1. Graph the system of equations: \[\begin{align*}
5x - 6y &> 30 \\
4x + 3y &\geq 12
\end{align*} \] Mark the solution set with an S. Is the solution set bounded or unbounded?

2. Maximize and minimize \(C = 6x + 9y \) subject to:
 \[\begin{align*}
2x - 4y &\geq 1 \\
-x &\leq 2y \\
2 &\leq x \leq 8
\end{align*} \]
Is the feasible region bounded or unbounded?
3. A bald cypress, which would sell for $50, needs 5 gallons of water and 10 grams of fertilizer each week. A live oak, which would sell for $80, needs 2 gallons of water and 3 grams of fertilizer each week. Each week there are 90 gallons of water and 150 grams of fertilizer available. If a local plant nursery wants to maximize their revenues while having at least two bald cypress trees available, how many of each type of tree should they grow? Discuss leftovers.
4. A large clay pot requires 85 units of clay and 5 labor-hours to produce. A small decorative clay pot requires 14 units of clay and 11 labor-hours to produce. Due to warehouse space, no more than 622 large clay pots and no more than 950 small clay pots can be produced. There are only 12,250 labor-hours and 61,200 units of clay available. If the profit a large clay pot is $32 and a small clay pot is $5, how many of each type should be produced and sold to maximize profit? Discuss leftovers.
5. An ice sculpturer creates carvings of dolphins and mermaids. For a dolphin, it takes 5 hours to freeze the water and 3 hours to carve. For a mermaid, it takes 2 hours to freeze the water and 4 hours to carve. Each week there are available 40 hours of freezing time and 48 hours of carving time. If dolphins sell for $150 each and mermaids sell for $300 each, how many of each type of ice carvings should the ice sculpturer create each week to maximize revenues? Discuss leftovers.
6. If \(x \) is the number of coyotes and \(y \) is the number of deer, maximize \(M = 10x + \frac{20}{3}y \) subject to

\[
\begin{align*}
y &\leq -x + 24 \\
2y + 3x &\leq 54 \\
y &\geq x + 2 \\
x &\geq 0 \\
4 &\leq y \leq 20
\end{align*}
\]
7. *Set up this linear programming problem, but do not solve it.*

Michaela has $800,000 available to invest in three types of investments: mutual funds, real estate, and stock. The mutual fund she is looking at has a rate of return of 4.5% per year. The real estate investment has a rate of return of 3.85% per year. The stock she is looking at has an 8.95% rate of return per year. Due to her youth, at least 65% of Michaela’s total investment is to be invested in the stock. For every $2 invested in the mutual fund, she has no more than $3 invested in real estate. How much should Michaela invest in each type to maximize her return?