Math 367 In-class Assignment 1 SOLUTIONS

For the exercises below, refer to the following incidence axioms:
(I1) For every pair of distinct points P and Q there exists exactly one line ℓ such that both P and Q lie on ℓ.
(I2) For every line ℓ there exist at least two distinct points P and Q such that both P and Q lie on ℓ.
(I3) There exist three points that do not all lie on any one line.

1. Interpret point to mean one of the four symbols A, B, C, D. Find an interpretation of line for which: ${ }^{1}$
(Note that there are other possible answers than those given below.)
(a) Incidence Axioms (I1) and (I2) hold, but (I3) does not hold.

One line: $\{A, B, C, D\}$
(b) Incidence Axioms (I2) and (I3) hold, but (I1) does not hold.

Lines: $\{A, B, C\},\{B, C, D\}$
(c) Incidence Axioms (I1) and (I3) hold, but (I2) does not hold.

Lines: $\{A\},\{A, B\},\{A, C\},\{A, D\},\{B, C\},\{B, D\},\{C, D\}$
2. Prove the following theorems from the text.
(a) Theorem 2.6.3 If ℓ is any line, then there exists at least one point P such that P does not lie on ℓ.

Proof: Let ℓ be a line. Suppose that all points lie on ℓ. This is a contradiction to (I3). Therefore there is at least one point P such that P does not lie on ℓ.
(b) Theorem 2.6.5 If ℓ is any line, then there exist lines m and n such that ℓ, m, and n are distinct and both m and n intersect ℓ.

Proof: Let ℓ be a line. By Theorem 2.6.3, there is at least one point P such that P does not lie on ℓ. By (I2), there exist at least two distinct points Q and R such that Q and R lie on ℓ. By (I1) applied to P and Q, there is exactly one line m such that both P and Q lie on m. Note that m is distinct from ℓ since P does not lie on ℓ. By (I1) applied to P and R, there is exactly one line n such that both P and R lie on n. Again, n is distinct from ℓ since P does not lie on ℓ. By (I1), m and n are distinct, and by design, m and n both intersect ℓ.

[^0]
[^0]: ${ }^{1}$ Specifically, in each case, give a list of "lines" as sets consisting of some of the points.

