1. Out of 800 animals, 200 are mammals, 300 are female, and 440 are mammals or female.

\[n(M \cup F) = n(M) + n(F) - n(M \cap F) \]
\[440 = 200 + 300 - n(M \cap F) \]
\[n(M \cap F) = 60 \]

a. If an animal is selected at random, what is the probability it is a female mammal?

\[P(F \cap M) = \frac{60}{800} = \frac{6}{80} = \frac{3}{40} \]

b. If a female is selected at random, what is the probability it is not a mammal?

\[P(M^c | F) = \frac{240}{300} = \frac{24}{30} = \frac{4}{5} \]

c. If a mammal is selected at random, what is the probability it is a male?

\[P(F^c | M) = \frac{140}{200} = \frac{14}{20} = \frac{7}{10} \]

d. If an animal is selected at random, what is the probability it is male or is a mammal?

\[P(F^c \cup M) = P(F^c) + P(M) - P(F^c \cap M) \]
\[= \frac{140 + 360}{800} + \frac{200}{800} - \frac{140}{800} \]
\[= \frac{560}{800} = \frac{56}{80} = \frac{7}{10} \]
2. If \(A \) and \(B \) are independent events such that \(P(A) = 0.37 \) and \(P(B) = 0.28 \), evaluate \(P(A \cup B) \).

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

\[
= P(A) + P(B) - P(A)P(B)
\]

\[
= 0.37 + 0.28 - (0.37)(0.28)
\]

\[
= 0.5464
\]
3. If A and B are mutually exclusive events such that $P(A) = 0.37$ and $P(B) = 0.28$, evaluate $P(A \cup B)$.

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

\[= P(A) + P(B) - P(\emptyset) \]

\[= 0.37 + 0.28 - 0 \]

\[= 0.65 \]
4. The Venn diagram shows an experiment in which the three mutually exclusive events \(A, B, \) and \(C \) form a partition of the uniform sample space \(S \). The numbers in the Venn diagram are the number of elements in each region. Use the Venn diagram to answer the following questions.

\[
\begin{array}{ccc}
A & B & C \\
8 & 4 & 14 \\
12 & 18 & 24 \\
\end{array}
\]

\[\cap (A) = 8 \]

a. \[P(D^c) = \frac{12 + 18 + 24}{80} = \frac{54}{80} = \frac{27}{40} \]

b. \[P(A \mid D) = \frac{8}{8+4+14} = \frac{9}{26} = \frac{4}{13} \]

c. \[P(B \cap D) = \frac{4}{80} = \frac{1}{20} \]

d. \[P(D \mid B) = \frac{4}{4+18} = \frac{4}{22} = \frac{2}{11} \]

e. \[P(B \cup C \mid D) = \frac{4+14}{8+4+14} = \frac{18}{26} = \frac{9}{13} \]

f. \[P(B \cap C) = P(\emptyset) = 0 \]

g. \[P(D \mid A^c) = \frac{4+14}{4+4+14+24} = \frac{18}{60} = \frac{3}{10} \]

h. \[P(A \cup D) = \frac{8+12+14}{80} = \frac{38}{80} = \frac{19}{40} \]

i. Prove or disprove that events \(A \) and \(D \) are independent.

\[P(A \cap D) = \frac{8}{80} = \frac{1}{10} \]

\[P(A) \cdot P(D) = \left(\frac{8+12}{80} \right) \left(\frac{8+4+14}{80} \right) = \left(\frac{20}{80} \right) \left(\frac{26}{80} \right) = \frac{13}{160} \]

Since \[P(A \cap D) \neq P(A) \cdot P(D) \],

events \(A \) and \(D \) are not independent.
5. If A and B are independent events such that $P(A) = 0.34$ and $P(B) = 0.56$, evaluate $P(A \cap B^c)$.

\[
P(A \cap B^c) = P(A)P(B^c) = (0.34)(1 - 0.56) = 0.1496
\]
6. Sixty percent of basketball fans with Final Four Frenzy will test positive for Final Four Frenzy and 8% of fans without Final Four Frenzy will also test positive for Final Four Frenzy. A basketball fan has a 25% chance of having Final Four Frenzy. If a basketball fan has a positive Final Four Frenzy test, what is the exact probability, as a fraction in lowest terms, that he or she actually has Final Four Frenzy?

Let the event a fan has Final Four Frenzy (FFF) and test positive for FFF.

\[P(F|+) = \frac{P(F \cap +)}{P(+)} \]

\[= \frac{(0.25)(0.6)}{(0.25)(0.6) + (0.75)(0.08)} \]

\[= \frac{0.15}{0.21} \]

\[= \frac{15}{21} \]

\[= \frac{5}{7} \]
7. What type of random variable associated with the following experiments? Describe all possible values of the random variable.

a. A card is drawn and replaced from a standard deck of 52 until the ace of hearts is drawn

 infinite random variable with values

 $1, 2, 3, 4, 5, \ldots$

b. The time it takes a takes a student to take a 2-hour final exam

 continuous random variable

 $0 \leq x \leq 2$ hours

c. A pair of dice is rolled and the sum of the uppermost numbers is observed

 finite discrete with values

 $2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12$
8. Let \(X \) be the product of the faces of two rolled dice, where one of the die is a 4-sided die and the other is a 5-sided die. Find the probability distribution and then represent it graphically with a histogram.
9. If the probability that a new Ford pickup is a lemon is 0.0021 and new Honda Ridgeline is a lemon is 0.0014, what is the probability that twins who buy one truck of each type has two lemons?

\[P(F \land H) = P(F) \cdot P(H) \]

\[= (0.0021) \cdot (0.0014) \]

\[= 0.00000294 \]
10. The random variable X only assumes values 4, 5, 6, 7 and 8. If the tick marks on the vertical axis have a scale of $\frac{1}{17}$, complete the probability distribution histogram for this random variable.

![Histogram diagram]

a. Shade the part of the histogram associated with $P(5 \leq X < 7)$.

b. $P(X = 4) + P(X = 7) = \frac{1}{17} + \frac{2}{17} = \frac{3}{17}$

c. $P(X < 6) = P(X = 4) + P(X = 5) = \frac{1}{17} + \frac{3}{17} = \frac{4}{17}$

d. $P(4 < X \leq 8) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) = \frac{3}{17} + \frac{4}{17} + \frac{2}{17} + \frac{2}{17} = \frac{16}{17}$

Or $P(4 < X \leq 8) = 1 - P(X = 4) = 1 - \frac{1}{17} = \frac{16}{17}$
11. If \(P(A) = 0.05 \), \(P(B) = 0.26 \), and \(P(A \cup B) = 0.297 \), prove or disprove \(A \) and \(B \) are independent.

Events \(C \) and \(D \) are independent iff \(P(C \cap D) = P(C) \cdot P(D) \).

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

\[
0.297 = 0.05 + 0.26 - P(A \cap B)
\]

\[
P(A \cap B) = 0.013
\]

\[
P(A) \cdot P(B) = (0.05)(0.26) = 0.013
\]

Since \(P(A \cap B) = P(A) \cdot P(B) \), events \(A \) and \(B \) are independent.
12. Given \(P(A) = \frac{3}{4}, P(C) = \frac{3}{5}, P(E \mid A) = \frac{5}{6}, P(E \mid B) = \frac{3}{8} \) and \(P(D \mid C) = \frac{7}{10} \). Fill in the probabilities on the tree and then find the requested probabilities.

a. \(P(E \mid C) = \frac{3}{10} \)
b. \(P(B \cap D) = \left(\frac{2}{20} \right) \left(\frac{3}{8} \right) = \frac{3}{32} \)
c. \(P(C \cup A) = \frac{12}{20} + \frac{5}{20} = \frac{17}{20} \)
d. \(P(B \cup E) = P(B) + P(E) - P(B \cap E) = \frac{2}{20} + \left(\frac{5}{15} \times \frac{6}{8} + \frac{2}{12} \times \frac{2}{8} + \frac{15}{10} \times \frac{7}{12} \right) - \frac{3}{8} = \frac{329}{600} \)
e. \(P(C \cap D) = \frac{P(C \cap D)}{P(D)} = \frac{\frac{21}{175}}{\frac{7}{35}} = \frac{1067}{1575} \)
f. \(P(D \cap E) = 1 \)
g. Name an event that is mutually exclusive from \(E \): \(D \cap E = \emptyset \)
h. Prove or disprove that events \(A \) and \(E \) are independent.

\[
\begin{align*}
P(A \cap E) &= \left(\frac{3}{4} \right) \left(\frac{3}{8} \right) = \frac{9}{32} \\
P(A) P(E) &= P(A) \left[1 - P(D) \right] = \frac{1}{4} \left(1 - \frac{1393}{2400} \right) \\
&= \frac{1067}{9600}
\end{align*}
\]

Since \(P(A \cap E) \neq P(A) P(E) \), events \(A \) and \(E \) are not independent.
13. A purse has 2 gold coins and 3 silver coins. A handbag has 4 gold coins, 5 silver coins, and 1 bronze coin. An experiment consists of randomly drawing one coin from the purse, putting it into the handbag, and then randomly drawing a coin out of the handbag. Draw a probability tree diagram.

\[\text{purse} \]

\[\frac{2}{5} \]

\[\frac{3}{5} \]

\[\text{handbag} \]

\[\frac{4}{10} \]

\[\frac{3}{10} \]

\[\frac{1}{10} \]

\[G_1 \]

\[G_2 \]

\[\frac{1}{10} \]

\[A_2 \]

\[B_2 \]

\[\frac{2}{5} \]

\[\frac{1}{5} \]

\[\frac{4}{5} \]

\[A_1 \]

\[G_2 \]

\[\frac{1}{5} \]

\[\frac{1}{5} \]

\[A_2 \]

\[B_2 \]

\[\frac{1}{5} \]

\[\frac{1}{5} \]

\[\frac{1}{5} \]

a. What is the probability that the first coin is silver and the second coin is gold?

\[P(A_1 \cap G_2) = \left(\frac{3}{5} \right) \left(\frac{4}{10} \right) = \frac{12}{50} = \frac{6}{25} \]

b. What is the probability the first coin is gold if the second coin was silver?

\[P(A_1 | G_2) = \frac{P(G_1 \cap A_2)}{P(G_2)} = \frac{\left(\frac{3}{5} \right) \left(\frac{5}{10} \right)}{\left(\frac{2}{5} \right) \left(\frac{5}{10} \right) + \left(\frac{2}{5} \right) \left(\frac{5}{10} \right)} = \frac{\frac{6}{25}}{\frac{25}{50}} = \frac{\frac{6}{25}}{\frac{5}{10}} = \frac{2}{25} = \frac{2}{25} \]

c. What is the probability that the second coin is bronze?

\[P(B_2) = P(G_1 \cap B_2) + P(A_1 \cap B_2) \]
\[= \left(\frac{2}{5} \right) \left(\frac{1}{10} \right) + \left(\frac{2}{5} \right) \left(\frac{1}{10} \right) \]
\[= \frac{5}{50} = \frac{1}{10} \]

d. What is the probability that the first coin was silver or a bronze coin was drawn from the handbag?

\[P(A_1 \cup B_2) = P(A_1) + P(B_2) - P(A_1 \cap B_2) \]
\[= \frac{3}{5} + \frac{1}{10} - \left(\frac{2}{5} \right) \left(\frac{1}{10} \right) \]
\[= \frac{2}{1} \]