1. Find the volume of the solid obtained by rotating the region bounded by \(y = \frac{1}{\sqrt{x+1}} \), \(y = 0 \), \(x = 0 \), \(x = 1 \), about the x-axis.

2. Find the volume of the solid \(S \) described. A right circular cone with height \(h \) and base radius \(r \).

3. Using the method of cylindrical shells find the volume of the solid obtained by rotating the region bounded by
\[y = 4x - 4x^2, \quad y = 8x - 2x^2, \]
about \(x = -2 \).

4. Find the volume of the solid obtained by rotating the region bounded by \(y = x^2 \), \(y = 0 \), \(x = 1 \), \(x = 2 \), about \(x = 4 \).

5. Find the volume of the solid obtained by rotating the region bounded by \(y = x^4 \), \(y = 1 \), about \(y = 2 \).

6. Find the volume of the solid \(S \) described. The base of \(S \) is the triangular region with vertices (0,0), (2,0), and (0,1). Cross-sections perpendicular to the x-axis are semicircles.

7. Find the volume of the solid obtained by rotating the region bounded by \(y = \sec(x) \), \(y = 1 \), \(x = -1 \), \(x = 1 \), about the x-axis.

8. Find the volume of the solid obtained by rotating the region bounded by \(y = x^4 \), \(y = 1 \), about \(y = 2 \).

9. Find the volume of the solid \(S \) described. The base of \(S \) is the parabolic region \(\{(x, y)|x^2 \leq y \leq 1\} \). Cross-sections perpendicular to the y-axis are equilateral triangles.

10. Find the volume of the solid \(S \) described. The base of \(S \) is an elliptical region \(\{(x, y)|9x^2 + 4y^2 = 36\} \). Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

11. Find the volume of the solid obtained by rotating the region bounded by \(y = \cos(x) \), \(y = 0 \), \(x = 0 \), \(x = \frac{\pi}{2} \), about \(y = -1 \).

12. Find the volume of the solid obtained by rotating the region bounded by \(x = 4 - y^2 \), \(x = 8 - 2y^2 \), about \(y = 5 \).

13. Find the volume of the solid \(S \) described. The base of \(S \) is a circular disk with radius \(r \). Parallel cross-sections perpendicular to the base are squares.

14. Find the volume of the solid obtained by rotating the region bounded by \(y = -x^2 + 7x - 10 \), \(y = x - 2 \), about the x-axis.

15. Find the volume of the solid obtained by rotating the region bounded by \(x - y = 1 \), \(y = (x - 4)^2 + 1 \), about \(y = 7 \).

16. Find the volume of the solid \(S \) described. A frustum of a right circular cone with height \(h \), lower base radius \(R \), and top radius \(r \).

17. Find the volume common to two circular cylinders, each with radius \(r \), if the axis of the cylinders intersect at right angles.