} g\left(x_{1}, x_{2}\right) \quad\left(\bmod \left(m\left(x_{1}\right), p^{t}\right)\right) \tag{2}
\end{equation*}
$$

where $\operatorname{deg}_{x_{2}} g \leq t-1, \operatorname{deg}_{x_{1}} g<\operatorname{deg} m$ and $g\left(x_{1}, x_{2}\right) \neq 0\left(\bmod p, m\left(x_{1}\right)\right)$. Let

$$
g\left(x_{1}, x_{2}\right)=\sum_{0 \leq j<t} g_{j}\left(x_{1}\right) x_{2}^{j} .
$$

Then either $g_{j}=0(\bmod p)$ or $\operatorname{gcd}\left(m\left(x_{1}\right), g_{j}\left(x_{1}\right)\right)=1$ over \mathbb{F}_{p}. (Otherwise, we apply the algorithm to the pairs $\left(f, \operatorname{gcd}\left(m, g_{j}\right)\right)$ and $\left(f, m / \operatorname{gcd}\left(m, g_{j}\right)\right)$.)

If $s=1$ then, since $m^{2} \mid f$ over \mathbb{F}_{p}, we must have

$$
f\left(x_{1}+p x_{2}\right)=p g_{0}\left(x_{1}\right) \quad\left(\bmod m\left(x_{1}\right), p^{2}\right) .
$$

Since $\operatorname{gcd}\left(m, g_{0}\right)=1$ over \mathbb{F}_{p}, none of the roots of m in \mathbb{F}_{p} can be lifted to \mathbb{Z} / p^{2}. So from now on we assume that $1<s<t$.
2.1. The algorithm for $t=3$. The only interesting case is when $s=2$.

Theorem 2.2. The number of roots in $\mathbb{Z} /\left(p^{3}\right)$ of f that are lifts of roots of $m(\bmod p)$ is equal to p times the number of roots in \mathbb{F}_{p}^{2} of the 2×2 polynomial system below:

$$
\begin{align*}
m\left(x_{1}\right) & =0 \\
g\left(x_{1}, x_{2}\right) & =0 \tag{3}
\end{align*}
$$

and thus the number of roots can be calculated in deterministic polynomial time.
Proof. To calculate the number of the roots, we run the Euclidean algorithm to compute the gcd of two polynomials:

$$
g\left(x_{1}, x_{2}\right) \text { and } x_{2}^{p}-x_{2},
$$

viewed as polynomials in x_{2} over $\mathbb{F}_{p}\left[x_{1}\right] /\left(m\left(x_{1}\right)\right)$. If we encounter a zero divisor of $\mathbb{F}_{p}\left[x_{1}\right] /\left(m\left(x_{1}\right)\right)$ during the computation, then we have a nontrivial factorization of $m\left(x_{1}\right)=m_{1} m_{2}$. We recursively count the \mathbb{F}_{p} solutions of the equation system $m_{1}\left(x_{1}\right)=0$ and $g\left(x_{1}, x_{2}\right)=0$, and the system $m_{2}\left(x_{1}\right)=0$ and $g\left(x_{1}, x_{2}\right)=0$, output the sum of these two numbers.

Otherwise assume that the degree of the gcd (a monic polynomial in x_{2}) is n_{2}. The number of \mathbb{F}_{p}-roots of (3) equals to $n_{2} \operatorname{deg}(m(x))$.

Since $m\left(x_{1}\right)$ has at most $\operatorname{deg}(m(x))$ many factors, and the Euclidean algorithm can be done in deterministic polynomial time, the theorem follows.

More details and generalization (to the Gröbner base computation) of the algorithm can be found in Section 6. Note that since $\operatorname{deg}_{x_{2}} g \leq 2$ any root of m in \mathbb{F}_{p} can be lifted to at most $2 p$ roots in $\mathbb{Z} /\left(p^{3}\right)$.

Assume that $f \in \mathbb{Z}[x]$ is not divisible by p. The preceding ideas are formalized in the following algorithm:

```
Algorithm 1 The case \(t=3\)
    function \(\operatorname{count}(f(x) \in \mathbb{Z}[x], f(x) \neq 0(\bmod p))\)
        Factor \(f\) as in (1).
        count \(=\operatorname{deg} f_{1} \quad \triangleright\) Every root of \(f_{1}\) can be lifted uniquely.
        Push \(f_{2}, f_{3}, \ldots, f_{l}\) onto a stack \(S\)
        while \(S \neq \emptyset\) do
            Pop a polynomial from the stack, find its lift to \(\mathbb{Z}\) and denote it by \(m\)
            if \(f\left(x_{1}+p x_{2}\right)=0\left(\bmod \left(m\left(x_{1}\right), p^{3}\right)\right)\) then
                count \(\leftarrow\) count \(+p^{2} \operatorname{deg} m\)
            else
                Find \(s\) and \(g\) satisfying the conditions in Equation (2)
                if \(\operatorname{deg} \operatorname{gcd}\left(m, g_{j}\right)>0\) for some \(j\) then
                    Push \(\operatorname{gcd}\left(m, g_{j}\right)\) and \(m / \operatorname{gcd}\left(m, g_{j}\right)\) onto the stack
                else
                    if \(s=2\) then
                        count \(\leftarrow\) count \(+p \cdot\left(\right.\) the number of the solutions of \((3)\) in \(\left.\mathbb{F}_{p}^{2}\right)\)
                    end if
                end if
            end if
        end while
        return count
    end function
```

2.2. A Proposition for General t. Let $r \in \mathbb{F}_{p}$ be any root of m, r^{\prime} be the corresponding lifted root of m in \mathbb{Z}_{p}, and $a \in \mathbb{Z}_{p}$. We then have

$$
f\left(r^{\prime}+a p\right)=p^{s} g\left(r^{\prime}, a\right) \quad\left(\bmod p^{t}\right) .
$$

So $r^{\prime}+a p$ is a root in $\mathbb{Z} /\left(p^{t}\right)$ for f if and only if

$$
g\left(r^{\prime}, a\right)=0 \quad\left(\bmod p^{t-s}\right)
$$

The preceding argument leads us to the following result.
Proposition 2.3. The number of roots in $\mathbb{Z} /\left(p^{t}\right)$ of f that are lifts of the roots of $m(\bmod p)$ is equal to p^{s-1} times the number of solutions in $\left(\mathbb{Z} /\left(p^{t-s}\right)\right)^{2}$ of the 2×2 polynomial system (in the variables $\left(x_{1}, x_{2}\right)$) below:

$$
\begin{align*}
m\left(x_{1}\right) & =0 \\
g\left(x_{1}, x_{2}\right) & =0 \tag{4}
\end{align*}
$$

Since the root of m is liftable only when $s>1$ (see the discussion at the beginning of the section), this yields the following dichotomy corollary:
Corollary 2.4. If $m^{2} \mid f$ in $\mathbb{F}_{p}[x]$, and $t \geq 2$, then any root of m in \mathbb{F}_{p} is either not liftable to a root in $\mathbb{Z} /\left(p^{t}\right)$ of f, or can be lifted to at least p roots of f in $\mathbb{Z} /\left(p^{t}\right)$.

3. From Taylor Series to Ideals

For any univariate polynomial m of degree n let us define

$$
T_{m, j}(x, y)=\sum_{1 \leq i \leq j} \frac{y^{i-1}}{i!} \frac{d^{i} m}{(d x)^{i}}(x) .
$$

Note that if $m \in \mathbb{Z}[x]$ then $\frac{1}{i!} \frac{d^{i} m}{(d x)^{i}}(x)$, being a Taylor expansion coefficient, also lies in $\mathbb{Z}[x]$. So $T_{m, j}$ is an integral multivariate polynomial for any j. Since $T_{m, 1}$ does not depend on y, we abbreviate $T_{m, 1}(x, y)$ by $T_{m}(x)$. The following lemma follows from a simple application of Taylor expansion:

Lemma 3.1. Let $m \in \mathbb{Z}[x]$ be a polynomial that is irreducible in $\mathbb{Z}[x]$ but splits completely, without repeated factors, into linear factors in $\mathbb{F}_{p}[x]$. Let $r \in \mathbb{F}_{p}$ be any root of m and let $r^{\prime} \in \mathbb{Z}_{p}$ be the corresponding p-adic integer root of m. Then

$$
m\left(r^{\prime}+a p\right)=a p T_{m}(r) \quad\left(\bmod p^{2}\right) .
$$

To put it in another way, we have the following congruence:

$$
m\left(x_{1}+p x_{2}\right) \equiv p x_{2} T_{m}\left(x_{1}\right) \quad\left(\bmod m\left(x_{1}\right), p^{2}\right)
$$

in the ring $\mathbb{Z}\left[x_{1}, x_{2}\right]$.
That one can always associate an $r \in \mathbb{F}_{p}$ to a root $r^{\prime} \in \mathbb{Z}_{p}$ as above is an immediate consequence of the classical Hensel's Lemma [15]. More generally, we have the following stronger result:

Lemma 3.2. Let $m \in \mathbb{Z}[x]$ be a polynomial that is irreducible in $\mathbb{Z}[x]$ but splits completely, without repeated factors, into linear factors in $\mathbb{F}_{p}[x]$. Let $r \in \mathbb{F}_{p}$ be any root of m, and let $r^{\prime} \in \mathbb{Z}_{p}$ be the corresponding p-adic integer root of m. Then for any positive integer u,

$$
m\left(r^{\prime}+a p\right)=a p T_{m, u-1}\left(r^{\prime}, a p\right) \quad\left(\bmod p^{u}\right) .
$$

Also, in the ring $\mathbb{Z}\left[x_{1}, x_{2}\right]$, we have

$$
m\left(x_{1}+p x_{2}\right)=x_{2} p T_{m, \operatorname{deg}(m)}\left(x_{1}, p x_{2}\right) \quad\left(\bmod m\left(x_{1}\right)\right) .
$$

Proof. By Taylor expansion:

$$
\begin{aligned}
m\left(r^{\prime}+a p\right) & =m\left(r^{\prime}\right)+\sum_{1 \leq i<u} \frac{(a p)^{i}}{i!} \frac{d^{i} m}{(d x)^{i}}\left(r^{\prime}\right) \quad\left(\bmod p^{u}\right) \\
& =\sum_{1 \leq i<u} \frac{(a p)^{i}}{i!} \frac{d^{i} m}{(d x)^{i}}\left(r^{\prime}\right) \quad\left(\bmod p^{u}\right) \\
& =a p \sum_{1 \leq i<u} \frac{(a p)^{i-1}}{i!} \frac{d^{i} m}{(d x)^{i}}\left(r^{\prime}\right) \quad\left(\bmod p^{u}\right)
\end{aligned}
$$

As observed earlier, $\frac{1}{i!} \frac{d^{i} m}{(d x)^{i}}(x)$ is an integral polynomial (even when $i>p-1$), so we are done.
Note that in the setting of Lemma 3.2, $T_{m, u-1}\left(r^{\prime}, a p\right) \equiv T_{m}\left(r^{\prime}\right) \neq 0(\bmod p)$.
The following theorem is a generalization of the preceding lemmas to ideals.
Theorem 3.3. Let I be a ideal in $\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{k-1}\right]$. Assume that $I(\bmod p)$ is a zero-dimensional radical ideal in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k-1}\right]$ whose zero set in \bar{F}_{p}^{k-1} lies in \mathbb{F}_{p}^{k-1} and lifts to \mathbb{Z}_{p}. Let $f \in$ $\mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$ satisfy $\operatorname{deg}_{x_{k}} f<p$. If $f\left(r_{1}, \ldots, r_{k}\right) \equiv 0\left(\bmod p^{s}\right)$ for every \mathbb{Z}_{p}-root $\left(r_{1}, \ldots, r_{k-1}\right)$ of I, and every integer r_{k}, then there must exist a polynomial $g\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
f\left(x_{1}, \ldots, x_{k}\right) \equiv p^{s} g\left(x_{1}, \ldots, x_{k}\right) \quad(\bmod I) .
$$

Theorem 3.3 can be proved by induction on k. Lemma 3.2 is basically the special case of Theorem 3.3 when $s=1, k=2, I=\left(m\left(x_{1}\right)\right)$ and $f\left(x_{1}, x_{2}\right)=m\left(x_{1}+p x_{2}\right)$. It is important in Theorem 3.3 that the ideal $I(\bmod p)$ be radical, just like in Lemma 3.2, where m is free of repeated factors over \mathbb{F}_{p}.

4. The Case $t=4$ and the Need for Teichmüller Lifting.

Here we work on the case $t=4$. Earlier, we saw that in the course of our algorithm, m is a lift of a factor of f_{i} to $\mathbb{Z}[x]$. In this section we will show the need for Teichmüller lifting. We start with

$$
f\left(x_{1}+p x_{2}\right)=p^{s} g\left(x_{1}, x_{2}\right) \quad\left(\bmod m\left(x_{1}\right), p^{4}\right),
$$

where $1<s<4$. If $s=3$ then we have the following root count, thanks to Proposition 2.3:
Theorem 4.1. The number of roots in $\mathbb{Z} /\left(p^{4}\right)$ of f that are lifts of roots of $m(\bmod p)$ is equal to p^{2} times the number of roots in \mathbb{F}_{p}^{2} of the 2×2 polynomial system (in the variables $\left(x_{1}, x_{2}\right)$) below:

$$
\begin{align*}
m\left(x_{1}\right) & =0 \\
g\left(x_{1}, x_{2}\right) & =0 \tag{5}
\end{align*}
$$

which can be calculated in deterministic polynomial time.
The most interesting subcase is thus $s=2$. From Equation (3), we first build an ideal

$$
\left(m\left(x_{1}\right), g\left(x_{1}, x_{2}\right)\right) \quad(\bmod p) \subset \mathbb{F}_{p}\left[x_{1}, x_{2}\right] .
$$

The leading coefficient of $g\left(x_{1}, x_{2}\right)$, viewed as a polynomial in x_{2}, is assumed to be invertible in $\mathbb{F}_{p}\left[x_{1}\right] /\left(m\left(x_{1}\right)\right)$. So g can be made monic (as a polynomial in x_{2}). So we may assume that the ideal is given as

$$
\left(m\left(x_{1}\right), x_{2}^{n_{2}}+f_{2}\left(x_{1}, x_{2}\right)\right),
$$

where $n_{2} \leq 2$ and $\operatorname{deg}_{x_{2}} f_{2}<n_{2}$. If $\left(r, r_{2}\right)$ is a root in \mathbb{F}_{p} of the ideal, and r_{1} is the lift of r to the \mathbb{Z}_{p}-root of m, then $r_{1}+p r_{2}$ is a solution of $f\left(\bmod p^{3}\right)$. We compute the rational component of the ideal, and find its radical over \mathbb{F}_{p}. In the process, we may factor m in $\mathbb{F}_{p}[x]$. If we lift naively a factor m_{1} of m over \mathbb{F}_{p}, the p-adic roots of m_{1} may not be p-adic roots of m. So how do we keep the information about p-adic roots of m, a polynomial with integer coefficients?

Our solution to this problem is to use Teichmüller lifting: Recall that for an element α in the prime field \mathbb{F} / p, the Teichmüller lifting of α is the unique p-adic integer $w(\alpha) \in \mathbb{Z}_{p}$ such that $w(\alpha) \equiv \alpha \bmod p$ and $w(\alpha)^{p}=w(\alpha)$. If a is any integer representative of α, then the Teichmüller lifting of α can be computed via

$$
w(\alpha)=\lim _{k \rightarrow \infty} a^{p^{k}}, w(\alpha) \equiv a^{p^{t}} \quad \bmod p^{t} .
$$

Although the full Teichmüller lifting cannot be computed in finite time, we will see momentarliy how its mod p^{t} reduction can be computed in deterministic polynomial time.

Let us now review how the mod p^{t} reduction of the Teichmüller lift can be computed in deterministic polynomial time: If $m \in \mathbb{Z}[x]$ is a monic polynomial of degree $d>0$ such that $m \bmod p$ splits as a product of distinct linear factors

$$
m(x) \equiv \prod_{i=1}^{d}\left(x-\alpha_{i}\right) \quad \bmod p, \alpha_{i} \in \mathbb{F}_{p}
$$

then the Teichmüller lifting of $m \bmod p$ is defined to be the unique monic p-adic polynomial $\hat{m} \in \mathbb{Z}_{p}[x]$ of degree d such that the p-adic roots of \hat{m} are exactly the Teichmüller lifting of the roots of $m \bmod p$. That is,

$$
\hat{m}(x)=\prod_{i=1}^{d}\left(x-w\left(\alpha_{i}\right)\right) \in \mathbb{Z}_{p}[x] .
$$

The Teichmüller lifting \hat{m} can be computed without factoring $m \bmod p$: Using the coefficients of m, one forms a $d \times d$ companion matrix M with integer entries such that $m(x)=\operatorname{det}\left(x I_{d}-M\right)$. Then, one can show that

$$
\hat{m}(x)=\lim _{k \rightarrow \infty} \operatorname{det}\left(x I_{d}-M^{p^{k}}\right), \hat{m}(x) \equiv \operatorname{det}\left(x I_{d}-M^{p^{t}}\right) \quad \bmod p^{t} .
$$

This construction and computation of Teichmüller lifting of a single polynomial $m(x) \bmod p$ can be extended to any triangular zero-dimensional radical ideal with only rational roots as follows.

Let I be a radical ideal of the form

$$
I=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{1}, x_{2}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{k}\right)\right) \subset \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right],
$$

having only rational roots, where $g_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{i}\right]$ is a monic polynomial in x_{i} of the form

$$
g_{i}\left(x_{1}, \ldots, x_{i}\right)=x_{i}^{n_{i}}+f_{i}\left(x_{1}, \ldots, x_{i}\right), n_{i} \geq 1
$$

satisfying $\operatorname{deg}_{x_{i}} f_{i}<n_{i}$. Such a presentation of the ideal I is called triangular form. It is clear that such an I is a zero-dimensional complete intersection. Using the companion matrix of a polynomial, we can easily find $n_{i} \times n_{i}$ matrices $M_{i-1}\left(x_{1}, \ldots, x_{i-1}\right)$ whose entries are polynomials with coefficients in \mathbb{Z} such that

$$
g_{i}\left(x_{1}, \ldots, x_{i}\right) \equiv \operatorname{det}\left(x_{i} I_{n_{i}}-M_{i}\left(x_{1}, \ldots, x_{i-1}\right)\right) \quad \bmod p, 1 \leq i \leq k
$$

Recursively define the polynomial $f_{i} \in\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{i}\right]$ for $1 \leq i \leq k$ such that

$$
\begin{gathered}
f_{1}\left(x_{1}\right) \equiv \operatorname{det}\left(x_{1} I_{n_{1}}-M_{0}^{p^{t}}\right) \bmod p^{t} \\
f_{2}\left(x_{1}, x_{2}\right) \equiv \operatorname{det}\left(x_{2} I_{n_{2}}-M_{1}\left(x_{1}\right)^{p^{t}}\right) \bmod \left(p^{t}, f_{1}\left(x_{1}\right)\right) \\
\vdots \\
f_{k}\left(x_{1}, \ldots, x_{k}\right) \equiv \operatorname{det}\left(x_{k} I_{n_{k}}-M_{k-1}\left(x_{1}, \ldots, x_{k-1}\right)^{p^{t}}\right) \bmod \left(p^{t}, f_{1}, \ldots, f_{k-1}\right) .
\end{gathered}
$$

The ideal $\hat{I}=\left(f_{1}, \ldots, f_{k}\right) \in\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{i}\right]$ is called the Teichmüller lifting mod p^{t} of I. It is independent of the choice of the auxiliary integral matrices M_{i}. The roots of \hat{I} over $\mathbb{Z} / p^{t} \mathbb{Z}$ are precisely the Teichmüller liftings mod p^{t} of the roots of I over \mathbb{F}_{p}. In particular, each root $\left(r_{1}, \ldots, r_{k}\right)$ over $\mathbb{Z} /\left(p^{t}\right)$ of \hat{I} satisfies the condition $r_{i}^{p} \equiv r_{i} \bmod p^{t}$.

We require that m be the Teichmüller lift of (a factor of) f_{i} at beginning of the algorithm. Then we compute the Teichmüller lift of the ideal $\left(m\left(x_{1}\right), x_{2}^{n_{2}}+f_{2}\left(x_{1}, x_{2}\right)\right)$, which is an ideal in $\mathbb{Z}_{p}\left[x_{1}, x_{2}\right]$. We only need it modulo p^{4}. Denote the ideal by I_{2}. For every root $\left(r_{1}, r_{2}\right)$ of $I_{2}, r_{1}+p r_{2}$ is a solution of $f(x)=0\left(\bmod p^{3}\right)$. Namely, for any integer r_{3}, we have $f\left(r_{1}+p r_{2}+p^{2} r_{3}\right)=0\left(\bmod p^{3}\right)$, since $f\left(x_{1}+p x_{2}\right)=0\left(\bmod I_{2}, p^{3}\right)$.

According to Theorem 3.3, there exists a polynomial $G \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$ such that

$$
f\left(x_{1}+p x_{2}+p^{2} x_{3}\right) \equiv p^{3} G\left(x_{1}, x_{2}, x_{3}\right) \quad\left(\bmod I_{2}\right),
$$

since $I_{2}(\bmod p)$ is radical. We have

$$
f\left(x_{1}+p x_{2}+p^{2} x_{3}\right)=g_{1}\left(x_{1}, x_{2}\right) p^{3} x_{3}+g_{0}\left(x_{1}, x_{2}\right) p^{3} \quad\left(\bmod \left(I_{2}, p^{4}\right)\right) .
$$

Hence if $\left(r_{1}, r_{2}\right)$ is a root of I_{2}, then $r_{1}+p r_{2}+p^{2} r_{3}$ is a root of $f\left(\bmod p^{4}\right)$ iff $\left(r_{1}, r_{2}, r_{3}\right)$ satisfies

$$
g_{1}\left(r_{1}, r_{2}\right) r_{3}+g_{0}\left(r_{1}, r_{2}\right)=0 .
$$

Assume that $g_{1} \not \equiv 0\left(\bmod I_{2}, p\right)$. We count the number of rational roots of

$$
\left(I_{2}, g_{1}\left(x_{1}, x_{2}\right) x_{3}+g_{0}\left(x_{1}, x_{2}\right)\right) \quad(\bmod p) \subset \mathbb{F}_{p}\left[x_{1}, x_{2}, x_{3}\right] .
$$

Multiplying the resulting count by p yields the number of roots of f in $\mathbb{Z} /\left(p^{4}\right)$.

5. Generalization to Arbitrary $t \geq 5$

We now generalize the idea for the case of $t=4$ to counting roots in $\mathbb{Z} /\left(p^{t}\right)$ of $f(x)$ when $t \geq 5$ and f is not identically $0 \bmod p$. (We can of course divide f by p and reduce t by 1 to apply our methods here, should $p \mid f$.) In the algorithm, we build a tree of ideals. At level k, the ideals belong to the ring $\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{k}\right]$. The root of the tree (level 0$)$ is $\{0\} \subset \mathbb{Z} /\left(p^{t}\right)$, the zero ideal. At the next level the ideals are of the form $\left(m\left(x_{1}\right)\right)$, where m is taken to be the Teichmüller lift of f_{i} in Equation (1). We study how the roots in \mathbb{Z}_{p} of m can be lifted to roots of f in $\mathbb{Z} /\left(p^{t}\right)$.

Let $I_{0}, I_{1}, \ldots, I_{k}$ be the ideals in a path from the root to a leaf. We require:

- $I_{0}=\{0\} \subset \mathbb{Z} /\left(p^{t}\right)$ and $I_{i} \subset\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{i}\right] ;$
- $I_{i}=I_{i+1} \cap \mathbb{Z} /\left(p^{t}\right)\left[x_{1}, \ldots, x_{i}\right]$ for all $0 \leq i \leq k-1$;
- The ideal $I_{i}(\bmod p)$ in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{i}\right]$ is zero-dimensional, radical, and has only rational roots for all $i \in\{0, \ldots, k\}$; furthermore, I_{i} can be written in the form

$$
\begin{align*}
&\left(I_{i-1}, x_{i}^{n_{i}}+f_{i}\left(x_{1}, \ldots, x_{i}\right)\right) \\
& \subset\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{i}\right] \tag{6}
\end{align*}
$$

where $\operatorname{deg}_{x_{i}} f_{i}<n_{i}$.

- The ideal I_{i} is the $\bmod p^{t}$ reduction of the Teichmüller lift of the $\bmod p$ reduction of I_{i}.

The basic strategy of the algorithm is to grow every branch of the tree until we reach a leaf whose ideal allows a trivial count of solutions. (In which case we output the count and terminate the branch.) Once all the branches terminate, we then compute the summation of the numbers on all the leaves as the output of the algorithm. The tree of ideals contains all necessary information about the solutions of $f\left(\bmod p^{t}\right)$ in the following sense:

- For any ideal I_{i} in the tree, there exists an integer $s \in\{i, \ldots, t\}$, such that if $\left(r_{1}, \ldots, r_{i}\right)$ is a solution of I_{i} in $\left(\mathbb{Z} /\left(p^{t}\right)\right)^{i}$, then $r_{1}+p r_{2}+\cdots+p^{i-1} r_{i}+p^{i} r$ is a solution of $f(x)\left(\bmod p^{s}\right)$ for any integer r. Denote the maximum such s by $s\left(I_{i}\right)$.
- If $r \in \mathbb{Z} /\left(p^{t}\right)$ is a root of $f\left(\bmod p^{t}\right)$, then there exists a terminal leaf I_{k} in the tree such that

$$
r \equiv r_{1}+p r_{2}+\cdots+p^{k-1} r_{k} \quad\left(\bmod p^{k}\right)
$$

for some root $\left(r_{1}, \ldots, r_{k}\right)\left(\mathbb{Z} /\left(p^{t}\right)\right)^{k}$ of I_{k}.

- The root sets of ideals from distinct leaves are disjoint.

Suppose that at the end of a branch we have an ideal $I_{k} \subset\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{k}\right]$. The ideal I_{k} $(\bmod p)$ is zero-dimensional and radical in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right]$, with only rational roots. There are two termination conditions:

- If $s\left(I_{k}\right)=t$ then each root of I_{k} in \mathbb{Z}_{p}^{k} produces exactly p^{t-k} roots of f in $\mathbb{Z} /\left(p^{t}\right)$. We can count the number of roots in \mathbb{F}_{p}^{k} of I_{k}, multiply it by p^{t-k}, output the number, and terminate the branch.
- Let g be the polynomial satisfying

$$
f\left(x_{1}+p x_{2}+p^{2} x_{3}+\cdots+p^{k-1} x_{k}+p^{k} x_{k+1}\right) \equiv p^{s\left(I_{k}\right)} g\left(x_{1}, \ldots, x_{k+1}\right) \quad\left(\bmod I_{k}\right) .
$$

Such a polynomial exists according to Theorem 3.3. If $g(\bmod p)$ is a constant polynomial in x_{k+1}, and its constant is an invertible element $\left(\bmod I_{k}, p\right)$, then the count on this leaf is zero.
Example 5.1. Suppose $t=2$. For the polynomials $x^{2}=0$ and $x^{2}+p=0$, the ideal $\left(x_{1}\right)$ is a terminal leaf with count p for the former polynomial, and with count 0 for the latter.

If none of the conditions hold then let

$$
g=\sum_{j \leq t / k} g_{j}\left(x_{1}, \ldots, x_{k}\right) x_{k+1}^{j} \quad(\bmod p) .
$$

The degree bound t / k is due to the fact that $p^{k j}$ divides any term in the monomial expansion of $f\left(x_{1}+p x_{2}+\cdots+p^{k-1} x_{k}+p^{k} x_{k+1}\right)$ that has a factor x_{k+1}^{j}. If any of g_{j} vanish at some rational root of I_{k} in \mathbb{F}_{p}^{k} then this allows $I_{k}(\bmod p)$ to expressed as an intersection of simpler ideals. Otherwise, for the ideal $\left(I_{k}, g\right) \subset\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{k+1}\right]$, we compute its decomposition in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k+1}\right]$ according to multiplicity type, find the radicals of the underlying ideals, and then lift them back to $\left(\mathbb{Z} /\left(p^{t}\right)\right)\left[x_{1}, \ldots, x_{k+1}\right]$. They become the children of I_{k}. Note that if $\left(I_{k}, g\right)$ does not have rational roots, it means that none of the roots of I_{k} can be lifted to solution of $f\left(\bmod p^{s+1}\right)$, and thus the branch terminates with count 0 .

Proof of Theorem 1.1: If $p \leq d$ then factoring polynomials over \mathbb{F}_{p} can be done in time polynomial in d by brute force, and all the ideals in the tree are maximal. The number of children that an ideal with distance k from the root can have is bounded from above by t / k or the degree of g. (More precisely, number of non-terminal child nodes is bounded from above by $t /(2 k)$.) The complexity is determined by the size of the tree, which is bounded from above by $d \prod_{k=1}^{t}(t / k)=d \frac{t^{t}}{t!}<d e^{t}$.

If $p>d$ then our upper bound above on the tree size still holds. Since we use Teichmüller lifting during the algorithm, the tree size will never decrease. The algorithm must stop once the tree size approaches the upper bound $\left\lfloor d e^{t}\right\rfloor$. For each tree size change, we either create new children, or split a node. We need to compute in the ring $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right] / I_{k}$. Observe that in (6), we must have $n_{i}<t /(i-1)$ for $i \geq 2$. So the ring is a vector space over \mathbb{F}_{p} of dimension at most $d \prod_{i=2}^{t} n_{i}=d \frac{t^{t-1}}{(t-1)!}<d e^{t}$. Theorem follows from the fact that each tree size change involves a number of bit operations at most polynomial in $d e^{t} \log p$.

6. Computer Algebra Discussion

In this section, we explain how to split ideals over \mathbb{F}_{p} into triangular form so that the Teichmüller lift to \mathbb{Z}_{p} can be computed. We start with the one variable case: For any given ideal $I=(f(x)) \subset$ $\mathbb{F}_{p}[x]$, we can split f into the following form

$$
f=g_{1}^{d_{1}} \cdots g_{t}^{d_{t}} g_{0}
$$

where $d_{1}>\cdots>d_{t}>0$, the polynomials $g_{1}, \ldots, g_{t} \in \mathbb{F}_{p}[x]$ are separable, pairwise co-prime and each splits completely over \mathbb{F}_{p}, and g_{0} has no linear factors in $\mathbb{F}_{p}[x]$. Such a factorization can be computed deterministically in time polynomial in $\log (p) \operatorname{deg}(f)$. Note that, for $1 \leq i \leq t$, each root of g_{i} has multiplicity d_{i} in I. This means that we can count the number of \mathbb{F}_{p}-rational roots of I, and their multiplicities, in polynomial time. Also, the rational part of I (i.e., excluding the factor $\left.g_{0}\right)$ is decomposed into t factors g_{1}, \ldots, g_{t}.

Now we show how to go from k variables to $k+1$ variables for any $k \geq 1$. Suppose $J=$ $\left(g_{1}, \ldots, g_{k}\right) \subset \mathbb{F}_{p}\left[x_{1}, \ldots x_{k}\right]$ has triangular form:

$$
\begin{aligned}
g_{1} & =x_{1}^{n_{1}}+r_{1}\left(x_{1}\right) \\
g_{2} & =x_{2}^{n_{2}}+r_{2}\left(x_{1}, x_{2}\right) \\
& \vdots \\
g_{k} & =x_{k}^{n_{k}}+r_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right),
\end{aligned}
$$

where g_{i} is monic in x_{i} (i.e., $\operatorname{deg}_{x_{i}} r_{i}<n_{i}$) for $1 \leq i \leq k$. We further assume that J is radical and splitting completely over \mathbb{F}_{p} - that is, J has $n_{1} n_{2} \cdots n_{k}$ distinct solutions in \mathbb{F}_{p}^{k}. In particular, $g_{1}\left(x_{1}\right)$ has n_{1} distinct roots in \mathbb{F}_{p} and, for each root $a_{1} \in \mathbb{F}_{p}$ of g_{1}, there are n_{2} distinct $a_{2} \in \mathbb{F}_{2}$ such that $\left(a_{1}, a_{2}\right)$ is a root of $g_{2}\left(x_{1}, x_{2}\right)$. In general, for $1 \leq i<k$, each root $\left(a_{1}, \ldots, a_{i}\right) \in \mathbb{F}_{p}^{i}$ of $\left(g_{1}, \ldots, g_{i}\right)$ can be extended to n_{i+1} distinct solutions $\left(a_{1}, \ldots, a_{i}, a_{i+1}\right) \in \mathbb{F}_{p}^{i+1}$ of g_{i+1}. For convenience, any ideal with these properties is called a splitting triangular ideal.

Let $f \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}, x_{k+1}\right]$ be any nonzero polynomial which is monic in x_{k+1}, and let $I=(J, f)$ be the ideal generated by J and f in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}, x_{k+1}\right]$. We want to decompose I into splitting triangular ideals, together with their multiplicities. More precisely, we want to decompose I into the following form:

$$
\begin{equation*}
I=\left(J_{1}, h_{1}^{d_{1}}\right) \cap\left(J_{2}, h_{2}^{d_{2}}\right) \cap \cdots \cap\left(J_{m}, h_{m}^{d_{m}}\right) \cap\left(J_{0}, h_{0}\right), \tag{7}
\end{equation*}
$$

where $J=J_{1} \cap J_{2} \cap \cdots \cap J_{m} \cap J_{0}, I_{0}=\left(J_{0}, h_{0}\right)$ has no solutions in \mathbb{F}_{p}^{k+1}, and the ideals $I_{i}=$ $\left(J_{i}, h_{i}\right) \subset \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}, x_{k+1}\right], 1 \leq i \leq m$, are splitting triangular ideals and are pairwise co-prime (i.e., any pair of distinct I_{i} have no roots in common).

To get the decomposition (7), we first compute

$$
w:=x_{k+1}^{p}-x_{k+1} \bmod G .
$$

where $G=\left\{g_{1}, g_{2}, \ldots, g_{k}, f\right\}$ is a Gröbner basis under the lexicographical order with $x_{k+1}>$ $x_{k}>\cdots>x_{1}$. Via the square-and-multiply method, w can be computed using $\mathrm{O}\left(\log (p)^{3} n^{2}\right)$ bit operations where $n=\operatorname{deg}(f) \cdot n_{1} \cdots n_{k}$ is the degree of the ideal I. Next we compute the Gröbner basis B of $\left\{g_{1}, g_{2}, \ldots, g_{k}, f, w\right\}$ (under lex order with $x_{k+1}>x_{k}>\cdots>x_{1}$), which is radical and completely splitting (hence all of its solutions are in \mathbb{F}_{p}^{k+1} and are distinct). This mean that we get rid of the nonlinear part $\left(J_{0}, h_{0}\right)$ in (7). The ideal (B) is now equal to the radical of the rational part of I. To decompose (B) into splitting triangular ideals, we view each polynomial in B as a polynomial in x_{k+1} with coefficient in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right]$. Let $t_{0}=0<t_{1}<\cdots<t_{v}$ be the distinct degrees of x_{k+1} among the polynomials in B. For $0 \leq i \leq v$, let B_{i} denote the set of the leading coefficient of all $g \in B$ with $\operatorname{deg}(g) \leq t_{i}$. We then have a chain of ideals

$$
J \subseteq\left(B_{0}\right) \subset\left(B_{1}\right) \subset \cdots \subset\left(B_{v-1}\right) \subset\left(B_{v}\right)=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right]
$$

with the following properties:
(i) $1 \in B_{v}$,
(ii) each $B_{i}(1 \leq i \leq v)$ is automatically a Gröbner basis under the lex order with $x_{k}>\cdots>x_{1}$ (one can remove some redundant polynomials from B_{i}),
(iii) for $0 \leq i<v$, each solution of B_{i} that is not a solution of B_{i+1} can be extended to exactly t_{i+1} distinct solutions of I.
We can compute a Gröbner basis C_{i} for the colon ideal $\left(B_{i+1}\right):\left(B_{i}\right)$ for $0 \leq i<v$. These C_{i} give us the different components of J that have different numbers of solution extensions. Together with B, we get different components of (I, w). These components are completely splitting, but may not be in triangular form (as stated above). We again use the Gröbner basis structure to further decompose them until all are splitting triangular ideals $\left(J_{i}, h_{i}\right)$. Note that computing Gröbner bases, for arbitrary ideals in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, has exponential worst-case complexity [26]. However, all of our ideals are of a special form, so their Gröbner bases can be computed deterministically in polynomial-time via the incremental method in [12] (see also [13]).

Finally, to get the multiplicity of each component $\left(J_{i}, h_{i}\right)$, we compute the Gröbner basis for the ideal $\left(J_{i}, f, f^{(j)}\right)$ where $f^{(j)}$ denotes the j-th derivative of f for $j=1,2, \ldots, \operatorname{deg}(f)$, until the Gröbner basis is 1 . These ideals may not be in triangular form, so they may split further, but the total number of components is at most $\operatorname{deg} f$. Hence the total number of bit operations used is still polynomial in $\log (p) \operatorname{deg}(I)$.

Acknowledgements

We thank the anonymous referees for suggestions that helped improve our paper. We also gratefully acknowledge the support of the American Institute of Mathematics.

References

[1] Martíin Avendaño; Ashraf Ibrahim; J. Maurice Rojas; and Korben Rusek, "Faster p-adic Feasibility for Certain Multivariate Sparse Polynomials," Journal of Symbolic Computation, special issue in honor of 60 th birthday of Joachim von zur Gathen, vol. 47, no. 4, pp. 454-479 (April 2012).
[2] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. I: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
[3] Jérémy Berthomieu; Grégoire Lecerf; and Guillaume Quintin, "Polynomial root finding over local rings and application to error correcting codes," Applicable Algebra in Engineering, Communication, and Computing, December 2013, Volume 24, Issue 6, pp. 413-443.
[4] David G. Cantor and Daniel M. Gordon, "Factoring polynomials over p-adic fields," Algorithmic number theory (Leiden, 2000), pp. 185-208, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.
[5] Wouter Castryck; Jan Denef; and Frederik Vercauteren, "Computing Zeta Functions of Nondegenerate Curves," International Mathematics Research Papers, vol. 2006, article ID 72017, 2006.
[6] Antoine Chambert-Loir, "Compter (rapidement) le nombre de solutions d'équations dans les corps finis," Séminaire Bourbaki, Vol. 2006/2007, Astérisque No. 317 (2008), Exp. No. 968, vii, pp. 39-90.
[7] Qi Cheng; Shuhong Gao; J. Maurice Rojas; and Daqing Wan, "Sparse Univariate Polynomials with Many Roots Over a Finite Field," Finite Fields and their Applications, Vol. 46, July 2017, pp. 235-246.
[8] Alexander L. Chistov, "Efficient Factoring [of] Polynomials over Local Fields and its Applications," in I. Satake, editor, Proc. 1990 International Congress of Mathematicians, pp. 1509-1519, Springer-Verlag, 1991.
[9] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, SpringerVerlag, Berlin, 1993.
[10] Jan Denef, "Report on Igusa's local zeta function," Séminaire Bourbaki 1990/1991 (730-744) in Astérisque 201203 (1991), pp. 359-386.
[11] Shuhong Gao, "On the deterministic complexity of polynomial factoring", Journal of Symbolic Computation, 31 (2001), 19-36.
[12] Shuhong Gao, Yinhua Guan, and Frank Volny IV, "A new incremental algorithm for computing Gröbner bases", the 35th International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 13-19, Munich, July 25-28, 2010.
[13] Shuhong Gao, Frank Volny IV, and Mingsheng Wang, "A new framework for computing Gröbner bases", Mathematics of Computation, 85 (2016), no. 297, 449-465.
[14] Joachim von zur Gathen and Silke Hartlieb, "Factoring Modular Polynomials," J. Symbolic Computation (1998) 26, pp. 583-606.
[15] Fernando Q. Gouveêa, p-adic Numbers, Universitext, 2nd ed., Springer-Verlag, 2003.
[16] Bruno Grenet, Joris van der Hoeven and Grégoire Lecerf, "Deterministic root finding over finite fields using Graeffe transforms," Applicable Algebra in Engineering, Communication and Computing, (2016) 27 , pp. 237257.
[17] Jordi Guàrdia; Enric Nart; Sebastian Pauli, "Single-factor lifting and factorization of polynomials over local fields," Journal of Symbolic Computation 47 (2012), pp. 1318-1346.
[18] Trajan Hammonds; Jeremy Johnson; Angela Patini; and Robert M. Walker, "Counting Roots of Polynomials Over $\mathbb{Z} / p^{2} \mathbb{Z}$," Houston Journal of Mathematics, to appear. (Also available as Math ArXiv preprint 1708.04713 .)
[19] Jun-Ichi Igusa, Complex powers and asymptotic expansions I: Functions of certain types, Journal für die reine und angewandte Mathematik, 1974 (268-269): 110130.
[20] Leann Kopp; Natalie Randall; J. Maurice Rojas; and Yuyu Zhu "Randomized Polynomial-Time Root Counting in Prime Power Rings", Arxiv:1808.10531
[21] Kiran Kedlaya and Christopher Umans, "Fast polynomial factorization and modular composition," SIAM J. Comput., 40 (2011), no. 6, pp. 1767-1802.
[22] Alan G. B. Lauder, "Counting solutions to equations in many variables over finite fields," Found. Comput. Math. 4 (2004), no. 3, pp. 221-267.
[23] Alan G. B. Lauder and Daqing Wan, "Counting points on varieties over finite fields of small characteristic," Algorithmic number theory: lattices, number fields, curves and cryptography, pp. 579-612, Math. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press, Cambridge, 2008.
[24] Arjen K. Lenstra; Hendrik W. Lenstra (Jr.); Laszlo Lovász, "Factoring polynomials with rational coefficients," Math. Ann. 261 (1982), no. 4, pp. 515-534.
[25] Michael Maller and Jennifer Whitehead, "Efficient p-adic cell decomposition for univariate polynomials," J. Complexity 15 (1999), pp. 513-525.
[26] E. Mayr and A. Meyer, "The Complexity of the Word Problem for Commutative Semigroups and Polynomial Ideals," Adv. Math. 46, 305-329, 1982.
[27] Bernard R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
[28] Bjorn Poonen, "Heuristics for the Brauer-Manin Obstruction for Curves," Experimental Mathematics, Volume 15, Issue 4 (2006), pp. 415-420.
[29] R. Raghavendran, "Finite associative rings," Compositio Mathematica, tomme 21, no. 2 (1969), pp. 195-229.
[30] Daqing Wan, "Algorithmic theory of zeta functions over finite fields," Algorithmic number theory: lattices, number fields, curves and cryptography, pp. 551-578, Math. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press, Cambridge, 2008.
[31] W. A. Zuniga-Galindo, "Computing Igusa's Local Zeta Functions of Univariate Polynomials, and Linear Feedback Shift Registers," Journal of Integer Sequences, Vol. 6 (2003), Article 03.3.6.
E-mail address: qcheng@ou.edu
School of Computer Science, University of Oklahoma, Norman, OK 73019
E-mail address: sgao@math.clemson.edu
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
E-mail address: rojas@math.tamu.edu
Department of Computer Science and Engineering, TAMU 3368, College Station, TX 77843-3368
E-mail address: dwan@math.uci.edu
Department of Mathematics, University of California, Irvine, CA 92697-3875

[^0]: Partially supported by NSF grant CCF-1409020, the American Institute of Mathematics, and MSRI (through REU grant DMS-1659138).

[^1]: ${ }^{1}$ All factors of all f_{i} are ultimately exhausted.

