1. (25 pts) Let F be an antiderivative of the function f whose graph is shown below.

![Graph of F and f](image)

a. Where is F increasing? Give each entry in the interval as an integer, where applicable.

 $(-\infty, -5) \cup (2, \infty)$

b. Where is F decreasing? Give each entry in the interval as an integer, where applicable.

 $(-5, 2)$

c. Where is F concave up? Give each entry in the interval to the nearest half (0.5), where applicable.

 $(-3, 0.5)$

d. Where is F concave down? Give each entry in the interval to the nearest half (0.5), where applicable.

 $(-\infty, -0.5)$

e. If $F(0) = 3$, sketch the graph of F on the given coordinate plane.

 - Should have max at $x = -5$
 - Should have min at $x = 2$
 - Should have inflection point at $x = -\frac{3}{2}$
 - Should go through the point $(0, 3)$
2. (25 pts) Find the slope-intercept form of the tangent line to the curve \(f(x) = 2e^x \sin x \) at the point where \(x = 0 \).

\[
\begin{align*}
 f'(x) &= 2e^x \sin x + 2e^x \cos x \\
 f'(0) &= 2e^0 \sin 0 + 2e^0 \cos 0 \\
 &= 2(1)(0) + 2(1)(1) \\
 &= 2 \\
 f(0) &= 2e^0 \sin 0 = 2(1)(0) = 0 \\
 (0,0) \quad m &= 2 \\
 y - 0 &= 2(x - 0) \\
 \therefore \quad y &= 2x
\end{align*}
\]

3. (25 pts) If \(f(x) = \frac{4x^5 - 3x^2 - \pi}{6x^3 + x^4} \), then find \(f'(x) \) by using the quotient rule. Do not simplify.

\[
 f'(x) = \frac{(6x^3 + x^4)(20x^4 - 6x) - (4x^5 - 3x^2 - \pi)(3x^{-\frac{1}{2}} + 4x^3)}{(6x^3 + x^4)^2}
\]

NAME: ____________________________

MATH 131 SECTION (Circle one):

504 505 506

Circle First Letter of Last Name:

A-D E-K L-R S-Z