1. The demand for a VCR is 8000 units when the price is $230. If the price drops down to $210 then 9000 are sold. The manufacturer will not market VCRs if the price drops to $100. For each $60 increase in price, the manufacturer will supply an additional 1300 VCRs. How many VCR's are made at the equilibrium point?

Demand

$$(x, p)$$

(8000, 230)

(9000, 210)

$$m = \frac{210 - 230}{9000 - 8000} = \frac{-1}{50}$$

$$p - 230 = \frac{-1}{50} (x - 8000)$$

$$p - 230 = \frac{-1}{50} x + 160$$

$$p = \frac{-1}{50} x + 390$$ price in $ for x VCRs demanded

Supply

$$(x, p)$$

(0, 100)

(60, 100+60) = (1300, 160) or $$m = \frac{60}{1300} = \frac{3}{65}$$

$$m = \frac{160 - 100}{1300 - 0} = \frac{3}{65}$$

$$p - 100 = \frac{3}{65} (x - 0)$$

$$p - 100 = \frac{3}{65} x$$

$$p = \frac{3}{65} x + 100$$ price in $ for x VCRs supplied

Demand = Supply at the equilibrium point

$$\frac{-1}{50} x + 390 = \frac{3}{65} x + 100$$

$$-43 x = -290$$

$$x = $$

$$x = \frac{188500}{43} \approx 4384$$

Therefore 4384 VCRs are made at the equilibrium point.

2. A tractor is originally purchased for $48,000. After 8 years, the tractor is worth $19360.

a. Find a linear equation for the value, V, of the tractor as a function of time, t, in years.

$$(t, V): (0, 48000), (8, 19360)$$

$$m = \frac{19360 - 48000}{8 - 0} = \frac{-28640}{8} = -3580$$

$$V - 48000 = -3580(t - 0)$$

$$V(t) = -3580t + 48000$$ dollars in value of the tractor t years after purchase

b. What is the rate of depreciation of the tractor?

Since $$m = -3580$$, the depreciation rate is $3580 per year.

c. What is the tractor worth after 10 years?

$$V(10) = -35800 + 48000 = \$12,200$$, so the tractor is worth $12,200 after 10 years.
3. It cost a company $22,500 to make 50 gadgets and $26,000 to make 120 gadgets. This company sells the gadgets for $80 each. What is the profit function? Compute the profit or loss when 2500 gadgets are produced and sold.

\[C(x) = cx + F \] is the linear cost function.

\[R(x) = sx \] is the linear revenue function.

\[P(x) = R(x) - C(x) \] is the linear profit function.

Cost

\[(x, C) \quad (50, 22500) \quad (120, 26000) \]

\[m = \frac{26000 - 22500}{120 - 50} = 50 \]

\[C - 22500 = 50(x - 50) \quad \text{or} \quad C - 26000 = 50(x - 120) \]

\[C(x) = 50x + 20000 \quad \text{dollars in cost for} \ x \ \text{gadgets} \]

Revenue

\[R(x) = 80x \quad \text{dollars in revenue for} \ x \ \text{gadgets} \]

Profit

\[P(x) = R(x) - C(x) = 80x - (50x + 20000) = 80x - 50x - 20000 \]

Therefore \[P(x) = 30x - 20000 \quad \text{dollars in profit/loss for} \ x \ \text{gadgets} \]

\[P(2500) = 30 \cdot 2500 - 20000 = 55000 \]

Therefore there is a profit of $55,000 when 2500 gadgets are produced and sold.
4. A GPS manufacturer has a fixed monthly production cost of $59,985. If 360 GPS’s are produced and sold, there is a loss of $43,785. A GPS is sold for $210. What is the break-even quantity?

Cost function: \(C(x) = cx + F \)
Revenue function: \(R(x) = sx \)
Profit function: \(P(x) = R(x) - C(x) \)

\[

c = 165
\]

Note: At the break-even point \(R(x) = C(x) \) and \(P(x) = 45x - 59985 = 0 \).

\[

R(x) = C(x) \quad \text{OR} \quad P(x) = 45x - 59985 = 0
\]

\[

210x = 165x + 59985 \quad \text{OR} \quad 45x = 59985
\]

\[

45x = 59985
\]

\[

x = 1333
\]

Therefore the break-even quantity is 1333 GPS’s.
5. If \(y = \frac{5}{3}x - 8 \), how much does \(y \) change if

a. \(x \) increases by 9 units?

The slope is the change of \(y \) (dependent variable) over the change of \(x \) (independent variable). If \(x \) is increases by 9, how much is \(y \) changing?

\[
m = \frac{5}{3}
\]

\[
n = \frac{5}{9}
\]

\[
n = \frac{9 \cdot 5}{3}
\]

\[
n = 15
\]

Therefore if \(x \) increases by 9, \(y \) increases by 15.

b. \(x \) decreases by 2 units?

The slope is the change of \(y \) (dependent variable) over the change of \(x \) (independent variable). If \(x \) is decreasing by 2, how much is \(y \) changing?

\[
m = \frac{5}{3}
\]

\[
n = \frac{5}{-2} = \frac{5}{3}
\]

\[
n = \frac{-2 \cdot 5}{3}
\]

\[
n = \frac{-10}{3}
\]

Therefore if \(x \) decreases by 2, \(y \) decreases by \(\frac{10}{3} \).
6. Find the following.
 a. What is the equation of the horizontal line that passes through the point \((a,b)\)?

 \[y = b \]

 b. What is the equation of the vertical line that passes through the point \((a,b)\)?

 \[x = a \]

 c. What is the slope-intercept form of the line that has the same slope as the line \(2x - 3y = 5\) and that passes through the \(x\)-intercept of the line \(y = -6x - 8\)?

 \[
 \begin{align*}
 2x - 3y &= 5 \\
 -3y &= -2x + 5 \\
 y &= \frac{2}{3}x - \frac{5}{3} \\
 m &= \frac{2}{3}
 \end{align*}
 \]

 To find the \(x\)-intercept of \(y = -6x - 8\), let \(y = 0\) and solve for \(x\).

 \[
 \begin{align*}
 y &= -6x - 8 \\
 0 &= -6x - 8 \\
 6x &= 8 \\
 x &= \frac{-8}{6} \\
 x &= \frac{-4}{3}
 \end{align*}
 \]

 So we have the point \(\left(\frac{-4}{3}, 0\right)\) and the slope \(\frac{2}{3}\).

 \[
 \begin{align*}
 y - 0 &= \frac{2}{3} \left(x - \frac{-4}{3} \right) \\
 y &= \frac{2}{3} \left(x + \frac{4}{3} \right) \\
 y &= \frac{2}{3} x + \frac{8}{9}
 \end{align*}
 \]

 Therefore \(y = \frac{2}{3} x + \frac{8}{9}\).
7. If a water recirculation system is priced at $690, the quantity demanded is 310. For each $210 drop in price, an additional 310 are demanded. Suppliers of the water recirculation system will supply 930 systems if the price is $540 and will supply 1550 if the price is $660.

a. Find the linear demand equation.

\[(x, p): (310, 690)\]

\[m = \frac{-210}{310} = -\frac{21}{31}\]

or use the point \((310 + 310, 690 - 210) = (620, 480)\)

\[p - 690 = \frac{-21}{31}(x - 310)\]

Therefore \[p = \frac{-21}{31}x + 900\] price in dollars for \(x\) systems demanded

b. Find the linear supply equation.

\[(x, p): (930, 540), (1550, 660)\]

\[m = \frac{660 - 540}{1550 - 930} = \frac{120}{620} = \frac{6}{31}\]

\[p - 540 = \frac{6}{31}(x - 930)\]

Therefore \[p = \frac{6}{31}x + 360\] price in dollars for \(x\) systems supplied

c. Above what price will there be no demand?

\[p(x) = \frac{-21}{31}x + 900\]

\[p(0) = \frac{-21}{31}(0) + 900 = 900\]

When priced at $900 or more, there will be no demand for the system.

d. What quantity would be demanded if the system was free?

\[p(x) = \frac{-21}{31}x + 900\]

\[0 = \frac{-21}{31}x + 900\]

\[\frac{21}{31}x = 900\]

\[x = \frac{9300}{7} \approx 1328.57\]

Therefore 1329 systems would be demanded if the system was free.

e. Above what price will the system be marketed?

\[p(x) = \frac{6}{31}x + 360\]

\[p(0) = \frac{6}{31}(0) + 360 = 360\]

Therefore, when priced at $360 or more, the system will be marketed.
f. If the system price is $840, how many systems will be marketed?

\[p(x) = \frac{6}{31} x + 360 \]

\[840 = \frac{6}{31} x + 360 \]

\[\frac{6}{31} x = 480 \]

\[x = 2480 \]

Therefore, when the system price is $840, 2480 systems will be marketed.

g. Find and interpret the equilibrium point.

Solve the system of equations.

\[p = \frac{-21}{31} x + 900 \]

\[p = \frac{6}{31} x + 360 \quad \text{multiply equation by } -1 \]

\[p = \frac{-21}{31} x + 900 \]

\[-p = \frac{-6}{31} x - 360 \quad \text{add the two equations} \]

\[0 = \frac{-27}{31} x + 540 \]

\[\frac{27}{31} x = 540 \]

\[x = 620 \quad p(620) = \frac{6}{31}(620) + 360 = 480 \quad \text{or} \quad p(620) = \frac{-21}{31}(620) + 900 = 480 \]

Therefore, the equilibrium point is (620, 480).

When 620 water recirculation systems are produced and sold at a price of $480, both consumers and producers are satisfied.