Classification of Modular Categories

Eric Rowell

JMM San Antonio, January 2015
Supported by USA NSF grant DMS1108725
joint work with Richard Ng, Paul Bruillard, Zhenghan Wang,
César Galindo, Julia Plavnik
Definition
A **modular category** \mathcal{C} (over \mathbb{C}) is
monoidal: $(\otimes, 1)$,

 semisimple: $X \cong \bigoplus_i m_iX_i$,

 linear: $\text{Hom}(X, Y) \in \text{Vec}_\mathbb{C}$,

 rigid: $X^* \otimes X \mapsto 1 \mapsto X \otimes X^*$,

 finite rank: $\text{Irr}(\mathcal{C}) = \{1 = X_0, \ldots, X_{r-1}\}$,

 spherical: $u_X\theta_X : X \cong X^{**}$, $\text{dim}(X) \in \mathbb{R}$,

 braided: $c_{X,Y} : X \otimes Y \cong Y \otimes X$,

 modular: $\det(\text{Tr}_\mathcal{C}(c_{X_i,X_j^*}c_{X_j^*,X_i})) \neq 0$.

Remark
- u_X is Drinfeld isomorphism, θ is ribbon structure, satisfying,
 e.g.: $\theta_{X \otimes Y} = \theta_X \otimes \theta_Y(c_Y,x c_X,y)$
- $\text{Tr}_\mathcal{C} : \text{End}(X) \rightarrow \mathbb{C}$ is the pivotal trace.
Key Data

- **Fusion rules:** $X_i \otimes X_j \cong \bigoplus_k N_{ij}^k X_k$
- **(Modular) S-matrix:** $S_{ij} := \text{Tr}_C(cX_i, X_j^* cX_j^*, x_i)$
- **(Dehn twist) T-matrix:** $T_{ij} = \delta_{ij}\theta_i$
- **(Congruence subgroup) Level:** $N = \text{ord}(T)$
- **(Quantum) Dimensions:** $d_i := S_{i0}$ and $\text{dim}(C) := \sum_{i=0}^{r-1} d_i^2$
- **Ambient fields:** $\mathbb{Q}(S) := \mathbb{Q}(S_{ij})$ and $\mathbb{Q}(T) := \mathbb{Q}(\theta_i)$.
- **(Dedekind domain) Ring of integers:** $\mathcal{O}_{\mathbb{Q}(T)} = \mathbb{Z}[\zeta_N]$.
Definition (In Coordinates)

For \(S, T \in \mathbb{C}^{(r,r)} \) define \(d_j := S_{0j}, \theta_j := T_{jj}, D^2 := \sum_j d_j^2, p_\pm := \sum_j d_j^2 \theta_j^{\pm 1} \). \((S, T)\) admissible if:

1. \(S = S^t, SS^t = D^2 I_d, T \) diagonal, \(\text{ord}(T) = N < \infty \)
2. \((ST)^3 = p_+ S^2, p_+ p_- = D^2, \left(\frac{p_+}{p_-} \right)^N = 1 \)
3. \(N^k_{ij} := \sum_a \frac{S_{ia} S_{ja} S_{ka}}{D^2 d_a} \in \mathbb{N} \)
4. \(\theta_i \theta_j S_{ij} = \sum_a N^k_{i*j} d_k \theta_k \) where \(N^0_{ii*} \) uniquely defines \(i^* \).
5. \(\nu_n(k) := \frac{1}{D^2} \sum_{i,j} N^k_{ij} d_i d_j \left(\frac{\theta_i}{\theta_j} \right)^n \in \mathbb{Z}[\zeta_N] \) satisfies:
 \(\nu_2(k) \in \{0, \pm 1\} \)
6. \(\mathbb{Q}(S) \subset \mathbb{Q}(T), \text{Aut}_{\mathbb{Q}} \mathbb{Q}(S) \subset \mathfrak{S}_r, \text{Aut}_{\mathbb{Q}(S)} \mathbb{Q}(T) \cong (\mathbb{Z}_2)^k \).
7. Prime (ideai) divisors of \(\langle D^2 \rangle \) and \(\langle N \rangle \) coincide in \(\mathbb{Z}[\zeta_N] \).

Conjecture: Any admissible \((S, T)\) determines a modular category.
Pointed: $C(A, q)$, A finite abelian group, q non-degenerate quad. form on A.

Group-theoretical: $\mathcal{D} \subset \text{Rep}(D^\omega G)$, ω a 3-cocycle on G a finite group.

Quantum groups/Kac-Moody algebras: subquotients of $\text{Rep}(U_q g)$ at $q = e^{\pi i/\ell}$ or level k integrable \hat{g}-modules. e.g.
- $SU(N)_k = C(\mathfrak{sl}_N, N + k)$,
- $SO(N)_k$,
- $Sp(N)_k$,
- for $\gcd(N, k) = 1$, $\text{PSU}(N)_k \subset SU(N)_k$ “even half”

Drinfeld center: $Z(\mathcal{D})$ for spherical fusion category \mathcal{D}.
Example

\(SU(2)_{\ell-2}\) from \(\text{Rep}(U_q \mathfrak{sl}_2)\) at \(q = e^{\pi i/\ell}\)

- Simple objects \(\{X_0 = 1, X_1, \ldots, X_{\ell-2}\}\)

- \(S_{ij} = \frac{\sin\left(\frac{(i+1)(j+1)\pi}{\ell}\right)}{\sin\left(\frac{\pi}{\ell}\right)}\)

- \(X_1 \otimes X_k \cong X_{k-1} \oplus X_{k+1}\) for \(1 \leq k \leq \ell - 3\)

- \(\theta_j = e^{\frac{\pi i(j^2+2j)}{2\ell}}\) so \(\text{ord}(T) = 4\ell\)

- \(D^2 = \dim SU(2)_{\ell-2} = \sum_{n=1}^{\ell-1} [n]^2\) where \([n] = \frac{q^n - q^{-n}}{q - q^{-1}}\).
Tambara Yamagami Categories

Definition

\mathcal{C} is *weakly integral* if $\dim(\mathcal{C}) \in \mathbb{N}$.

Example

Let A be a finite abelian group, χ a non-degenerate bicharacter on A and ν a sign. Tambara and Yamagami defined a spherical fusion category $TY(A, \chi, \nu)$ with simple objects $A \cup \{m\}$ with:

- $m \otimes m = \sum_{a \in A} a$
- $m \otimes a = m$
- $a \otimes b = ab$

$\dim(TY(A, \chi, \nu)) = 2|A|$. $\mathcal{Z}TY(A, \chi, \nu)$ is modular.
For the rest of this talk, we assume \(\dim(X) > 0 \) for all \(X \).

Problem

Classify “small” modular categories.

E.g.:

- Bounded rank: \(r < M \),
- few primes: \(|\{p : p \mid \dim(C)\}| < M \). For \(p \in \mathbb{Z} \), stay for Naidu’s talk
- Bounded level: \(\text{ord}(T) < M \)
Theorem (Bruillard, Ng, R, Wang 2013)

There are finitely many modular categories of a given rank r.

History:

- (2005) Verified for: fusion categories with $\text{dim}(C) \in \mathbb{N}$ (Etingof, Nikshych and Ostrik), rank $= 3$ (Ostrik).
Warm Up

Theorem (E. Landau 1903)
For any \(r \in \mathbb{N} \), there are finitely many groups \(G \) with \(|\text{Irr}(G)| = r \).

Proof.
Use class equation:
\[
|G| = \sum_{i=1}^{r} |\overline{g_i}|,
\]
where \(\overline{g_i} \) distinct conjugacy classes. Set \(x_i = [G : C(g_i)] \) (index of centralizers) to get
\[
1 = \sum_{i=1}^{r} \frac{1}{x_i}.
\]

\(x_i \leq a(r) \) where \(a(1) = 2, a(2) = 3, a(n) = a(n-1)a(n-2) + 1 \) is Sylvester’s sequence. Therefore \(|G| = \max_i x_i \) is bounded. So finitely many multiplication tables. \(\square \)
Key Steps

Proof.

1. By [R, Stong, Wang ’08] enough to bound $\dim(C)$.
2. By [Evertse ’84] enough to bound

 $$\bigcup_{\text{rank}(C)=r} \{ p \in \text{Spec } \mathbb{Z}[\zeta_N] : p|\langle \dim(C) \rangle \}$$

3. By Cauchy Theorem [Bruillard, Ng, R., Wang] enough to bound $M_r := \max\{ N = \text{ord}(T) : \text{rank}(C) = r \}$.
Some Details

- Congruence Subgroup Property: gives bound on M_r
- Cauchy: prime divisors of $\langle \dim(C) \rangle$ and $\langle N \rangle$ in $\mathbb{Z}[\zeta_N]$ coincide.
- Evertse: finite number of non-degenerate solutions to $0 = 1 + x_0 + \cdots + x_{r-1}$ where x_i are S-units for any finite set of primes S. Notice: $0 = 1 - \dim(C) + d_1 + \cdots + d_{r-1}$, so $\dim(C)$ bounded!

- Example ($C = \text{SU}(2)_3$)
 $N = \text{ord}(T) = 20$ and $\dim(C) = 5 + \sqrt{5}$. In $\mathbb{Z}[\zeta_{20}]$,
 - $\langle 5 + \sqrt{5} \rangle = \langle 2 \rangle \langle 1 - (\zeta_{20})^4 \rangle^2$
 - $\langle 20 \rangle = \langle 2 \rangle^2 \langle 1 - (\zeta_{20})^4 \rangle^4$
Theorem (R, Hong, Stong, Bruillard, Ng, Wang, Ostrik)

If $2 \leq \text{rank}(C) \leq 5$ then C has the same fusion rules as one of:

- $\text{PSU}(2)_3$ (Fibonacci), $\text{SU}(2)_1$ (pointed)
- $\text{PSU}(2)_5$, $\text{SU}(2)_2$ (Ising), $\text{SU}(3)_1$ (pointed)
- $\text{PSU}(2)_7$, $\text{SU}(2)_3$, $\text{SU}(4)_1$, products.
- $\text{SU}(2)_4$, $\text{PSU}(2)_9$, $\text{SU}(5)_1$, $\text{PSU}(3)_4$.
Theorem (R, Bruillard)

- Suppose \mathcal{C} has $\text{ord}(T) \in \{2, 3, 4\}$. Then $\mathcal{C} \subset \text{Rep}(D^\omega G)$ for some 2- or 3-group G.
- Suppose $\dim(\mathcal{C})$ is odd and $\text{rank}(\mathcal{C}) \leq 11$. Then \mathcal{C} is pointed.

Remark

- $\text{ord}(T) = 6$ implies integral, but not $\mathcal{C} \subset \text{Rep}(D^\omega G)$.
- Open: $\dim(\mathcal{C})$ odd, $13 \leq \text{rank}(\mathcal{C}) \leq 23$ implies pointed?
- Open: $\dim(\mathcal{C})$ odd implies group-theoretical?
Theorem (R, Ng, Bruillard, Wang, Galindo, Plavnik)

If C is:

- weakly integral with $\text{rank}(C) \leq 7$ or
- $\dim(C) = 4m$ with m odd and square-free

then $C \cong D \boxtimes F$ where $D, F \subset \mathcal{Z}TY(A, \chi, \nu)$.

More explicitly: D, F are pointed, Ising or $TY(\mathbb{Z}_{2k+1}, \chi, \nu)^{\mathbb{Z}_2}$.

Lemma

Suppose C is weakly integral modular category with exactly one simple (class) X with $\dim(X) \not\in \mathbb{Z}$. Then C is an Ising category.

Problem

$\dim(X) \in \mathbb{Z}$ for all X implies $C \equiv \text{Rep}(H)$, H quasi-Hopf. What about $\dim(C) \in \mathbb{Z}$?
Thank you!

Based on arXiv: 1310.7050 and 1411.2313