The lattice of closed ideals in the Banach algebra of operators on a certain dual Banach space

Niels Jakob Laustsen, Thomas Schlumprecht, and András Zsák

Abstract

Key words: Ideal lattice, operator, Banach space, Banach algebra.

2000 Mathematics Subject Classification: primary 47L10, 46H10; secondary 47L20, 46B45.

1 Introduction

The aim of this note is to classify the closed ideals in the Banach algebra $\mathcal{B}(F)$ of (bounded, linear) operators on the Banach space

$$F := \left(\bigoplus_{n \in \mathbb{N}} \ell_n^2 \right)_{\ell_1}.$$

More precisely, we shall show that there are exactly four closed ideals in $\mathcal{B}(F)$, namely $\{0\}$, the compact operators $\mathcal{K}(F)$, the closure $\mathcal{F}_{\ell_1}(F)$ of the set of operators factoring through ℓ_1, and $\mathcal{B}(F)$ itself.

The collection of Banach spaces E for which a classification of the closed ideals in $\mathcal{B}(E)$ exists is very sparse. Indeed, the following list appears to be the complete list of such spaces.

(i) For a finite-dimensional Banach space E, $\mathcal{B}(E) \cong M_n$, where n is the dimension of E, and so it is ancient folklore that $\mathcal{B}(E)$ is simple in this case.

(ii) In 1941 Calkin [2] classified all the ideals in $\mathcal{B}(\ell_2)$. In particular he proved that there are only three closed ideals in $\mathcal{B}(\ell_2)$, namely $\{0\}$, $\mathcal{K}(\ell_2)$, and $\mathcal{B}(\ell_2)$.

(iii) In 1960 Golberg, Markus, and Feldman [5] extended Calkin’s theorem to the other classical sequence spaces. More precisely, they showed that $\{0\}$, $\mathcal{K}(E)$, and $\mathcal{B}(E)$ are the only closed ideals in $\mathcal{B}(E)$ for each of the spaces $E = c_0$ and $E = \ell_p$, where $1 \leq p < \infty$.

(iv) Later in the 1960’ies Gramsch [6] and Luft [9] independently extended Calkin’s theorem in a different direction by classifying all the closed ideals in $\mathcal{B}(H)$ for each Hilbert space H (not necessarily separable). In particular, they showed that these ideals are well-ordered by inclusion.
(v) In 2003 Laustsen, Loy, and Read [7] proved that, for the Banach space

$$E := \left(\bigoplus_{n \in \mathbb{N}} \ell_2^n \right)_{\ell_1},$$

there are exactly four closed ideals in $\mathcal{B}(E)$, namely $\{0\}$, the compact operators $\mathcal{K}(E)$, the closure $\mathcal{F}_{\ell_1}(E)$ of the set of operators factoring through ℓ_1, and $\mathcal{B}(E)$ itself.

Note that the Banach space F given by (1.1) is the dual of the Banach space E given by (1.2), and so the result of this note can be seen as a ‘dualization’ of [7]. In fact, our strategy draws heavily on the methods introduced in [7].

2 The classification theorem

We begin this section by recalling various definitions and results from [7]. For simplicity we state the results only in the generality that is required for our present purposes, but emphasize that a number of them hold true in greater generality.

2.1 ℓ_1-direct sums. Let (E_n) be a sequence of Banach spaces. We denote by $\left(\bigoplus E_n \right)_{\ell_1}$ the ℓ_1-direct sum of E_1, E_2, \ldots, that is, the collection of sequences (x_n) such that $x_n \in E_n$ for each $n \in \mathbb{N}$ and

$$\left\| (x_n) \right\| := \sum_{n=1}^{\infty} \left\| x_n \right\| < \infty.$$

This is a Banach space for coordinatewise defined addition and scalar multiplication and norm given by (2.1).

Set $E := \left(\bigoplus E_n \right)_{\ell_1}$. For each $m \in \mathbb{N}$, we write J_m^E for the canonical embedding of E_m into E and Q_m^E for the canonical projection of E onto E_m. Both J_m^E and Q_m^E are operators of norm one; in fact, the former is an isometry, and the latter is a quotient map. When no ambiguity may arise, we omit the superscript E from the operators J_m^E and Q_m^E.

We use similar notation and conventions for finite collections of Banach spaces and operators.

2.2 Definition. Let (E_n) and (F_n) be sequences of Banach spaces, and let $T: \left(\bigoplus E_n \right)_{\ell_1} \to \left(\bigoplus F_n \right)_{\ell_1}$ be an operator. We associate with T the infinite matrix $(T_{m,n})$, where

$$T_{m,n} := Q_m^F T J_n^E: E_n \to F_m \quad (m, n \in \mathbb{N}).$$

The support of the n^{th} column of T is

$$\text{colsupp}_n(T) := \{ m \in \mathbb{N} \mid T_{m,n} \neq 0 \} \quad (n \in \mathbb{N}).$$

We say that T has finite columns if each column has finite support, and in this case we set $\mu_n(T) := \max(\text{colsupp}_n(T))$.

2
The significance of operators with finite columns lies in the fact that, in the case where each of the spaces \(E_n \) \((n \in \mathbb{N})\) is finite-dimensional, for each operator \(T: (\bigoplus E_n)_{\ell_1} \to (\bigoplus F_n)_{\ell_1} \) we can find a perturbation \(\tilde{T}: (\bigoplus E_n)_{\ell_1} \to (\bigoplus F_n)_{\ell_1} \) with finite columns such that the difference \(T - \tilde{T} \) is compact and has arbitrarily small norm (see [7, Lemma 2.7(i)]).

2.3 Diagonal operators

Let \((E_n)\) and \((F_n)\) be sequences of Banach spaces, and, for each \(n \in \mathbb{N} \), let \(T_n : E_n \to F_n \) be an operator. Suppose that \(\sup \|T_n\| < \infty \). Then we can define the diagonal operator

\[
\text{diag}(T_n) : (x_n) \mapsto (T_n x_n), \quad \left(\bigoplus E_n \right)_{\ell_1} \to \left(\bigoplus F_n \right)_{\ell_1}.
\]

Clearly, we have \(\|\text{diag}(T_n)\| = \sup \|T_n\| \).

The following construction is a dual version of [7, Construction 4.2].

2.4 Construction

Let \((E_n)\) and \((F_n)\) be sequences of Banach spaces, and set \(E := (\bigoplus E_n)_{\ell_1} \) and \(F := (\bigoplus F_n)_{\ell_1} \). Further, set \(\tilde{F} := (\bigoplus \tilde{F}_n)_{\ell_1} \), where \(\tilde{F}_n := F \) for each \(n \in \mathbb{N} \). Let \(T : E \to F \) be an operator. Since \(\|TJ_n^E\| \leq \|T\| \) for each \(n \in \mathbb{N} \), we have a diagonal operator \(\text{diag}(TJ_n^E) : E \to \tilde{F} \). We claim that there is an operator \(W : \tilde{F} \to F \) such that

\[
T = W \text{diag}(TJ_n^E).
\]

Indeed, suppose that \(y = (y_n) \in \tilde{F} \), so that \(y_n \in F \) for each \(n \in \mathbb{N} \) and \(\sum_{n=1}^{\infty} \|y_n\| < \infty \). Then, for each \(m \in \mathbb{N} \), the series \(\sum_{n=1}^{\infty} Q_m y_n \) is absolutely convergent in \(F_m \), and \(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_m y_n \| \leq \|y\| \). It follows that we can define an operator

\[
W : y \mapsto \left(\sum_{n=1}^{\infty} Q_m y_n \right)_{m \in \mathbb{N}}, \quad \tilde{F} \to F.
\]

We note that \(\|W\| < 1 \), and (2.2) is satisfied because \(Q_m^F W \text{diag}(TJ_n^E)J_k^E = Q_m^F T J_k^E \) for each \(k, m \in \mathbb{N} \).

A linear subspace \(G \) of a vector space \(E \) is termed cofinite if the quotient \(E/G \) is finite-dimensional. It is a standard elementary fact that the intersection of finitely many cofinite subspaces is again cofinite. More precisely, we have the following upper bound on the codimension.

2.5 Lemma

Let \(n \in \mathbb{N} \), and let \(G_1, \ldots, G_n \) be cofinite linear subspaces of a vector space \(E \). Then

\[
\dim \frac{E}{G_1 \cap G_2 \cap \cdots \cap G_n} \leq \sum_{j=1}^{n} \dim E/G_j.
\]
2.6 Definition. (i) Let G be a closed subspace of a Hilbert space H. We denote by G^\perp the orthogonal complement of G in H, and write proj_G for the orthogonal projection of H onto G (so that proj_G is the idempotent operator on H with image G and kernel G^\perp).

(ii) Let $m \in \mathbb{N}$, let E be a Banach space, and let K_1, \ldots, K_m be Hilbert spaces. For each operator $T: E \to (K_1 \oplus \cdots \oplus K_m)_{\ell_1}$ and each $\varepsilon > 0$, set

$$n_\varepsilon(T) := \sup \left\{ n \in \mathbb{N}_0 \left| \| (\text{proj}_{G_1^+} \oplus \cdots \oplus \text{proj}_{G_m^+}) T \| > \varepsilon \right. \text{ whenever } G_j \text{ is a subspace of } K_j \text{ with } \dim G_j \leq n \right\} \in \mathbb{N}_0 \cup \{\pm \infty\}.$$

2.7 Lemma. Let $m \in \mathbb{N}$, let H and K_1, \ldots, K_m be Hilbert spaces, let $T: H \to (K_1 \oplus \cdots \oplus K_m)_{\ell_1}$ be an operator, and let $0 < \varepsilon < \|T\|$.

(i) Suppose that $n_\varepsilon(T)$ is finite. Then there are operators $R: H \to \ell_1$ and $S: \ell_1 \to (K_1 \oplus \cdots \oplus K_m)_{\ell_1}$ such that $\|T - SR\| \leq \varepsilon$, $\|R\| \leq \|T\| \sqrt{n_\varepsilon(T) + 1}$, and $\|S\| \leq 1$.

(ii) For each natural number $n \leq n_\varepsilon(T)/2 + 1$, there are operators $U: \ell_2^m \to H$ and $V: (K_1 \oplus \cdots \oplus K_m)_{\ell_1} \to \ell_2^n$ such that $I_{\ell_2^m} = VTU$, $\|U\| \leq 1/\varepsilon$, and $\|V\| \leq 1$.

(iii) Let $k \in \mathbb{N}$, let H_0 be a closed cofinite subspace of H, and suppose that $n_\varepsilon(T) \geq \dim H_0^\perp + k$. Then $n_\varepsilon(T|_{H_0}) \geq k$.

Proof. Parts (i) and (ii) are the dual versions of [7, Lemma 5.3(i)-(ii)]. Indeed, they follow by using [7, Lemma 5.3(i)-(ii)] together with the fact that, for any operators $T_1: (K_1 \oplus \cdots \oplus K_m)_{\ell_\infty} \to H$ and $T_2: H \to (K_1 \oplus \cdots \oplus K_m)_{\ell_1}$, we have $m_\varepsilon(T_1) = n_\varepsilon(T_2)$ and $n_\varepsilon(T_2) = m_\varepsilon(T_2^\perp)$, where $m_\varepsilon(\cdot)$ is defined as in [7, Definition 5.2(ii)], and where T_1^\perp and T_2^\perp are the mixed dual/adjoint operators given by

$$T_1^\perp := \sum_{j=1}^m J_j(T_j)^*: \quad (K_1 \oplus \cdots \oplus K_m)_{\ell_\infty} \to H$$

and

$$T_2^\perp := \sum_{j=1}^m (Q_jT_j^*)^*: \quad (K_1 \oplus \cdots \oplus K_m)_{\ell_\infty} \to H$$

(Here we write $(K_1 \oplus \cdots \oplus K_m)_{\ell_\infty}$ for the direct sum of K_1, \ldots, K_m equipped with the ℓ_∞-norm $\|(x_1, \ldots, x_m)\| := \max\{\|x_1\|, \ldots, \|x_m\|\}$, and we use * to denote the adjoint of an operator between Hilbert spaces.)

(iii). For each $j = 1, \ldots, m$, let G_j be a subspace of K_j with $\dim G_j \leq k$. Set $F_j := G_j + Q_j T(H_0^\perp)$. Then F_j is finite-dimensional with $\dim F_j \leq n_\varepsilon(T)$, and so we can find $x \in H$ such that $\|x\| \leq 1$ and $\| (\text{proj}_{G_1^+} \oplus \cdots \oplus \text{proj}_{G_m^+}) T x \| > \varepsilon$. It follows that

$$\| (\text{proj}_{G_1^+} \oplus \cdots \oplus \text{proj}_{G_m^+}) T|_{H_0} \| \geq \| (\text{proj}_{G_1^+} \oplus \cdots \oplus \text{proj}_{G_m^+}) T(\text{proj}_{H_0} x) \| \geq \| (\text{proj}_{F_1^+} \oplus \cdots \oplus \text{proj}_{F_m^+}) T(\text{proj}_{H_0} x) \| = \| (\text{proj}_{F_1^+} \oplus \cdots \oplus \text{proj}_{F_m^+}) T x \| > \varepsilon.$$
and so \(n_\varepsilon(T|_{H_0}) \geq k \).

2.8 Remark. Let \((K_n)\) be a sequence of Hilbert spaces, and let \(T\) be an operator on \((\bigoplus K_n)_{\ell_1}\) with finite columns. As in [7, Remark 5.4], there is a natural way to define \(n_\varepsilon(T|_{J_m})\) for each \(\varepsilon > 0\) and each \(m \in \mathbb{N}\), namely by ignoring the cofinite number of Hilbert spaces \(K_k\) such that \(Q_k T J_m = 0\).

For each pair \((E, F)\) of Banach spaces, set
\[
\mathcal{G}_{\ell_1}(E, F) := \{TS \mid S \in \mathcal{B}(E, \ell_1), T \in \mathcal{B}(\ell_1, F)\}.
\]
The fact that \(\ell_1 \cong \ell_1 \oplus \ell_1\) implies that \(\mathcal{G}_{\ell_1}\) is an operator ideal, and so its closure \(\overline{\mathcal{G}}_{\ell_1}\) is a closed operator ideal. As usual, we write \(\mathcal{G}_{\ell_1}(E)\) instead of \(\mathcal{G}_{\ell_1}(E, E)\).

2.9 Lemma. Let \(E\) be a Banach space and \(\mathcal{I}\) be an ideal in \(\mathcal{B}(E)\). If \(P\) is an idempotent operator on \(E\) and \(P \in \mathcal{I}\), then in fact \(P \in \mathcal{I}\).

Proof. Let \((T_n)\) be a sequence in \(\mathcal{I}\) converging to \(P\). Replacing \(T_n\) with \(PT_nP\) we may assume that \(T_n \in P\mathcal{B}(E)P\) for all \(n \in \mathbb{N}\). Note that \(P\mathcal{B}(E)P\) is a Banach algebra with unit \(P\), and so there exists \(n\) such that \(T_n\) is invertible. Thus there is an operator \(U \in \mathcal{B}(E)\) with \(P = (PUP)T_n\), which implies that \(P \in \mathcal{I}\).

We can now state and prove our main theorem.

2.10 Theorem. Set \(F := \bigoplus \ell_2\). The lattice of closed ideals in \(\mathcal{B}(F)\) is given by
\[
\{0\} \subseteq \mathcal{K}(F) \subseteq \overline{\mathcal{G}}_{\ell_1}(F) \subseteq \mathcal{B}(F).
\]
Further, the following dichotomy holds for each operator \(T\) on \(F\) with finite columns:

(i) \(T \in \overline{\mathcal{G}}_{\ell_1}(F)\) if and only if \(\sup \{n_\varepsilon(T|_{J_k}) \mid k \in \mathbb{N}\} < \infty\) for each \(\varepsilon > 0\);

(ii) there are operators \(U\) and \(V\) on \(F\) such that \(VTU = I_F\) if and only if \(\sup \{n_\varepsilon(T|_{J_k}) \mid k \in \mathbb{N}\} = \infty\) for some \(\varepsilon > 0\).

Proof. We begin by proving the implications ‘\(\Leftarrow\)’ in (i) and (ii) for each operator \(T\) with finite columns.

(i), \(\Leftarrow\). Let \(0 < \varepsilon < \|T\|\), and suppose that \(c := \sup \{n_\varepsilon(T|_{J_k}) \mid k \in \mathbb{N}\} < \infty\). Then, for each \(k \in \mathbb{N}\), there are operators \(R_k: \ell_2^c \to \ell_1\) and \(S_k: \ell_1 \to F\) such that \(\|T J_k - S_k R_k\| \leq \varepsilon\), \(\|R_k\| \leq \|T\| \sqrt{c + 1}\), and \(\|S_k\| \leq 1\) by Lemma 2.7(i). In the notation of Construction 2.4 (with \(E_n = F_n = \ell_2^c\)), we see that the diagonal operators \(\text{diag}(R_k): F \to (\bigoplus \ell_1)_{\ell_1}\) and \(\text{diag}(S_k): (\bigoplus \ell_1)_{\ell_1} \to \tilde{F}\) satisfy
\[
\|\text{diag}(T|_{J_k}) - \text{diag}(S_r)\text{diag}(R_k)\| = \sup \|T J_k - S_k R_k\| \leq \varepsilon.
\]
It follows that \(\text{diag}(T|_{J_k}) \in \overline{\mathcal{G}}_{\ell_1}(F, \tilde{F})\) because \((\bigoplus \ell_1)_{\ell_1}\) is isomorphic to \(\ell_1\) and \(\varepsilon\) is arbitrary, and so by (2.2) we conclude that \(T \in \overline{\mathcal{G}}_{\ell_1}(F)\), as desired.
(ii), \Leftrightarrow. Suppose that $\sup \{u_\varepsilon(T^j k) \mid k \in \mathbb{N}\} = \infty$ for some $\varepsilon > 0$. We construct inductively a strictly increasing sequence (k_j) of natural numbers such that, for each $j \in \mathbb{N}$, the following assertions hold:

(a) $\text{closupp}_{k_j}(T) \neq \emptyset$ and $\mu_{k_{j+1}}(T) \geq \mu_{k_j}(T)$.

(b) Set $m_0 := 0$, $m_j := \mu_{k_j}(T)$, and $E_j := (\bigoplus_{i=m_{j-1}+1}^{m_j} \ell^2_i)^1$, and let $P_j : F \to E_j$ be the canonical projection. Then there are operators $U_j : \ell^2_j \to \ell^2_j$ and $V_j : E_j \to \ell^2_j$ such that the diagram

\[
\begin{array}{ccc}
\ell^2_j & \xrightarrow{I} & \ell^2_j \\
\downarrow U_j & & \downarrow V_j \\
\ell^2_j & \xrightarrow{J_{k_j}} & F \\
& \xrightarrow{T} & F \\
& \xrightarrow{P_j} & E_j
\end{array}
\]

is commutative, $\|U_j\| \leq 1/\varepsilon$, $\|V_j\| \leq 1$, and $\text{im} U_j \subseteq \bigcap_{i=1}^{m_j-1} \ker T_{i,k_j}$. (The latter condition is ignored for $j = 1$.)

We start the induction by choosing $k_1 \in \mathbb{N}$ such that $n_\varepsilon(T^j k_1) \geq 1$. Then $\text{closupp}_{k_1}(T) \neq \emptyset$ and $\|T^j k_1\| > \varepsilon$. Take a unit vector $x \in \ell^2_1$ such that $\|T^j k_1 x\| > \varepsilon$, and define

\[U_1 : \alpha \mapsto \frac{\alpha x}{\|T^j k_1 x\|}, \quad \ell^2_1 \to \ell^2_1.\]

Further, take a functional $V_1 : E_1 \to \ell^2_1$ of norm 1 such that $V_1(P_1 T^j k_1 x) = \|P_1 T^j k_1 x\|$. Then the diagram in (b) is commutative because $\|P_1 T^j k_1 x\| = \|T^j k_1 x\|$.

Now let $j \geq 2$, and suppose that $k_1 < k_2 < \cdots < k_{j-1}$ have been chosen in accordance with (a)-(b). Set $h := \sum_{i=1}^{m_{j-1}} i$, take $k_j > k_{j-1}$ such that $n_\varepsilon(T^j k_j) \geq h + 2(j - 1)$, and set $H := \bigcap_{i=1}^{m_{j-1}} \ker T_{i,k_j}$. Lemma 2.5 shows that

\[\dim H^\perp = \dim \ell^2_2 / H \leq \sum_{i=1}^{m_{j-1}} \dim \ell^2_2 / \ker T_{i,k_j} = \sum_{i=1}^{m_{j-1}} \dim \text{im} T_{i,k_j} \leq h,\]

and hence $n_\varepsilon(T^j k_j |_H) \geq 2(j - 1)$ by Lemma 2.7(iii). In particular $T^j k_j |_H \neq 0$, and (a) is satisfied. Further, we note that $n_\varepsilon(P_1 T^j k_j |_H) = n_\varepsilon(T^j k_j |_H)$ because $Q_1 T^j k_j |_H = 0$ whenever $i \leq m_{j-1}$ or $i > m_j$. Lemma 2.7(ii) then implies that there are operators $U_j : \ell^2_2 \to H \subseteq \ell^2_k$ and $V_j : E_j \to \ell^2_2$ such that (b) is satisfied. This completes the inductive construction.

We ‘glue’ the operators U_j ($j \in \mathbb{N}$) together in the following way to obtain an operator U on F. Given $x \in F$, define $y_i \in \ell^2_i$ by

\[y_i := \begin{cases} U_j Q_j x & \text{if } i = k_j \text{ for some } j \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases} \quad (i \in \mathbb{N}).\]
Then we have
\[\sum_{i=1}^{\infty} \| y_i \| = \sum_{j=1}^{\infty} \| U_j Q_j x \| \leq \frac{\| x \|}{\varepsilon} < \infty, \]
and so \(Ux := (y_i) \) defines an operator \(U \) on \(F \). Similarly, since
\[\sum_{j=1}^{\infty} \| V_j P_j x \| \leq \sum_{j=1}^{\infty} \| P_j x \| = \| x \|, \]
the assignment \(Vx := (V_j P_j x) \) defines an operator \(V \) on \(F \).

We \textit{claim} that \(VTU = I_F \). To this end, it suffices to check that
\[
Q_i VTU J_j x = \begin{cases} x & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \quad (i, j \in \mathbb{N}, x \in \ell_1^J). \tag{2.4}
\]

By definition, we have \(Q_i VTU J_j x = V_i P_i T J_{k_i} U_j x \). For \(i = j \), the diagram in (b), above, shows that this is \(x \). For \(i < j \), we have \(U_j x \in \ker T_{h, k_j} (1 \leq h \leq m_{j-1}) \), and so
\[P_i T J_{k_i} U_j = \sum_{h=m_{i-1}+1}^{m_i} J_h Q_h T J_{k_i} U_j x = \sum_{h=m_{i-1}+1}^{m_i} J_h T_{h, k_j} U_j x = 0. \]

For \(i > j \), \(P_i T J_{k_i} = \sum_{h=m_{i-1}+1}^{m_i} J_h T_{h, k_j} = 0 \) because \(T_{h, k_j} = 0 \) whenever \(h \geq m_j \). This completes the proof of (2.4).

Next we establish (2.3). It is clear that \(\{0\} \subset \mathcal{H}(F) \subset \mathcal{G}_{\ell_1}(F) \) (\(F \) contains \(\ell_1 \) as a complemented subspace, the projection onto which is an example of a non-compact operator in \(\mathcal{G}_{\ell_1}(F) \)). To see that \(\mathcal{G}_{\ell_1}(F) \) is a proper ideal in \(\mathcal{B}(F) \), first note that by Lemma 2.9, if \(I_F \in \mathcal{G}_{\ell_1}(F) \), then \(I_F \in \mathcal{G}_{\ell_1}(F) \), and hence \(F \) would be isomorphic to \(\ell_1 \). It is known, however, that \(F \) is not isomorphic to \(\ell_1 \), although this is by no means obvious. One may for example use that \(\ell_1 \) has a unique unconditional basis up to equivalence (a fact that essentially relies on Khintchine’s inequality), whereas it is easy to see that \(F \) does not have this property.

We now show that the ideals in (2.3) are the only closed ideals of \(\mathcal{B}(F) \). Standard basis arguments show that the identity on \(\ell_1 \) factors through any non-compact operator in \(\mathcal{B}(F) \) (see for example [7, §3]). It follows that for each non-zero, closed ideal \(\mathcal{J} \) in \(\mathcal{B}(F) \), either \(\mathcal{J} = \mathcal{H}(F) \) or \(\mathcal{G}_{\ell_1}(F) \subset \mathcal{J} \).

Suppose that \(\mathcal{J} \) is a closed ideal in \(\mathcal{B}(F) \) properly containing \(\mathcal{G}_{\ell_1}(F) \). Take \(T \in \mathcal{J} \setminus \mathcal{G}_{\ell_1}(F) \), and take \(\tilde{T} \in \mathcal{B}(F) \) with finite columns such that \(T - \tilde{T} \) is compact (cf. [7, Lemma 2.7(i)])). Then \(\tilde{T} \) is also in \(\mathcal{J} \setminus \mathcal{G}_{\ell_1}(F) \). By (the contrapositive of) (i), \(\Rightarrow \), we conclude that \(\sup \{ n_\varepsilon (\tilde{T} J_k) \mid k \in \mathbb{N} \} = \infty \) for some \(\varepsilon > 0 \), and hence (ii), \(\Leftarrow \), implies that \(I_F = VTU \) for some operators \(U \) and \(V \) on \(F \). It follows that \(\mathcal{J} = \mathcal{B}(F) \), as required.

It remains to prove the implications ‘\(\Rightarrow \)’ in (i) and (ii) for each operator \(T \) with finite columns. This is done by contraposition.
(i), ⇒. Suppose that \(\sup \{ n_\vee(TJ_k) \mid k \in \mathbb{N} \} = \infty \) for some \(\vee > 0 \). Then, by (ii), \(\Leftarrow \), there are operators \(U \) and \(V \) on \(F \) such that \(I_F = VTV \), and so \(T \not\in \mathcal{F}_\ell_1(F) \) because \(\mathcal{F}_\ell_1(F) \) is a proper ideal in \(\mathcal{B}(F) \).

(ii), ⇒. This is similar. \(\square \)

In [1, §8] Bourgain, Casazza, Lindenstrauss, and Tzafriri prove that every infinite-dimensional, complemented subspace of the Banach space \(F := (\bigoplus \ell_2^n)_{\ell_1} \) is isomorphic to either \(F \) or \(\ell_1 \). Here we present a new proof of this fact using only the ideal structure of \(\mathcal{B}(F) \). More precisely, we shall deduce it from the dichotomy in Theorem 2.10 for operators in \(\mathcal{B}(F) \) with finite columns.

2.11 Remark. In [7, §6] a new proof is presented for the corresponding result of Bourgain, Casazza, Lindenstrauss, and Tzafriri for the space \(E := (\bigoplus \ell_2^n)_{c_0} \), which says that every infinite-dimensional, complemented subspace of \(E \) is isomorphic to either \(E \) or \(c_0 \). This new proof in [7] relies on a result of Casazza, Kottman and Lin [3] that implies that \(E \) is primary. The result of [3], however, does not show that \(F \) is primary, and so the argument in [7] cannot be used here. The proof we present below uses only the classification result, Theorem 2.10, and it also works for the space \(E \).

We start with an easy strengthening of part (ii) of Theorem 2.10.

2.12 Proposition. Let \(T \) be an operator on \(F \). If \(T \not\in \mathcal{F}_\ell_1(F) \) then there exist operators \(A \) and \(B \) on \(F \) such that \(I_F = ATB \).

Proof. Let \(K \) be a compact operator on \(F \) such that \(T - K \) has finite columns. Note that by the ideal property we have \(T - K \not\in \mathcal{F}_\ell_1(F) \). By Theorem 2.10 there are operators \(U \) and \(V \) on \(F \) such that \(I_F = U(T - K)V \). Thus \(UTV \) is a compact perturbation of the identity, and hence it is a Fredholm operator. It follows that for some \(W \in \mathcal{B}(F) \) the operator \(WUTV \) is a cofinite-rank projection. Since \(E \) is isomorphic to its finite-codimensional subspaces the result follows. \(\square \)

2.13 Theorem. (Bourgain, Casazza, Lindenstrauss, Tzafriri [1]) Every infinite-dimensional, complemented subspace of \(F = (\bigoplus \ell_2^n)_{\ell_1} \) is isomorphic to either \(F \) or \(\ell_1 \).

Proof. Let \(Y \) be an infinite-dimensional, complemented subspace of \(F \), and let \(P \in \mathcal{B}(F) \) be an idempotent operator with image \(Y \). If \(P \in \mathcal{F}_\ell_1(F) \), then by Lemma 2.9 we have \(P \in \mathcal{F}_\ell_1(F) \), and hence \(Y \) is isomorphic to \(\ell_1 \). If \(P \not\in \mathcal{F}_\ell_1(F) \), then by Proposition 2.12 the identity on \(F \) factors through \(P \), i.e., \(F \) is isomorphic to a complemented subspace of \(Y \). We can thus write \(F \sim Y \oplus V \) and \(Y \sim F \oplus W \) for suitable Banach spaces \(V \) and \(W \). We
now use Pełczynski’s decomposition method to show that Y is isomorphic to F.

\[
F \sim Y \oplus V \\
\sim F \oplus W \oplus V \\
\sim (F \oplus F \oplus \ldots)_{\ell_1} \oplus W \oplus V \\
\sim (Y \oplus V \oplus Y \oplus V \oplus \ldots)_{\ell_1} \oplus W \oplus V \\
\sim (Y \oplus V \oplus Y \oplus V \oplus \ldots)_{\ell_1} \oplus W \\
\sim F \oplus W \sim Y,
\]

where we also used the fact that F is isomorphic to $(F \oplus F \oplus \ldots)_{\ell_1}$. \qed

Acknowledgements

This paper was initiated during a visit of the first author to Texas A&M University. He acknowledges with thanks the financial support from the Danish Natural Science Research Council and NSF Grant number ?? that made this visit possible. He also wishes to thank his hosts for their very kind hospitality during his stay.

References

N. J. Laustsen, Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK–2100 Copenhagen Ø, Denmark; e-mail: laustsen@math.ku.dk.

T. Schlumprecht, Department of Mathematics, Texas A&M University, College Station, TX 77843, USA; e-mail: schlump@math.tamu.edu.

A. Zsák, Department of Mathematics, Texas A&M University, College Station, TX 77843, USA; e-mail: schlump@math.tamu.edu and azsak@math.tamu.edu and Fitzwilliam College, Cambridge CB3 0DG, England