1. Find the domain of each of the functions below:

a. \(f(x) = \sqrt{\frac{x^2-16}{x-7}} \)
b. \(g(x) = \frac{x^3-1}{(x+5)^{\frac{4}{3}}x^2-2x-3} \)

2. If \(\cot \theta = -\frac{11}{4} \) and \(\sin \theta < 0 \),
 a. Find the values of \(\sin \theta \), \(\cos \theta \), \(\tan \theta \), \(\csc \theta \), \(\sec \theta \).
 b. Find the value of \(\sin 2 \theta \).

3. If \(0 \leq x \leq \frac{\pi}{2} \), \(0 \leq y \leq \frac{\pi}{2} \), \(\cos x = \frac{3}{5} \) and \(\csc y = \frac{9}{2} \), find the values of
 a. \(\sin (x - y) \)
 b. \(\cos (x - y) \)

4. Solve the following equations, for \(0 \leq x \leq 2\pi \):
 a. \(2 \cos^2 x + \sin x - 1 = 0 \)
 b. \(\cos 2x = -\cos x \)

5. Given the two points \(A(1, 5) \) and \(B(2, -3) \), find the vectors \(\overrightarrow{AB} \) and \(\overrightarrow{BA} \).

6. Given the vectors \(\vec{a} = \langle -3, 1 \rangle \), \(\vec{b} = -7\vec{i} \) and \(\vec{c} = \langle 2, 5 \rangle \). Compute the following:
 a. \(2\vec{a} - 3\vec{b} + \vec{j} \)
 b. \(|-3\vec{a} + 2\vec{c}| \)
 c. A unit vector in the direction of \(\vec{a} \)
 d. A vector 3 units long in the direction of \(-\vec{c} \)
 e. Find constants \(s \) and \(t \) so that \(\vec{c} = s\vec{a} + t\vec{b} \)

7. Two forces, \(\overrightarrow{F_1} \) and \(\overrightarrow{F_2} \), are acting on an object \(P \). Force \(\overrightarrow{F_1} \) has magnitude 5 pounds and acts in the direction of the positive y-axis. Force \(\overrightarrow{F_2} \) has magnitude 7 pounds and acts at a 60° angle with the positive x-axis. Find the magnitude and direction of the resulting force acting on \(P \).

8. Two children are pulling a toy cart, and they are moving it in a perfectly straight line \(\ell \) along the longer side of the cart. One child applies a force of 3 pounds at a 30° angle to \(\ell \), and the other child applies a force of 5 pounds at an angle \(\theta \) to \(\ell \). Find the angle \(\theta \).

9. A ship leaves port at noon and heads due west at 20 knots, or 20 nautical miles (nm) per hour. At 2 P.M. the ship changes course to N 54°W. Find the ship’s bearing and distance from the port of departure at 3 P.M.

10. Given the vectors below, sketch the vectors \(\overrightarrow{a} + \frac{1}{2} \overrightarrow{b} \), \(\overrightarrow{a} - \frac{1}{2} \overrightarrow{b} \) and \(\overrightarrow{b} - \overrightarrow{a} \).