ON SIMPLE SPACES

B. SARI, TH. SCHLUMPRECHT, N. TOMCZAK-JAEGERMANN, AND V.G. TROITSKY

For a Banach space X we denote by $\mathcal{L}(X)$ the algebra of all bounded linear operators on X. In this paper we are concerned with norm closed two-sided ideals in $\mathcal{L}(X)$. Banach space X is said to be simple if the set $\mathcal{K}(X)$ of all the compact operators is the only non-trivial proper closed ideal in $\mathcal{L}(X)$. It is known that the spaces ℓ_p ($1 \leq p < +\infty$) and c_0 are simple (see, e.g., [Caradus:74]). No other simple spaces are currently known to the authors.

In this note we consider factorization ideals. In general, the set of all operators in $\mathcal{L}(X)$ that factor through a given Banach space Z need not be an ideal, as it might be not closed under addition. However, the set of all the operators in $\mathcal{L}(X)$ that factor through a power of Z is an ideal. Denote this ideal by $\mathcal{J}_0^Z(X)$, and let $\mathcal{J}^Z(X)$ be the closure of $\mathcal{J}_0^Z(X)$ in $\mathcal{L}(X)$ in the operator norm. Thus, $\mathcal{J}^Z(X)$ is a closed ideal in $\mathcal{L}(X)$.

Lemma 1. The following are equivalent

(i) $\mathcal{J}_0^Z(X) = \mathcal{L}(X)$;
(ii) $I \in \mathcal{J}_0^Z(X)$;
(iii) X embeds complementably into a power of Z;
(iv) $\mathcal{J}^Z(X) = \mathcal{L}(X)$

Proof. The implications (i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(iv) are straightforward. The implication (iv)\Rightarrow(i) follows from the fact that the closure of a proper ideal in a unital Banach algebra is again a proper ideal (see, e.g., [Conway:90, Corollary VII.2.4]). \qed

Remark 2. In the case when $Z \cong Z \oplus Z$, the ideal $\mathcal{J}_0^Z(X)$ coincides with the set of all the operators that factor through Z. Also, in this case the condition (iii) can be replaced with (iii) X embeds complementably into Z.

Proposition 3. Suppose that X is a Banach space and V is a complemented subspace of X. If X doesn’t embed complementably into a power of V, then X is not simple.

Proof. $\mathcal{J}^V(X)$ is a closed ideal in $\mathcal{L}(X)$. It is proper by Lemma \ref{lem:complemented}. To show that $\mathcal{J}^V(X) \neq \mathcal{K}(X)$, let $P : X \to V$ be the canonical projection and let $S : V \to X$ be the inclusion map. Put $T = SP$, then $T \in \mathcal{J}^V(X)$, but $T|_V = \text{id}_V$, so that T is not strictly singular, hence $T \notin \mathcal{K}(X)$. \hfill \Box

Corollary 4. If X is simple then for every complemented subspace $V \subseteq X$, X embeds complementably into a power of V.

In view of Remark 2 we also get the following modification of Corollary \ref{cor:complemented}, the proof is similar.

Proposition 5. If X is simple then X embeds complementably into each of its complemented subspace V satisfying $V \cong V \oplus V$.

Corollary 6. Suppose that X is simple and contains a complemented copy of ℓ_p $(1 \leq p < \infty)$. Then X is isomorphic to ℓ_p.

Proof. Indeed, if V is a complemented subspace of X which is isomorphic to ℓ_p, then, by Proposition 6, X embeds complementably in ℓ_p. Then X is isomorphic to ℓ_p. \hfill \Box

Proposition 7. Suppose that there exists a non-strictly singular operator $T : X \to \ell_p$ for some $1 \leq p < \infty$. Then X contains a complemented subspace isomorphic to ℓ_p.

Proof. Let W be an infinite-dimensional subspace of X such that $T_1 = T|_W$ is an isomorphism. Since every subspace of ℓ_p contains a complemented copy of ℓ_p, then $T(W)$ contains a subspace V isomorphic to
ON SIMPLE SPACES

\[\ell_p \] and complemented in \(\ell_p \). Let \(P: \ell_p \to V \) be a bounded projection, then \(T^{-1}PT \) is a bounded projection from \(X \) to \(T^{-1}V \). Hence, \(T^{-1}V \) is a complemented subspace of \(X \), isomorphic to \(\ell_p \). \(\square \)

Corollary 8. Suppose that a simple Banach space \(X \) has a subspace and a quotient isomorphic to \(\ell_p \) \((1 \leq p < \infty)\). Then \(X \) is isomorphic to \(\ell_p \).

Proof. Let \(q \) be the quotient map from \(X \) onto \(\ell_p \), and let \(S \) be an isomorphism from \(\ell_p \) onto a subspace \(V \) of \(X \). Put \(T = Sq: X \to V \). We can view \(T \) as an element of \(L(X) \). Clearly, \(T \) is not compact. Since \(X \) is simple, then every strictly singular operator is compact, hence \(T \) is not strictly singular either. Then it follows from Proposition \(\text{non-ss} \) that \(X \) contains a complemented copy of \(\ell_p \), so that \(X \cong \ell_p \) by Corollary \(\ell \). \(\square \)

Remark 9. In the statements of Corollary \(\ell \) and \(\ell \), and of Proposition \(\text{non-ss} \), one can replace \(\ell_p \) with \(c_0 \).

Next, we are going to apply previous results to Orlicz and Tsirelson spaces. Recall that an Orlicz function \(M \) is a continuous non-decreasing convex function defined for \(t \geq 0 \) such that \(M(0) = 0 \) and \(\lim_{t \to \infty} M(t) = \infty \). Given an Orlicz function \(M \), the Orlicz sequence space \(\ell_M \) is the space of all sequences of scalars \(x = (a_1, a_2, \ldots) \) such that \(\sum_{n=1}^{\infty} M(|a_n|/\rho) < \infty \) for some \(\rho > 0 \), equipped with the norm

\[\|x\| = \inf\{\rho > 0 \mid \sum_{n=1}^{\infty} M(|a_n|/\rho) \leq 1\}. \]

We will be interested only in isomorphic properties of \(\ell_M \), so we can assume, for simplicity, that \(M(1) = 1 \). In this case, the unit vectors \(\{e_n\}_{n=1}^{\infty} \) form a normalized symmetric basic sequence in \(\ell_M \).

Every Orlicz sequence space \(\ell_M \) contains isomorphs of some \(\ell_p \) or \(c_0 \). By \(\text{Lindenstrauss:77} \), Proposition 4.a.4], \(\ell_M \) is separable \(\iff \ell_M \) does not contain \(\ell_\infty \) \(\iff \{e_n\}_{n=1}^{\infty} \) is a boundedly complete basis for \(\ell_M \).

Corollary 10. Let \(\ell_M \) be a simple Orlicz sequence space. Then it is isomorphic to \(\ell_p \) for some \(1 \leq p < \infty \).
Proof. First we observe that ℓ_M must be separable. Suppose not, then ℓ_M contains ℓ_∞, necessarily complemented because ℓ_∞ is injective. Notice that $L_1(0,1)$ has a subspace isomorphic to ℓ_2 and thus ℓ_2 is a quotient of subspace isomorphic to ℓ_2, it follows from Corollary 8 that ℓ_∞ is simple. Since ℓ_M contains ℓ_∞ complementably, it follows from Proposition 5 that ℓ_M embeds complementably into ℓ_∞, but this contradicts ℓ_∞ being prime.

Thus, we can assume that ℓ_M is separable. Then $\{e_n\}_{n=1}^\infty$ is a symmetric boundedly complete basis for ℓ_M. This implies, in particular, that c_0 doesn’t embed in ℓ_M. It follows that ℓ_M contains ℓ_p isomorphically, for some $1 \leq p < \infty$. If ℓ_M contains ℓ_1 then, since ℓ_1 is injective in Banach spaces with an unconditional basis (see Johnson:74[J74]), we are done by Corollary 8. Finally, if ℓ_M doesn’t contain ℓ_1, but contains ℓ_p for some $1 < p < \infty$, then ℓ_M is reflexive by Lindenstrauss:77[LT77, Theorem 1.c.12(a)]. It follows now from Lindenstrauss:77[LT77, Theorem 4.b.3(iv)] that ℓ_M has a quotient isomorphic to ℓ_p. Thus by Corollary 8, ℓ_M must be isomorphic to ℓ_p. \hfill \square

Note that not every Orlicz sequence space contains a complemented copy of ℓ_p. For the examples of such spaces, see Lindenstrauss:77[LT77, 4.c]. $L_\infty(0,1) \cong \ell_\infty$. Since ℓ_∞ also has a

Proposition 11. If T is the Tsirelson space, then neither T nor T^* is simple.

Proof. It follows from Casazza:89[CS89, Theorem VI.b.4] that there exists a fast increasing subsequence n_k of integers such that the subspace $Z = \text{span}\{e_{n_k}\}_k$ spanned by the corresponding subsequence of the basis does not contain a complemented subspace isomorphic to T. On the other hand, for every subspace Z spanned by a subsequence we have $Z \cong Z \oplus Z$. Indeed, taking any subsequence m_k such that $n_k < m_k < n_{k+1}$ we get another subspace isomorphic to Z, and the subspace corresponding to a subsequence $(n_k, m_k)_k$ is also isomorphic to Z. Formally, letting
$Z_1 = \text{span}\{e_{m_k}\}_k$ we have $Z_1 \cong Z$ and $Z \oplus Z_1 = \text{span}\{e_{m_k}, e_{m_k}\}_k \cong Z$.

Now Proposition 5 implies that T is not simple.

Furthermore, notice that Z^* is a complemented subspace of T^*, and $Z^* \cong Z^* \oplus Z^*$. Since T is reflexive, we conclude that T does not embed complementably into Z^*. Hence, T^* is also not simple by Proposition 5.

If Z is a Banach space, we use the following notation:

$$\ell_p(Z) = \left(\bigoplus_{i=1}^{\infty} Z \right)_p \quad \text{and} \quad \ell_p^n(Z) = \left(\bigoplus_{i=1}^{n} Z \right)_p.$$

Now consider $\mathcal{J}_0^{\ell_p^n(Z)}(X)$ and $\mathcal{J}^{\ell_p^n(Z)}(X)$. Since $\ell_p(Z) \cong \ell_p(Z) \oplus \ell_p(Z)$, Remark 2 implies that $\mathcal{J}_0^{\ell_p^n(Z)}(X)$ is the set of all operators that factor through $\ell_p(Z)$. Again, $\mathcal{J}^{\ell_p^n(Z)}(X)$ is proper if and only if $\mathcal{J}_0^{\ell_p^n(Z)}(X)$ is proper.

Proposition 12. If X is simple then $\ell_p(V) \cong \ell_p(X)$ for every complemented subspace V in X and every $1 \leq p < \infty$.

Proof. Suppose that X is simple and V is a complemented subspace of X. Then $\ell_p(V)$ is a complemented subspace of $\ell_p(X)$, so that $\ell_p(X) = \ell_p(V) \oplus Z_1$ for some Z_1. On the other hand, it follows from Corollary 4 that X embeds complementably into $\ell_p(V)$, so that $\ell_p(X)$ embeds complementably into $\ell_p(\ell_p(V)) \cong \ell_p(V)$. Thus, $\ell_p(V) \cong \ell_p(X) \oplus Z_2$. Now, using Pelczyński’s Decomposition method, one can prove a Schröder-Bernstein-type statement that $\ell_p(V) \cong \ell_p(X)$. Indeed,

$$\ell_p(X) \oplus \ell_p(V) \cong \ell_p(X) \oplus \ell_p(X) \oplus Z_2 \cong \ell_p(X) \oplus Z_2 \cong \ell_p(V),$$

and

$$\ell_p(V) \oplus \ell_p(X) = \ell_p(V) \oplus \ell_p(V) \oplus Z_1 \cong \ell_p(V) \oplus Z_1 = \ell_p(X).$$

Suppose that $T \in \mathcal{J}_0^Z(X)$, then T factors through Z^n for some n. Since $Z^n \cong \ell_p^n(Z)$, then T factors through $\ell_p(Z)$. It follows that $\mathcal{J}_0^Z(X) \subseteq \mathcal{J}_0^{\ell_p^n(Z)}(X)$ and, therefore, $\mathcal{J}^Z(X) \subseteq \mathcal{J}^{\ell_p^n(Z)}(X)$.
Proposition 13. Suppose that ℓ_p doesn’t embed complementably into X for some $1 \leq p < \infty$. Then for every Banach space Z, $J^Z(X)$ is proper if and only if $J^{\ell_p(Z)}(X)$ is proper. The same statement is valid with ℓ_p replaced with c_0.

In the proof of Proposition 13 we will need the following result.

Theorem 14. Suppose that $1 \leq p \leq \infty$ and $\{X_i\}$ is a sequence of infinite-dimensional Banach spaces. Put $X = \bigoplus_{i=1}^{\infty} X_i$ if $p < \infty$, or $X = \bigoplus_{i=1}^{\infty} X_i$ if $p = \infty$. If Y is a complemented subspace of X then either ℓ_p (respectively, c_0) embeds complementably into Y, or Y actually embeds complementably into a finite sum $\bigoplus_{i=1}^{n} X_i$ for some n.

Proof of Proposition 13. Since $J^Z(X) \subseteq J^{\ell_p(Z)}(X)$ is always true, we only need to prove that if $J^{\ell_p(Z)}(X) = \mathcal{L}(X)$ then $J^Z(X) = \mathcal{L}(X)$. In view of Lemma 1, it suffices to show that if $J^{\ell_p(Z)}_0(X) = \mathcal{L}(X)$ then $J^Z_0(X) = \mathcal{L}(X)$. Suppose $J^{\ell_p(Z)}_0(X) = \mathcal{L}(X)$, then by Lemma 1 X embeds complementably into $\ell_p(Z)$. By Theorem 14 we conclude that X embeds complementably into $\ell_p^n(Z)$ for some n, so that $J^Z_0(X) = \mathcal{L}(X)$ by Lemma 1.

Proof of Theorem 14. For an integer $n \geq 1$, let $P_n : X \to X$ be the natural projection onto $\bigoplus_{i=1}^{n} X_i$. By $Q : X \to X$ denote a bounded projection onto the subspace Y. It is clear that at least one of the following two cases holds.

(I): $\exists \delta \exists m_0 \parallel QP_m y \parallel \geq \delta \parallel y \parallel$ for all $y \in Y$.

(II): $\forall \varepsilon > 0 \forall m \exists y \in Y \parallel QP_m y \parallel \leq \varepsilon \parallel y \parallel$.

Case (I): First note that for all $y \in Y$ one has $\delta \parallel y \parallel \leq \parallel QP_m y \parallel \leq \parallel P_m y \parallel \parallel Q \parallel$, so that

$$\text{eq-1} \quad \parallel P_m y \parallel \geq \delta_1 \parallel y \parallel \quad \text{for all } y \in Y,$$

where $\delta_1 = \delta/\parallel Q \parallel$. Set $F = P_{m_0}(Y)$ and $T = P_{m_0} | Y$. Then (1) immediately implies that $T : Y \to F$ is an isomorphism from Y onto F.
and $\|T^{-1}\| \leq \delta_1^{-1}$. Let $S = P_{m_0}Q|F$. Then $S : F \to F$ and we have

\begin{equation}
\tag{2}
\|Sf\| \geq \delta_1\|f\| \quad \text{for all } f \in F.
\end{equation}

Indeed, let $f \in F$ and let $f = P_{m_0}y$ for some $y \in Y$. Then, by \eqref{eq:1},

\[\|Sf\| = \delta_1\|QP_{m_0}y\| \geq \delta_1\delta\|y\| = \delta_1\delta\|f\|.
\]

Thus \eqref{eq:2} implies $\|S^{-1}\| \leq (\delta\delta_1)^{-1}$. Consider the operator $\tilde{Q} = S^{-1}P_{m_0}Q : X \to F$. Clearly, \tilde{Q} is a projection from X onto F and $\|\tilde{Q}\| \leq (\delta\delta_1)^{-1}\|Q\|$. Thus F is isomorphic to Y and complemented in X, in this case.

Case (II): Let $R_n = I - P_n$. First observe that if a vector $y \in Y$ satisfies condition (II) then we also have

\begin{equation}
\tag{3}
\|R_{m}y\| \geq (1 - \varepsilon)\|Q\|^{-1}\|y\| =: c\|y\|.
\end{equation}

Indeed, $\|QR_{m}y\| \geq \|Qy\| - \|QP_{m}y\| \geq (1 - \varepsilon)\|y\|$; and on the other hand, $\|QR_{m}y\| \leq \|Q\|\|R_{m}y\|$.

Assume for simplicity that $\varepsilon = 0$ in condition (II) and that all vectors and functionals involved in the remaining part of the argument have always finite support. The general case follows from this by a standard approximation. Under this additional assumption, condition (II) says

\begin{equation}
\tag{II'}
\forall m \exists y \in Y \text{ } QP_{m}y = 0.
\end{equation}

Construct by induction a sequence of integers $0 = n_0 < n_1 < n_2 < \ldots$ and sequences of vectors $\{u_j\}$ in Y and of functionals $\{u^*_j\}$ in X^* such that for every $j = 1, 2, \ldots$ we have

\begin{enumerate}
 \item $\|u_j\| = 1$, and $QP_{n_{j-1}}u_j = 0$, $R_{n_j}u_j = 0$, and $\|R_{n_{j-1}}u_j\| \geq c$;
 \item $\|u^*_j\| = 1$, $u^*_j(u_j) \geq c$, and $P^*_{n_{j-1}}u^*_j = 0$, $R^*_{n_j}u^*_j = 0$, and

\end{enumerate}

\begin{equation}
\tag{u-star}
R^*_nQ^*u^*_j = 0 \quad \text{whenever } n \geq n_j.
\end{equation}

Indeed, given n_{j-1}, let u_j be any norm 1 vector satisfying condition (II’) for $m = n_{j-1}$, and let n' be such that $R_{n'}u_j = 0$. Then by \eqref{eq:3}, conditions \eqref{u-star} are satisfied whenever $n_j \geq n'$.

Let u^*_j be a norming functional for $R_{n_{j-1}}u_j$, so that $P^*_{n_{j-1}}u^*_j = 0$, $R^*_{n'}u^*_j = 0$ and $\|u^*_j\| = 1$, and $u^*_j(u_j) = u^*_j(R_{n_{j-1}}u_j) = \|R_{n_{j-1}}u_j\| \geq c$.

Finally, let $n_j \geq n'$ be an integer such that $R^*_nQ^*u^*_j = 0$. It follows that $R^*_nQ^*u^*_j = 0$ still if $n \geq n_j$. It is clear that (II) is satisfied.
We shall show that \(\{u_j\} \) is equivalent to the unit vector basis in \(\ell_p \), and its span is complemented in \(X \).

Set \(w_j = R_{n_{j-1}}u_j \), for \(j = 1, 2, \ldots \). By (4) we have \(Qu_j = Qw_j \) and \(w_j \) is supported on the (open) interval \((n_{j-1}, n_j)\), for \(j = 1, 2, \ldots \). Let \(\{a_j\} \) be a finite sequence of scalars. Then

\[
\| \sum_j a_j u_j \| = \| \sum_j a_j Q u_j \| = \| \sum_j a_j Q w_j \| \leq \| Q \| \| \sum_j a_j w_j \| \leq \| Q \| \left(\sum_j |a_j|^p \right)^{1/p}.
\]

To get the lower \(\ell_p \)-estimate, fix a finite sequence of scalars \(\{a_j\} \). For an arbitrary finite scalar sequence \(\{b_j\} \) set \(x^* = \sum_j b_j u_j^* \), and consider \(x^*(\sum_k a_k u_k) \).

Fix \(k = 1, 2, \ldots \). Since \(u_j^* = R_{n_k} u_j^* \) and \(R_{n_k} u_k = 0 \) for \(j > k \), we infer that \(u_j^*(u_k) = 0 \) for all \(j > k \). If \(j < k \), then (4-star) yields \(Q^* u_j^* = P_{n_{k-1}}^* Q^* u_j^* \), while (4) implies \(Q P_{n_{k-1}} u_k = 0 \). Therefore,

\[
u_j^*(u_k) = u_j^*(Q u_k) = Q^* u_j^*(u_k) = P_{n_{k-1}}^* Q^* u_j^*(u_k) = u_j^*(Q P_{n_{k-1}} u_k) = 0.
\]

Thus, \(x^* (\sum_k a_k u_k) = \sum_k a_k b_k u_k^* (u_k) \). Since \(u_k^*(u_k) \geq c \) for all \(k \), choosing an appropriate sequence \(\{b_k\} \) with \(\sum_k |b_k|^{p'} = 1 \) we get

\[
c \left(\sum_k |a_k|^p \right)^{1/p} \leq \sum_k a_k b_k u_k^* (u_k) \leq \| x^* \| \| \sum_k a_k u_k \|.
\]

(Here \(1/p + 1/p' = 1 \), for \(p > 1 \) and \(p' = \infty \), for \(p = 1 \), with an appropriate interpretation of the \(\ell_p' \)-norm.)

Finally note that since \(u_j^* \) is supported on the (open) interval \((n_{j-1}, n_j)\), for \(j = 1, 2, \ldots \), for any finite scalar sequence \(\{b_j\} \) we have \(\| \sum_j b_j u_j^* \| \leq \left(\sum_j |b_j|^{p'} \right)^{1/p'} \); hence \(\| x^* \| \leq 1 \). Thus

\[
c \left(\sum_k |a_k|^p \right)^{1/p} \leq \| \sum_k a_k u_k \|.
\]

To show that \(\text{span}\{u_j\} \) is complemented, set \(w_j^* = u_j^*/u_j^*(w_j) \), for \(j = 1, 2, \ldots \). Then \(\| w_j^* \| \leq 1/c \) for all \(j \), and for any finite scalar
sequence \(\{b_j\} \) we have

\[\left\| \sum_j b_j w_j^* \right\| \leq (1/c) \left(\sum_j |b_j|^p \right)^{1/p}. \]

(5)

Define an operator \(\widetilde{Q} : X \to \text{span}\{u_j\} \) by \(\widetilde{Q}x = \sum w_j^*(x)u_j \), for \(x \in X \). For all \(j \) we have \(u_j^* = R_{n_j-1} u_j \), and hence \(w_j^*(u_j) = 1 \).

As before, \(w_j^*(u_k) = 0 \) whenever \(k \neq j \), \(j, k = 1, 2, \ldots \). Thus \(\widetilde{Q} \) is a projection. The following estimate for the norm \(\|\widetilde{Q}\| \) is standard.

Let \(x \in X \). For an appropriate scalar sequence \(\{b_j\} \) satisfying \(\sum_j |b_j|^p = 1 \) we have, using inequalities (4) and (5),

\[\|\widetilde{Q}x\| \leq \|Q\| \left(\sum_j |w_j^*(x)|^{p'} \right)^{1/p'} = \|Q\| \left| \sum_j b_j w_j^*(x) \right| \]

\[\leq \|Q\| \left\| \sum_j b_j w_j^* \right\| \|x\| \leq (1/c) \|Q\| \|x\|. \]

So \(\|\widetilde{Q}\| \leq (1/c)\|Q\| \), and this completes the proof. \(\Box \)

REFERENCES

