PRACTICE EXAM III M211

Instructions: Give exact answers when possible.

(1) Consider the function: (30 points)

\[f(x) = 2x^2 \ln(x) - x^2 \]

(a) Find all local maxima and minima for \(f \)

(b) Find all intervals on which \(f \) is concave up and concave down.
(2) Evaluate the following limits (using L’Hospital’s Rule): (20 points)

(a) \(\lim_{x \to 0} \frac{\cos(x) - 1}{x^2} \)

(b) \(\lim_{x \to \infty} (\ln(x))^{1/\ln(x)} \)

(3) Harder Problem! (10 points)
Use the Mean Value Theorem to show that if \(f \) and \(g \) are continuous on \([a, b]\) and \(f'(x) = g'(x) \) on \([a, b]\) then for some constant \(k \), \(f(x) - g(x) = k \) for all \(x \in [a, b] \).
(4) (20 points)

Find the point on the line $y = mx + b$ that is closest to the origin.

(5) (20 points)

A particle is moving along a straight line with acceleration $a(t) = 2t + 1 \text{ ft/s}^2$
where t is time in seconds. Find an equation describing the displacement if the
velocity at $t = 0$ is 1 ft/s and the displacement at $t = 0$ is 2.