Math 150

NEATLY PRINT NAME: ________________________________

Exam 1

STUDENT ID: ____________________________

Fall 2009

DATE: ________________________________

SECTION: Circle your correct section number.
Tuesday recitations: 501 503 505 507 509 511 525 527 529
Thursday recitations: 502 504 506 508 510 512 526 528 530

TEST NO.: DOG

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."

Signature of student

Academic Integrity Task Force, 2004

My signature in this blank allows my instructor to pass back my graded exam in class or allows me to pick up my graded exam in class on the day the exams are returned. If I do not sign the blank or if I am absent from class on the day the exams are returned, I know I must show my Texas A&M student ID during my instructor’s office hours to pick up my exam.

Signature of student ________________________________

NO CALCULATORS ALLOWED!

This is a 10-question multiple-choice exam; there is no partial credit. Each problem is worth 5 points for a total of 50 points. There will be a 5-point bonus if you have no transgressions. Transgressions include not having the correct Scantron form 882E, not filling out your Scantron form correctly, having a folded or mutilated Scantron, having your cell phone ring or vibrate, not having your TAMU student ID, not following directions, not turning in your exam and Scantron on time (you must be finished filling in your Scantron and exam cover before time is called). The Scantron will not be returned so also mark all your answers on this test paper.

SCANTRON: Please double check to make sure you have completed your Scantron correctly, as shown below.

Name: print your name neatly
Subject: Math 150
Date: September 2009

Test No.: DOG
Period: your section number
1. Fully simplify \(-5(5 - 4i) \).
 a. \(\sqrt{41} \)
 b. None of these
 c. \(5\sqrt{41} \)
 d. 29
 e. 45

2. Find the midpoint of the line segment whose endpoints are \((-3, -4)\) and \((7, 2)\).
 a. \((-5, -3)\)
 b. \((4, -2)\)
 c. \((1, -2)\)
 d. None of these
 e. \((2, -1)\)

3. Completely factor \(2x^3 + 6x^2 - 2x - 6 \).
 a. \((2x + 2)(x - 1)(x + 3)\)
 b. \(2(x + 1)(x - 1)(x + 3)\)
 c. \(2(x + 1)(x - 1)(x - 3)\)
 d. None of these
 e. \((2x + 2)(2x - 2)(2x + 6)\)

4. Let \(a \) be any real non-negative number. Solve for \(x \): \(|2x - 1| \geq 6a + 5 \)
 a. None of these
 b. \((-\infty, -3a - 2] \cup [3a + 3, \infty)\)
 c. \((-\infty, -3a - 3] \cup [3a + 3, \infty)\)
 d. \([-3a - 2, 3a + 3]\)
 e. \([-3a - 3, 3a + 3]\)
5. Perform polynomial long division on \(\left(x^3 + 2x + 8 \right) ÷ (x + 2) \). Identify the remainder and express it as a fraction of the divisor.

\[\frac{-4}{x + 2} \]

a. \[\frac{-4}{x + 2} \]

b. \[\frac{4}{x + 2} \]

c. None of these

d. \[\frac{8}{x + 2} \]

e. \[\frac{-8}{x + 2} \]

6. Exactly solve for \(x \): \(2|3 - x| = 10 - 2x \).

a. \(x = 1 \)

b. \(x = -8, x = 1 \)

c. \(x = -4, x = 1 \)

d. \(x = 2, x = 1 \)

e. None of these

7. Exactly solve \(\frac{x^2 + 5x - 24}{x} \leq 0 \).

a. None of these

b. \((-\infty, -8] \cup [0, 3] \)

c. \([-8, 0) \cup [3, \infty) \)

d. \((-\infty, -8] \cup (0, 3] \)

e. \([-8, 3] \)
8. Fully simplify $-2^2 - 36 \div 2 \cdot 3 + 20 - 7^0$.
 a. -31
 b. 9
 c. 17
 d. None of these
 e. -39

9. What is the domain of $\frac{\sqrt{4 - x}}{\sqrt{x + 10}}$?
 a. $(-\infty, 4]$
 b. $(-\infty, -10) \cup (-10, -4)$
 c. None of these
 d. $(-\infty, -10) \cup (-10, 4]$
 e. $(-10, 4]$

10. Fully simplify $\frac{\left(\frac{1}{2}\right)^{-20} + (2^2)^{11}}{(2^3)^7 - 2^{23}}$.
 a. 2^{44}
 b. $\frac{-2}{3}$
 c. $\frac{1}{4}$
 d. $\frac{-5}{6}$
 e. None of these
What is provable should not be believed in science without proof.

J. W. R. Dedekind
1. Shade the region of the coordinate plane that contains the set of ordered pairs \(\{(x, y) \mid x \leq 7, y > -5\} \).

2. Fully simplify \(\sqrt[16]{2^{16}x^{17}y^{32}z^{16}} \) by keeping the radical symbol in your answer (do not use fractional exponents).

3. Fully simplify \((\sqrt[3]{-3+6i})(\sqrt[3]{-36-1}) \).

4. Simplify completely and state all restrictions on the variable. \(\frac{5}{x} - \frac{4}{2x+7} - \frac{9}{8-x} \).
5. Simplify completely. For 5-points extra credit, state all restrictions on the variable.

\[
\frac{2x-6}{x^2+2x-3} \div \frac{x^2-9}{x^2+8x+15}
\]

6. Exactly solve for \(x\): \(\sqrt{2x+15} - x = 6\).

7. Rationalize the denominator of \(\frac{3-\sqrt{2}}{8+\sqrt{7}}\).
8. Completely expand (multiply out) the expression \[\left((x+2)(x-2)\right)^2.\]

9. Exactly solve \(2133x = 4\).

10. What is the exact distance between points \(A(-5,2)\) and \(B(-3,-8)\)?