Math 367 In-class Assignment 8

Name	Key

Assume the axioms of Euclidean geometry, as in Chapter 5.

- 1. Consider a quadrilateral $\Box ABCD$ for which AB = AD and CB = CD. Such a quadrilateral is called a *kite* (if its interior is convex) or a *dart* (if its interior is not convex).
- (a) Draw one of each type, that is, draw one kite and one dart.

(b) Prove that, for either type, $\angle ABC \cong \angle ADC$. (Hint: Show that the diagonal \overline{AC} divides the quadrilateral into two triangles that are congruent.)

Since AC = AC, in either case, by the SSS Theorem, $\triangle ABC \cong \triangle ADC$. Therefore $\angle ABC \cong \angle ADC$. 2. Prove Theorem 5.4.4, that is, prove that the length of one leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the projection of that leg onto the hypotenuse. (Hint: In the notation of Figure 5.10 in the textbook, this means to prove that $b = \sqrt{cx}$, or equivalently, since these quantities are all positive, this means to prove that $b^2 = cx$. To do this, write cx in a different way that will eliminate c, and use Theorem 5.4.3.)

By Theorem 5,4,3, h= VXy, so h2= Xy. Now C= X ty, so

$$Cx = (xty) x$$

$$= x^2 + xy$$

$$= x^2 + h^2$$

By the Pythagorean Theorem, $x^2 + h^2 = b^2$, and so $ex = b^2$.