March 21, 2016

Pb 1

a. Answer parts (a), and (b) for the function \(f(x) = \sqrt{1 + x} \). Find the linear (tangent line) approximation of \(g(x) \) for \(x \) near zero. b. Find the quadratic approximation of \(g(x) \) for \(x \) near zero. c. Use the linear approximation from part (a) above to approximate \(\sqrt{1.02} \).

\[
\begin{align*}
g(x) &= \sqrt{1 + x} \\
a &= 0 \\
 g'(x) &= \frac{1}{2\sqrt{1 + x}} \\
g''(x) &= \frac{-1}{4(1 + x)^{3/2}} \\
\end{align*}
\]

For \(x \approx 0 \), \(\sqrt{1 + x} \approx 1 + \frac{1}{2}x \) END OF (a)

\[
\begin{align*}
\sqrt{1.02} &\approx 1 + \frac{1}{2}(0.02) = 1 + 0.01 = 1.01 \\
\end{align*}
\]

b. \[
y = g(0) + g'(0)(x-0) + \frac{g''(0)}{2}(x-0)^2
\]
\[
y = 1 + \frac{1}{2}(x-0) + \frac{-1}{8}(x-0)^2
\]

\[
\begin{align*}
g(x) &= (1 + x)^{1/2} \\
g'(x) &= \frac{1}{2}(1 + x)^{-1/2} \\
g''(x) &= -\frac{1}{4}(1 + x)^{-3/2}
\end{align*}
\]

\[
\begin{align*}
y &= 1 + \frac{x}{2} - \frac{x^2}{8}
\end{align*}
\]

Pb 2

Suppose the linear approximation for a function \(f(x) \) at \(a = 3 \) is given by the tangent line \(y = -2x + 10 \). a. What are \(f(3) \) and \(f'(3) \)? b. If \(g(x) = [f(x)]^2 \), find the linear approximation for \(g(x) \) at \(a = 3 \).

\[
\begin{align*}
\text{Lin. Appr. of } f(x) \text{ at } a = 3 \text{ is } y &= -2x + 10 \\
f(3) &= -2(3) + 10 = 4 \\
f'(3) &= -2
\end{align*}
\]

\[
\begin{align*}
\text{If } g(x) = [f(x)]^2, \text{ find lin. appr. of } g \text{ near } 3. \\
g'(x) &= 2f(x)f'(x) \\
\end{align*}
\]

\[
\begin{align*}
g(3) &= [f(3)]^2 = 4^2 = 16 \\
g'(3) &= 2f(3)f'(3) = 2 \cdot 4 \cdot (-2) = -16
\end{align*}
\]

\[
y = -16 -16(x-3)
\]
Suppose \(f \) and \(g \) are differentiable functions. The line \(y = 2 - 3x \) is the linear approximation to \(f \) at \(x = 2 \), and the line \(y = 1 + 2x \) is the linear approximation to \(g \) at \(x = 2 \).

\[
\begin{align*}
g'(2) &= -3 \\
g''(2) &= -4 \\
f'(2) &= 1 \\
f''(2) &= 5 \\
\frac{dy}{dx} &= 2
\end{align*}
\]

a. Find \(f(2), g(2), f'(2), g'(2) \).

b. Let \((x, y) = (f(x), g(x)) \). Find the linear approximation to the graph of \(f \) at \(x = 2 \).

Find the points on the curve \(x(t) = 2 - t^2 + 2, \ y(t) = t^3 - t \) where the tangent line is horizontal and the points where it is vertical.

\[
\begin{align*}
x(t) &= 2 - t^2 + 2 \\
y(t) &= t^3 - t
\end{align*}
\]

Horizontal when slope is zero:

\[
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t - 1}
\]

This is zero when \(3t^2 - 3 = 0 \) or \(t^2 = 1 \).

\[
t = \pm 1
\]

\[
x = 1 - 1^2 + 2, \ y = 1 - 1 - 2
\]

Vertical when slope is infinity:

\[
t = \frac{1}{2}
\]

\[
x = \frac{3}{2} + 2, \ y = \frac{1}{2} - \frac{3}{2}
\]

\[
x = \frac{1}{4} - \frac{3}{4} = \frac{3}{4}, \ y = \frac{1 - 12}{8} = -\frac{11}{8}
\]

(\(\frac{3}{4} \), -\(\frac{11}{8} \)) vertical tangent
Pb #6: \(f(x) = \begin{cases} a \ x^2 & x \leq 1 \\ -x^2 + 4x + b & x > 1 \end{cases} \)

a) Find values of \(a \) and \(b \) that make \(f \) differentiable everywhere.

From the left: \(f'(1) = 2ax \bigg|_{x=1} = 2a \)

From the right: \(f'(1) = -2x + 4 + 0 \bigg|_{x=1} = -2 + 4 = 2 \)

\(2a = 2 \Rightarrow a = 1 \)

\[\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \]

\(a \cdot 1^2 = -1^2 + 4 + b \)

\(1 = -1 + 4 + b \Rightarrow b = -2 \)

\[f(x) = \begin{cases} 1 \ x^2 & x \leq 1 \\ -x^2 + 4x - 2 & x > 1 \end{cases} \]

b) Find \(f(1), \ f'(1) \)

\(f(1) = 1 \)

\(f'(x) = \begin{cases} 2x & x \leq 1 \\ -2x + 4 & x > 1 \end{cases} \)

\(f(1) = 2 \)
A tall man with excellent vision whose eye level is 6 ft above the ground walks toward a very small bug on a wall at a rate of 2 ft/s. The bug is 15 ft above the ground. At what rate is the viewing angle changing when the man is 30 ft from the wall?

\[
\tan \theta = \frac{q}{x} = \frac{q}{x(t)} = q\left[\frac{x(t)}{x}\right]^{-1}
\]

Differentiating both sides with respect to time gives:

\[
\sec^2 \theta \frac{d\theta}{dt} = q \left(-\frac{q}{x(t)^2}\right) \frac{dx}{dt}
\]

When \(x = 30\) ft, the hypotenuse is:

\[
\text{hypotenuse} = \sqrt{q^2 + 30^2} = \sqrt{981 + 900} = \sqrt{1881}
\]

Thus, the viewing angle is increasing at a rate of:

\[
\frac{d\theta}{dt} = \frac{18}{900} \cdot \frac{900}{981} = \frac{18}{981} \
\]

The viewing angle is increasing at a rate of \(\frac{2}{109}\) rad/sec when the man is 30 ft away from the wall.
\[\lim_{\theta \to 0} \frac{5\theta^2}{\sin^2(3\theta)} = ? \]

\[\lim_{\theta \to 0} \frac{\frac{3\theta}{\sin 3\theta}}{\frac{3\theta}{\sin 3\theta}} = \frac{1}{3} \]

\[\frac{1}{3} \]

\[\boxed{\frac{5}{9}} \]

\[\lim_{t \to 2^+} \left(\frac{t}{4} \right)^{\frac{1}{t-2}} = ? \]

\[\lim_{t \to 2^+} \left(\frac{t}{4} \right)^{\frac{2}{t-2}} = \frac{2}{0} = -\infty \]

\[\left(\frac{2}{0} \right)^{\frac{2}{0}} = \infty \]

\[\lim_{t \to 2^+} \left(\frac{t}{4} \right)^{\frac{2}{t-2}} = \frac{\frac{2}{0}}{\frac{2}{0}} = \frac{\frac{2}{0}}{\frac{2}{0}} = 0 \]

\[\frac{d}{dx} \left(\frac{e^{2x}}{x^2} \right) = \frac{2e^{2x}x^2 - e^{2x} \cdot 2x}{x^4} \]

\[= \frac{2x^2e^{2x} - 2xe^{2x}}{x^4} = \frac{2xe^{2x}(x-1)}{x^3} \]

\[= \frac{2e^{2x}(x-1)}{x^3} \]

\[\lim_{x \to +\infty} \frac{2e^x - 8e^{-4x}}{5e^x + 3e^{-4x}} = \]

\[= \lim_{x \to +\infty} \frac{2e^x}{5e^x} = \frac{2}{5} \]

\[e^x \to \infty \]

\[e^{-4x} \to 0 \]

The same limit, as \(x \to -\infty \) is \(-\frac{8}{3} \).

\[\lim_{x \to 0} \frac{\cos^9 \cos x - \sin^9 \sin x}{x} = \cos^9 \]

\[\lim_{x \to 0} \frac{\cos^9 \cos x - \cos^9}{x} = \sin^9 \sin x \]

\[\lim_{x \to 0} \frac{\cos^9 (\cos x - 1)}{x} = (\sin^9) \]

\[\boxed{0} \]

\[\lim_{x \to 0} \frac{\cos^9 - \cos^9}{x} = \frac{\cos^9}{\cos x + 1} \]

\[\lim_{x \to 0} \frac{\sin x}{\cos x + 1} \]

\[\lim_{x \to 0} \frac{\sin x}{\cos x + 1} \]
An upside down conical tank full of water has "base" radius of 5 meters and height of 7 meters. The water is being drained at a rate of 3 cubic meters per minute. Find the rate of change of the height when it (the height) is 4 meters.

\[
\frac{d}{dx} \left(\sin(e^x) + e^{\sqrt{x}} \right) + (\cos(e^x))e^x + e^{\frac{1}{2\sqrt{x}}} = \frac{1}{2}
\]

\[
\text{Problem 9}
\]

\[
V = \frac{1}{3} \pi r^2 \cdot h \rightarrow V(t) = \frac{1}{3} \pi r^2(t) h(t)
\]

\[
\frac{r}{h} = \frac{5}{7} \Rightarrow r(t) = \frac{5}{7} h(t)
\]

\[
V(t) = \frac{\pi}{3} \cdot \frac{25}{49} \cdot h^2(t) h(t)
\]

\[
\frac{d}{dt} V(t) = \frac{25\pi}{147} \cdot h^3(t)
\]

\[
\frac{dV}{dt} = \frac{25\pi}{147} \cdot 3 \cdot h^2(t) \cdot \frac{dh}{dt}
\]

\[
-3 = \frac{25\pi}{147} \cdot 3 \cdot 16 \cdot \frac{dh}{dt}
\]

\[
\frac{dh}{dt} \bigg|_{h=4} = -\frac{147}{25\pi} \cdot \frac{3}{16} \text{ m/min}
\]

The height is decreasing at a rate of \(\frac{147}{25\cdot16\cdot\pi} \text{ m/min}\) when it is 4 m.