1. If \(f(x) = \sum_{n=0}^{\infty} b_n (x - 5)^n \), for all \(x \). Write a formula for \(b_8 \).

2. Find the Maclaurin series for \(f(x) \). Also find the associated radius of convergence.
 (a) \(f(x) = \frac{1}{(1 + x)^2} \).
 (b) \(f(x) = \frac{x}{1 - x} \).

3. Find the Taylor series for \(f(x) \) at the given value \(a \).
 (a) \(f(x) = \ln(x) \quad a = 2 \).
 (b) \(f(x) = \sqrt{x} \quad a = 4 \).
 (c) \(f(x) = \cos(x) \quad a = -\pi/4 \).

4. Use a Maclaurin series developed previously to obtain a Maclaurin Series for the given function.
 (a) \(f(x) = \cos(x^3) \).
 (b) \(f(x) = xe^{-x} \).
 (c) \(f(x) = \sin^2(x) \).

5. Find the Maclaurin series for \(f \) and its radius of convergence.
 (a) \(f(x) = \frac{1}{\sqrt{1 + 2x}} \).
 (b) \(f(x) = (1 + x)^{-3} \).
 (c) \(f(x) = 2^x \).

6. Use the series to approximate the definite integral to within the indicated approximation
 (a) \(\int_{0}^{0.5} \cos(x^2) \, dx \) (Three decimal places).
 (b) \(\int_{0}^{0.1} \frac{1}{\sqrt{1 + x^3}} \, dx \) (error < 10^{-8}).
 (c) \(\int_{0}^{0.5} x^2 e^{-x^2} \, dx \) (error < 0.001).

7. Find the limit \(\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x} \).

8. Find the third nonzero terms of the Maclaurin series for each function.
 (a) \(f(x) = e^{-x^2} \cos(x) \).
 (b) \(f(x) = \sec(x) \).

9. Find the sum of the series.
 (a) \(\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{4^{2n+1}(2n+1)!} \).
 (b) \(f(x) = \sum_{n=2}^{\infty} \frac{x^{3n+1}}{n!} \).
\[f(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}n}{(n+1)!}. \]

10. (a) Approximate \(f \) by a Taylor polynomial with degree \(n \) at the number \(a \). (b) Use Taylor’s Inequality to estimate the accuracy of the approximation \(f(x) \approx T_n(x) \) when \(x \) lies in the given interval.

(a) \(f(x) = \sin(x) \quad a = \pi/4, \quad n = 5, \quad 0 \leq x \leq \pi/2 \).

(b) \(f(x) = e^{x^2} \quad a = 0, \quad n = 3, \quad 0 \leq x \leq 0.1 \).

(c) \(f(x) = \ln(x) \quad a = 4, \quad n = 3, \quad 3 \leq x \leq 5 \).

11. Estimate \(\sin(35^\circ) \) correct to five decimal places.

12. Use Taylor’s Inequality to determine the number of terms of the Maclaurin Series for \(e^x \) that should be used to estimate \(e^{0.1} \) to within 0.0001.

13. Use the Alternating Series Estimation or Taylor’s Inequality to estimate the range of values of \(x \) for which the given approximation is accurate to within the stated error.

\[\sin x \approx x - \frac{x^3}{6}, \quad \text{error} < 0.01 \]

14. Find a power series representation for the following functions, and determine the interval of convergence.

(a) \(f(x) = \frac{1}{(1 + x)^3} \).

(b) \(f(x) = x \ln(1 + x) \).

(c) \(f(x) = \frac{x^2}{(1 - 2x)^2} \).

15. Evaluate the indefinite integral as a power series

(a) \(\int \frac{x}{1 + x^3} \, dx \).

(b) \(\int \frac{\tan^{-1}(x)}{x} \, dx \).

(c) \(\int \tan^{-1}(x^2) \, dx \).

16. Use a power series to approximate the definite integral to six decimal places.

(a) \(\int_0^{1/2} \tan^{-1}(x^2) \, dx \).

(b) \(\int_0^{0.5} \frac{1}{1 + x^6} \, dx \).

(c) \(\int_0^{1/3} x^2 \tan^{-1}(x^4) \, dx \).

17. Defined the function \(f \) by the power series

\[f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}. \]

(a) Show that \(f \) is solution of the differential equation

\[f'(x) - f(x) = 0 \quad \text{for all} \quad x \]

(b) Prove that \(f(x) = e^x \).