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Foreword

It began with an error: I. Gelfand [21, I §2, Satz 1] and S. Mazur (cited from
(38, p.22]) independently stated the following assertion:

A subset A of a Banach space X is relatively compact if and only if each
w*-zero sequence of the dual X' converges uniformly on A.

(We have formulated the assertion using modern terminology).

It is easy to see that on a relatively compact set C C X, every weak*-zero
sequence converges uniformly. Indeed, let € > 0 be arbitrary. Then there are
finitely many z,,22,...,zn € X such that C C |J, zi + B.(X). This implies
that limu_cosup ec [{#h, )] < esup,en || 2 || for each weak*-zero sequence
(zp:n €IN) € X', and thus, the assertion, since a weak*-zero sequence in the dual
of a Banach space is bounded.

However, it was observed by R. S. Phillips [46, p.525, line 6] that the converse
ia not true. He showed [46, p.539, 7.5 and preceding remarks| that on the unit-basis
of ¢, viewed as subset of £, all weak®*-zero sequences of £/ converge uniformly.
Nowadays, this observation can easily be deduced from two results, both proven
by A. Grothendieck [22, p.139, Theorem 1 and p.168, Theorem 9], which state
that C(K)-spaces (and £ is representable as a C(K)) enjoy the Dunford-Pettis
property, which means that all (£, £ })-zero sequences converge uniformly on
0(£oo, £, )-compact sets, and also that o (€L, £ )-convergence of sequences implies
o(€.,, €y, )-convergence. '

G. Kothe [37, p.196, Definition] introduced the notion "begrenzt” for subsets
A of locally convex spaces E having the property that each o(E', E)-zero sequence
converges uniformly on A. Grothendieck [24] translated this notion into "limited”.
Thus, we will call a subset A of a Banach space X limited in X or X-limited if
each a(X', X)-zero sequence converges uniformly on A4, i.e. if

.P—'néof‘e'ﬁ [{zi,,%)| =0  whenever x’nnj:oﬁ ino(X', X).

Following J. Diestel [8] we will call a Banach space X a Gelfand- Phillips space or
say that X has the Gelfand-Phillips property , if all X-limited sets are rélatively
norm-compact.

‘" Before we begin the discussion of these ideas, we want to give a short survey of
1. .Gelfand’s arguments because they lead us to the important difference between
limitedness and various types of compactness, namely norm, weak and condi-
tional weak compactness, He first observed that limited sets of Banach spaces



are bounded. Indeed, if A C X is unbounded, we find a norm-zero sequence
(z!,:n € N) C X' such that limsup,,_ . sup,ea(zh,z) # 0. He also observed,
and this was still correct, that each limited set in a separable space is relatively
compact. He deduced this by using the fact that a separable Banach space can
be isometrically embedded in a C(K)-space, where K is compact and metrizable,
and then applying the theorem of Arzeld and Ascoli. His final step was to make
the following conclusion (we translate literally):

Since any countable set z;,z3... can be embedded in a separable space E,
this part of the theorem (that limitedness implies compactness) is proven. '

This is the crucial point: it is, in general, not true that if ¥ is a subspace of X,
then each o(Y',Y)-zero sequence converges uniformly on a subset A C Y if each
o(X', X )-zero sequence converges uniformly on A. Here we arrive at the important
difference between limited sets and the above mentioned types of compactness,
Norm, weak and conditional weak compactness are properties of the appropriate
topology restricted to A. Limitedness for an 4 C X depends not only on the set
itself and its topology, but also on the space in which we cpn‘sider A. Therefore,
it is al_wayé_ necessary to specify the space in which we are seeking the limitedness

&ii;n' set. v _
ur investigations on limited sets in Banach spaces can be divided into the
following four categories: '
1) Limitedness and compactness. °
2) Limitedness and geometric properties.
3) Limitedness in C(K)-spaces.

4) Limitedness in combinations of Banach spaces.

Limitedness and compactness

In section (1.1) (Lemma (1.1.5)), we recall a result due to J. Bourgain and
J. Diestel _[,4!], who deduced from Rosenthal’s ¢; theorem (see (0.2.2)) that the
limited sets in any Banach space are weakly conditionally compact. We observe
(Proposition (1.1.7)) that Grothendieck spaces X which enjoy the Dunford-Pettis
property have the property that, conversely, every conditionally weakly compact
subset of X is X-limited.

In (1.2), we will formulate sufficient conditions of a Banach space to have
the Gelfand-Phillips property. The most general condition is the following one
(Proposition (1.2.2)((c) =(d))):




If the dual unit ball By(X') of a Banach space X contains a weak®-

sequential pre-compact subset D which norms the elements of X up to a

constant ¢ > 0 (i.e. if || z||< esuprep |(z',2)| for each z € X), then X

has the Gelfand-Phillips property. _ .

This easily proven statement leads us to our first examples of Gelfand- Phnlhps
spaces (Examples (1.2.4) and (1.2.5)). We observe, for example, that weakly
compactly generated Banach spaces, Banach lattices not containing ¢, and C(K)-
spaces, with K containing a dense and sequentially pre-compact subset, are all
Gelfand-Phillips spaces. In section (5.3), we show that the above condition is not
necessary for the Gelfand-Phillips property of a Banach space (Theorem (5.3.3)).

J. Bourgain and J. D1estell4] ‘discovered that limited sets are relatively weakly
compact in any Banach space which does not contain ¢;. We will generalize this
result by showing that limited sets are relatively weakly compact in any Banach
space X whose dual does not contain a copy of L;({0,1}*1) (Corollary (2.3.3)).
.. This result will be discussed in more detail in the next category..

Limitedness and geometric properties

Already the definition of limited sets indicates a close relationship between
limitedness in a Banach space X and sequential convergence in the weak* topologf
of its dual X'. Thus, it is natural that our investigations are related to those of
_ [25, 26, 27, 31, 34, 35] which treat the relationship between weak*-convergence

‘of sequences in X' and geometric properties of X and X', like the property of X
containing & (I") and of X' containing L,({0,1}").

On the one hand, R. Haydon [31]} found an example of a Banach space which
shows that the failure of the w*-sequential compactness of B;(X') does not imply
that X contains £,(T") for an uncountable set I'.- By modifying this example, J. Ha-
gler and E. Odell [25] showed that the failure of the w‘-seqﬁential compactness of
B,(X") does not even imply that X contains ¢;. By sharpening the construction
of R. Haydon [31] and applying the factorization method of W. J. Davis, T. Figiel,
W.B. Johnson, and A. Pelczinsky [7}, we will give an example of a Banach space
which does not contain £, and does not have the Gelfand-Phillips property (The-
orem (5 2.4)).

On the other hand, J. Hagler and W B. Johnson [26] showed that a Banach
space X, admitting in its dual a bounded sequence which has no w*-convergent
absolutely convex block basis (in Definition (2.1.1) we will consider this property
as a property of X and denote it by (ACBH)), contains a copy of ¢;. R. Haydon




[34] sharpened this resul} by showing that (ACBH) implies that X' contains a copy
of Ly({0,1}*!). In-{26] and [34], it was observed that non-reflexive Grothendieck
spaces enjoy the property (ACBH), Iﬁéf%, J. Bourgain and J, Diestel observed a
similar condition for Banach spaces having limited sets which are not relatively
weakly compact: to prove their result (6 ¢ X = all limited sets of X are rela-
tively weakly compact), they showed first that any space X which contains limited
sets that are not relatively weakly compact must admit bounded sequences in X'
which do not have w*-convergent convex blocks (we will denote this property by
(CBH)). In chapter 2 (Theorem (2.1.3)), we will prove the following generaliza-
tion of R, Haydon's result, which leads to a generalization of J. Bourgain's and.
J. Diestel’s result: .
A dual space which contains a bounded sequence without a weak® con-

vergent convex block contains a copy of L1 ({0,1}*1).

Limitedness in C(K)—~spaces

Since each Banach.space can be isometrically embedded in a C(K)-space
(where K }s';ompact), the investigation of limited sets in C(K)-spaces is of special
interest, -

" In (3.1) (Theorem (3.3)), we will show how to construct from a given limited
and not relatively compact set A C C(X) a normed limited sequence
(fa:n €IN) C C(KX) which consists of positive elements with pairwise disjoint
supports. Together with the result in (1.3) (Theorem (1.3.2)), where we will show
that for a sequence (zn:n € IN) in X which is equivalent to the unit-basis of c.,
limitedness is equivalent to the condition that no subépace generated by a sub-
sequence of (z,:n € IN) is complemented in X, we deduce a characterization of
the Gelfand-Phillips property of C(K)-spaces. Moreover, we will have reduced the
problem of limitedness in C(K)-spaces to the limitedness of positive sequences in
C(K) with pairwise disjoint supports. .

In the second part of chapter 3, we provide some auxiliary results which will
be needed in the sequel. They deal with the following question: Suppose that
(fa:n € IN) C C(K) is weakly conditionally compact but not limited. Which
additional properties can a weak*-zero sequence (un:n € IN) have, for which

+) . limsup |{pin, fa)| > 07
neN

We arrive at the following result (Corollary (3.2.5)):




‘Suppose that A C C(K) is weakly conditionally compact and not limited.

Consider, moreover, a sequence (Fn:n € IN) of closed and pairwise dis-
joint subsets of K with the following property: For any disjoint infinite
Ny, N2 C IN there are infinite Ny C Ny and N2 C N, such that m

and U, ¢, Fu are disjoint.

Then a o(C(K), C(K)')-zero sequence (p,: n € N) and a subsequence
(kn:n € NY of N can be chosen such that infaen{pn, fr.) > 0 and,
-moreover, such that the support of each py, has an open neighborhood O,
for which (On:n € IN) is pairwise disjoint and O, N m =0
for eachn € N,

This result leads us to some sufficient conditions for the limitedness of sequences in
C(K) with pairwise disjoint supports which depend only on topological properties
of K (Theorem (3.3.1)). Since they are rather technical, we present a special case:

-Suppose that (fo:n € IN) is 2 normed sequence of positive elements in

C(K) with pairwise disjoint supports, and suppose moreover that it is
subsequentially complete, i.e. that each subsequence of (f,: n € IN)

contains a subsequence which admits a supremum in C(K). Then

(fn:n €N) is limited in C(K).

It is easy to see that C(K) has the Gelfand-Phillips property if K contains

a dense sequentially pre-compact subset D. The question of L. Drewnowski as
to whether or not the Gelfand-Phillips property of a C(K') implies, conversely,
that K contains such a D will be answered negatively by the example in Theorem
(5.3.4). Under the continuum hypothesis, we will even construct a C(X)-space
enjoying the Gelfand-Phillips property such that each convergent sequence of K
is eventually stationary (Theorem (5.4.7)). These two examples indicate that
the relationship between the Gelfand-Phillips property of a C(K')-space and the

. topological properties of K are not obvious.

Limitedness in combinations of Banach spaces
It is well known that a bounded and pointwise converging net (T; : ¢ € I) of
operators between two Banach spaces X and Y converges uniformly on compact
subsets of X. In Proposition (1.1.2), we note that the same is true for pointwise
convergent sequences of operators and X-limited sets. It is also well known that,
given a bounded net (T} : ¢ € I) C L(X,X) which converges pointwise to the
identity on X, a set A C X is relatively compact if and only if T;(A) is relatively
compact for each : € I and if, moreover, T; converges uniformly on A. This




argument may not, in general, be transferred to limitedness (Example (4.14)).
However, we will show that if, moreover, (T; : i € I) is sequentially complete,
i.e. if for each increasing (in:n € IN) C I the sequence (T},) converges pointwise,
then a set A C X is limited in X if and only if T; converges uniformly on 4
and if, for each { € I, Ti(A) is limited in T;(X). This observation leads in some
cases to satisfying characterizations of limited sets (c.f. section (4:2)). So we can
characterize the limited sets of Ly(u,X), 1 < p < oo, and M(u, X) (see Example
(4.2.4)) by the limitedness in X. In spaces admitting a Schauder decomposition,
we can characterize the limited sets by limitedness in the components. We also
arrive at the corresponding hereditary results for the Gelfand-Phillips property.

We also deal with the problem of characterizing limited sets in tensor prod-
ucts, .in particular, in injective tensor products. 'We recall the known result
that a subset A of X®Y is relatively compact if and only if A(By(Y")) :=
{z(¥')z € Ay € Bi(Y")} (C X) and A(Bi(X')) (C Y) are relatively com-
pact. We will show that this result about compactness can only be transferred to
limitedness in special cases (Proposition (4.4.2) and Examples (4.5.5)) and leads,
in general, only to a necessary condition for limitedness in X®Y. Thus, we are
interested in additional necessary conditions for limitedness in X&Y. To do this,
we need the following two results. ‘ v

In section (1.1) (Proposition {1.1.10}), we formulate a necessary condition for
limitedness in X by boundedness with respect to other norms defined on dense

subspaces: . .
Let V be a dense subspace of X and let |- || be a norm on V which is
finer then || - ||. Then each limited set A in X (= (X,|-])) is nearly

bounded with respect to |j - ||, i.e. for each e > 0, there is a § - J|-bounded

A, CV such that A C A, + BAX,||-]])-

Applying this argument to V := X @ Y and letting | - | be the projective
norm on X ® Y, we deduce that

a) limited sets in the injective tensor product XQY are :iear]y bounded in the

projective tensor norm. v
Secondly, we demonstrate (Theorem (4.3.2)) the following argument concerning
sequences in LS (u, X) (the space of the p-essentially bounded and y-measurable
functions f : @ — X having p-essentially separable images, where (2,3, 1) is a
positive measure-space):

Let (fa:n €IN) € LS (1, X). Then (at least) one of the following cases




wxﬂ hold:
Case 1: There is a subsequence (f,.. neN), Ne Poo(IN), such that for
»any £> 0 there is a countable E-partition 7 of Q for which the essential
oscxﬂatmn o!' each fayn € N, on each B € 7 is not greater than e.

’ ~-Case 2: There is an £ > 0, a subsequence (k,..n €IN) of N, and a tree
. _(vA(n', in e No,i€ {1,.,2"}) C T of sets with strictly positive measure
.such, that ‘the essent:al oscillation of f, on A(n,i) is not greater than
"6/4 but the essential distance between A(n,2;) and A(n,2j — 1) under
) S is at least € (compare Deﬁmtxon (4.3.1)(b)).

This result is related to Rosenthal’s ¢; theorem and its proof: If we assume
that X = IR and that (fa: n € IN) is bounded, the first case implies that
(fs: n € IN) contains a weak Cauchy subsequence, while the second case im-
plies that (fa:n € IN) contains a subsequence equivalent to the unit-basis of &;. It
“leads us to the following necessary condition for limitedness in XQY:

b) Let Kx and Ky be two compacts such that X and Y can be embedded

in C(K x) and C(Ky) respectively, and consider XQY as a subspace of

Loo(Ex x By ), where ©x and and Ly are the Borel sets of Kx and Ky

respectively. Then an X®Y -limited set A has the following property:

For each (fn:n € N) C A, thereisa subsequénce (fa:n€N), N € Poo(IN),

such that for each ¢ > 0 there exists a countable X x-partition X and

a countable Ly partition ¥ of Kk and Ky respectively, such that the

. oscillation of each fu, n € N, on each rectangle B'x B € 7% x «¥ is not

greater than e.

In section (4.5.), we will show that, in the case where X and Y are C(K)-
spaces with the Grothendieck property, (a) and (b) are already sufficient for lim-
itedness in XY ‘
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0. Preliminaries
0.1 _Notations

i Let N = {1,2,3,...} and Ny ;= N U {0}. R represents the real numbers,
whxle IR* and Ry are the positive and non negative real numbers respectively.
o “The cardinality of a set T is denoted by |T'}. P;(T") and Poo(T) denote the set
of all finite and infinite subsets of I respectively, whereas P(I") denotes the power
set.of I'. For A C T, we denote the complement of A in T by I'\ 4 or, if there are
no ambiguities, by A€ . x4 : ' — IR will denote the characteristic function on A.

Ord is the class of all ordinals. We make use of the principle of transfinite
induction [55, p.195, Theorem schema 1], the elements of ordinal arithmetic [55,
p-205, §7.2], the order topology on ordinals [47, p.53, Beispiel 5.3], and the fact

" that, by the axiom of choice, every set can be well-ordered [55, p.242, Theorem 6]
and that, conversely, every well-ordered set: is order isomorphic to a unique or-
dinal {55, p.234, Theorem 81]). The first infinite ordinal is denoted by we, the
first uncountable ordinal by w,, and the first ordinal with the cardinality of the
continuum'by We. T

In a topological space (T, T), A isthe open kernel and A7 is the closed hull
of an A C T; if the context is clear, they are also denoted by /; and 4 respectively.
Compact spaces are always assumed to be Hausdorfl. A set A C T is relatively
compact, respectively relatively sequentially compact, if A is compact, respectively
sequentially compact; A is called T-sequentially pre-compact if every sequence in A
has a T-convergent subsequence, Moreover, if (T, F) is a uniform space, A is called
conditionally T -compact if every sequence in A contains a Cauchy subsequence (in
fact, it would be more precise to say " conditionally sequentially 7- compact”, but
we reserve this terminology for the weak topology where ”conditionally compact”
is more common).

In a normed space (X, || . ||), X' denotes the continuous dual of X. The
dual norm on X', as well as the operator-norm of linear and bounded operators
T: X — X, is denoted by ||:||. The closed ball in X with radius r > 0 and center
0, i.e. the set {z € X | |jz||< r}, is denoted by B,(X,|l.]|) or B,(X).

For a subspace V of X', a(X , V) is the coarsest topology on X such that the
elements of V are continuous. We also call o(X, X') the weak topology on X and
a(X', X) the weak® topology on X' and abbreviate them by w and w*. All topo-
logical notations on normed spaces, when no topology is specifically mentioned,
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refer to the norm topology.

From now on X and Y always denote Banach spaces with the norm ||.||. All
Banach spaces are taken to be linear spaces over the real field R. For an IR-linear
space V and A C V, co(4) and aco(A) are the convex hull and the absolutely
convex hull of A respectively. The linear space generated by A is denoted by
span(A4). We say that a Banach space X is generated by A C X if span(4) = X.
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0.2 Speciél spaces

*The Banach spaces ca, ¢o(T), £p, &4(T'), Ly(1) and C(K), where T is any set,
‘1 Sp <o, (2, X, u) is a measure space, and K is a compact space, are defined
We deuote the usual unconditional unit- basxs (compare [54, p.577, Definition
k 17 4]) of ll(l‘) and ¢o(T') by (em :v€l’) and (e :v€T") respectively. They have the
: _followmg properties:
' ,0.2 1 Proposmon. Let T be a set.
a) A ‘bounded family (z.:4€T’) C X is equivalent to (e(l)"‘/eI‘), i.e. there exists
" an xsomorpluc embedding T : £,(1') — X which maps eﬂ, ) to ., iff there exists

w.a¢>0, such that for every F € P4(T') and every family (ay :y € F)CR:

1 a2 e Y o

~EF ~YEF

b) 'A bounded family (z,:4€l") C X is equivalent to (e(o) y€T) iff there exist
... € > ¢ >0, such that for every F € Pf(T') and every family (a, : 7 € F) CR:

cmax lay] <) Z ayzq || < Cma.x lax]
YEF

" The following result, due to H. P. Rosenthal, is frequently used and is espe-
cially important for our purpose.
'0.2.2 Theorem: [9, p-201, Rosenthal’s £, Theorem]
If a bounded sequencé (zn:n € N) C X has no o(X,X')-Cauchy-subsequence,
. then it has a subsequence which is equivalent to ‘(es.l):n eN).

N " For a compact space K, M(K) denotes the Banach space of all regular Borel
‘ ‘measures with the variation norm. By the representation theorem of Riesz [15,

" p.265, Theorem 3], the map T': M(K) — C(K)', defined by T(u)(f) := [ fdu for
p € M(K) and f € C(K), is an isometric isomorphism; in this way, M(K ) may be
‘identified with the dual of C(K). For £ € K, & is the Dirac measure in §. Further
notations for the space M(K) (= M(K,IR)) can be found in (0.3)(c).
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0.3 Combinations of Banach spaces
a) C(K,X)

For a compact space K, let C(K, X) be the space of all continuous functions -
f: K — X with the norm || f [l:= supgeg [| F(€)ll. This space is generated by the -
set G := {gz|z € X, g € C(K)} and is isometrically isbmérphic to the injective -
tensor product (comp. (0.3)(d)) of C(K) and X [53, p.357, Theorem 20.5.6]. Thus,
the notation g ® z has meaning for elements of G and it avoids ambiguities if X is
also a space of continuous functions. If X = C(f( ), where K is a compact space, :
we recall [53, p.357, Theorem 20.5.6.] that the spaces C(K C(K)), C(K C(K )
‘and C(X x K) are isometrically isomorphic.

For f€ C(K,X), the support of f is defined by supp(f) := {€ € K | f(£) # 0},
the norm-function of f by || f(.) |I: K>¢ H" S ||, and for z' € X' we define
{=',f) 1 K 3 £ (2!, £(€))-

b) The spaces Ly(,X) and L& (1, X)

For a positive measure space (@,Z,x) and 1 < p < oo, let Ly(g, X) be the
Banach space of all Bochner integrable functions on (@2, I, u) with values in X (see -
(11, p.17 and p.222]) and let Loo(p, X) be the épace of all u-measurable, essentially
bounded functions with values in X (see (11, p.161]).

The subspace of Lo (g, X) consisting of all members with essentially seperable
range, i.e. the Banach space generated by

{ S oo,

neN

(zn:n €IN) C X is bounded and }

(Bp:n €IN) C I pairwise disjoint !

will be denoted by LS, (u#, X). We remark that Loo(p, X) = LE (¢, X) whenever

 is o-finite. If p is the counting-measure on (2,5) (u(A) = |A] if |A] < oo and
p(A) := oo if not), we put LS (%, X) := L (4, X). Finally, we remark that for a .

compact space I, C(J{, X) is a subspace of L, (Z, X) provided T is the o- algebra

of the Borel sets of K.

c) M(K, X) :

Vector measures are always assumed to be g-additive and to be defined on
o-algebras [10, p.2, Definition 1]. If u is an X-valued measure on a o-algebra & on
a set 2, |y| : ¥ — R is the variation of g [10, p.2, Definition 4]; y is said to have
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: fmiation if |pl(R) < co. In this case, |y| is a finite positive measure {10, p.3,
osition 9. For an X-valued measure s on (€, £) and an f € Ly(|u]) define

fp:Z—-X, AH/fd/l.
A

1(Q) =||FlI< o0, f.u is an X valued vector measure of finite variation.
ow:let K be a compact space and let 4 be an X-valued measure of bounded
on:on the Borel o-algebra T of K. The support of p is defined by

upp(4) := supp(lul) := [J(C|C C K compact and [u|(C) = |ul(K)}.

is'said to be regular if |u] is regular, i.e. if for every ¢ > 0 and A € I there
Xists ‘s compact C C A and an open O D A such that |u|[(0\C) <e.

We denote the space of all X-valued regular Borel measures on K by M(K, X),
nach s_p_épe_ under the variation norm. If X =Y, then the operator

M(K, X) = C(K,YY, with T(u)(f) = [ fdp for p € M(K,X) and f €
K ,Y); defines an isometric 1somorph1sm, thus C(K,Y) can be identified with
MK, Y") [19, p.735),

Te‘ysor' producis

‘The algébraic tensor product of two Banach spaces X and Y is denoted by
Y (see [53, p.344, Definition 20.1.4. and Proposition 20.1.5]). For two bounded
and linear operators T : X; — Y; and § : X; — Yz, between Banach spaces
1,X2,Y1,Y2, T ® S is the linear mapping T® S :-X; ® X — ¥} ® Ya,with

(TR S)(z) = ET(:::.-) ® S(%;) whenever z= Zx.' ®EH e X, X,

i=1 i=1

‘(note that, by defintion of the algebraic tensor product, the bilinear map
X1 %Xy 3 (z1,22) » T(z1)® S(3:) €Y, @ Vs

. is uniquely extendable to a linear TS : X;10X; — Y10Y3).
In particular we defined by thisz'® y': X ®Y — Rforz' € X' and ¢ € Y’
(note that R® R = IR).
. Fora norm @ on X ® Y, the completition of X ® Y with respect to a is
denoted by X é Y. Let us consider the following properties of a norm @ on X @Y
(Ty) (crossnorm) a(z @ y) =|lz|llyllifz € X andy €Y,
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(T2) (reasonable norm)

QY e (XéY)’ and a(z' ®¢') =||z'||l¥'}] whenever deX y ey, :

(T3) for every § € L(X,X) and T € L(Y,Y), S® T is bounded with respect to &
and a(S®T) <[|SIIT]. In thxs case, S ®T denotes the (umque) extension,
ofS®TtoanelementofL(X@YX@Y) ,

A class of norms on tensor products satisfying (Ty), (T2) and (T3) are the so-

called ®-norms [23, p.8', Definition 2] or tensor norms [30, p.15, Definition 1.4

and p.18, Definition 1.9]. They contain the projective tensor norm which will be

denoted by | .!!, and the injective tensor norm, which will be denoted by || !,| (23,

p.10, Théoréme 3.

e) Spaces of Operators

As usual, L(X,Y') denotes the Banach space of all linear bounded operators
on X with values in Y, with the operator-norm. A T € L(X,Y) is called com-
pact, respectively. weakly compact, respectively Rosenthal, respectively limited, if
T(By(X)) is relatively compact, respectively relatively weakly compact, respec-

- tively conditionally weakly compact, respectively Y -limited.

Ku+(X',Y) denotes the subspace of L(X',Y) of all compact and o(X', X)-
o(Y,Y')-continuous operators.

The mapping T : X QY = Ko (X", ), L 2i @i = (X' 3 2" = Y2’ 2:)1i)
is well defined and is an isometry with respect to the injective tensor norm as oneh

can see by the following equations:

n
sup ||} (=i,2")ui )

2'€B1(X) =

sp 1w

'€Bi(X)yE€BI(Y) 5

n n
="Z""i®y«‘|\! if Y zi®@ueEXQ®Y.
s

17 2 @ )l

i=1

=1

Thus, T is extendable to an isometric embedding T : X®Y — Ky (X',Y). We
remark that T is surjective if X or Y has the approximation property, since in this
case every element of Ky+(X',Y) can be approximated by finite rank operators.
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n: X is said to have the Grothendieck property if every a(X', X)-
X converges in o(X', X") (to zero).

&, are representable in this way.

: Definition: X enjoys the Dunford-Pettis property if, given weakly
_’eauénces (zn:n € N) and (2),:n € N) in X and X', respectively, then
m‘zly.),mn) =0
» ~Examples: The following Banach spaces enjoy the Dunford-Pettis prop-

(T fo: a set I [9, p.113, Exercise 1 (i)},

(K )-spaces [9, p. 113, Exercise 1 (ii)],
Li(p)-spaces [9, p.113, Exercise 1 (iii)]. N




0.5 Stone compacts

Some examples of Banach spaces which will be constructed are C(K)-spaces,
where K is a Stone compact corresponding to an algebra on IN. Therefore, we
want to recall the necessary definitions and results. :

0.5.1 Definition: Let A be an algebra on a set T'. )
a) Homy(A,2) denotes the set of all Boolean homomorphisms (see {28, p.35, §9])
on A with values in {0,1}, i.e. the set of all mappmgs h:A— {0,1) with
the following properties
i) A(T')=1and h(#) =0,
ii} h(AU B) = max{k(A), h(B)} and k(A N B) = min{k(A), h(B)}
' if A,B € A4,
i) h(A)=1 < A(AS)=0 ifA€ A
b) We shall call the set Hom,,(A 2), endowed with the topology generated by
the system
’ _{{heHomb(A 2)|h(A) =1} | A € A},

. Stone space correspondmg to A, and denote it by X(A).

act space K, A(K ) denotes the algebra of all clopen (closed and
K K is called Boolcan (compare {28, p-72, §17)) or zero-

m [53 p. 138 Deﬁmtlon 8.2.1. D) if A(K) is a base for the

Representatwn Theorem of Stone)
Igebraion: the set T'. Then the space X(A) defined in (0. 5 1)(b) is
qular, compact) and the map

iAo .A(X(.A)), Aws {h € Homy(A,2)[ h(A) = 1}

is well deﬁned and an isomorphism in the Boolean sense.

Proof of (0.5. 2)

By [28, p.77, §18, Lemma 2], Hom,(A4, 2) is a closed subset of the Cantor space
{0,1}# ({0,1} is furnished with the product of the discrete topology on {0,1}).
By the theorem of Tychanoff, {0,1}* is a compact space. . Since its topology is
generated by the system {{f € {0,1}*] f(A) = 1} | A € A} and since the topology
defined in (0.5.1)(b) is just the restriction of this system to Homs( A4, 2), X(K) must
be compact.
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For an 4 € A we get

) i(AC) = {h € Homy(A,2) | h(AC) = 1}
= {h € Homs(A,2)| (4) = 0}
= {h € Homy(4,2)| h(4) = 1)€ = (i(A))C .

Thus, the set i(4), which is open in X(4) by definition, is also closed. We deduce
that i(4) € A(X(A)) and thus i is well defined.
Similary one shows that

2) (AUB) =i(4)Ui(B),
(AN B)=i(A)NiB), whenever A,B€ A
and (@) =0 and «I')=Homy(A4,2).

Thus, i is a homorphism on A to A(K(A)).
The map ¢ is injective: Let A # B be elements of A; we may assume A\ B # 0.
By [28, p.77, §18, Lemma 1], there exists an h € Homs(.A4,2) such that h(A) = 1
and h(B) = 0, which implies that h € i(4) and k ¢ {(B), and thus, i(A) # i(B).
To show the surjectivity of i, we remark that i(A) separates the points of
Homs(A,2) (if h # | are in Homy( A4, 2), there exists an 4 € A with h(4) = 1 and
R(A) = 0) and that, by. {28, p.74, §17 Lemmal], an algebra of clopen subsets of a
compact K which separates points must be the entire collection of all clopen sets
of K.

°

Since X(A) is a compact space by Proposition (0.5.2), we shall call it the
Stone compact correspondmg to A, provided A is an algebra, and denote it by
K(A).

0.5.3 Proposition:  Let A be an algebra on a set ' and let D C A be A-
generating, closed under takmg finitely many intersections, and containing I' as
element,

Then C(K(A)) is generated by {xip) | D € D}, wherei: A — A(K(A)) is defined
as in Proposition (0.5.2).

Proof of (0.5.3) :
Since #(D) is clopen in K := K(A), xi(D) lxea in C(K) for every D € D.
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Since span(xi(p) : D € D) is closed under taking produkts (D is stable under
taking intersections) and contains 1 = xy(ry, it is sufficient to show, by the theorem
of Stone and Weierstrafl that i(D) separates the points of K. To see this, let
&1,€2 € K and suppose £; € (D) <= £ € (D) for every D € D; we have to
show that £; = £2. The system .

A:={CCK|C isclopenand £ €C <= £ €C)

is an algebra and contains i(D). By Proposition (0.5.2) and the assumption, i(D)
generates A(K(A)), and thus, A is all of A(K(.A)). Since the topology of K(A) is
generated by A(K(A)) (Proposition (0.5.2)), it follows that ¢, = &3, which finishes

the proof.
L]

In the following prbpoéitions, we consider the case where A is an algebra on
IN which contains Pf(IN).

0.5.4 Proposition: Let A be an algebra on IN containing Ps(IN).
a) Foranne N andan A € A let
_f1 ifneA
o ha(4) = { 0 ifnot.
Then hy € Homy(A,2) and the set {h,} is open and closed in K(A).
b) The mapping j : N — K(A), n— h,, is injective and has a dense and open
image in K(A).
In the sequel we identify j(IN) with IN. Considering this identification we get:
) A = (f € Homy(A,2)| f(A) = 1}, for A € A;
in particular, we deduce from Proposition (0.5.2) that
{C € K(A)|C is clopen } = {A¥ |4 € 4)
d) The mappings

Eyico— C(K(4), ©=(2a)" Y SaX(a), and
nEN

By : C(K(A) = ooy [ (f(n) :n€N),

are isometric embeddings and E, o E, is the inclusion of ¢, in £o.
Thus, we identify in the sequel the subspace Ej(co) of C(K(A)) with co.’




Proof of (0.5.4) :
Proof of (a): For n € N, &, is a Boolean homomorphism on A and, since {n} € A

and

i({n}) = {h € Homy(A,2)| h({n}) =1} = {ha},

the set {h.} is clopen in K(A).
Proof of (b): Since for n # m it follows that ha({n}) =1 # 0 = hn({n}), j is
injective and has, by (a), an open image.
For an arbitrary h € Homy(A,2), Uy, := {i(A)| A € A, h(A) = 1} is a base for the
neighborhoods of h (Proposition (0.5.2)). Since for every A € A with h(4) =1
(which implies that A # §)) and for every n € A it follows that h, € {(A), we
deduce that {h,|n € IN} is dense in K(A).
Proof of (c): Since IN is dense in K(A) and #(A) is open for A € A, INNi(4) =
must be dense in i(A). Since i(A) is also clbsed, the assertion follows.
Proof of (d): obvious.

°

Finally, we want to mention some remarks on the space K (A)\ N for an
algebra A on IN containing P¢(IN).
0.5.5 Proposition:  Let A be an algebra on IN containing Ps(IN). We set
K(A) := K(A)\ N (note that b_y Proposmon (0.5.4)(b), K(A) is compact in
K(A)). Then
a) For A, B € P(IN) with [A\ BI < oo (= ACB); it follows that
AnK(A)c BnK(A). -
b) The mapping T : C(K(A))/co — C(K(A)), f + co flu(.A) is weUdeﬁned
and an isometric isomorphism. -

Proof of (0.5.5) :
Proof of (a): Let A, B € P(IN) and ny,na,...,n € N such that
A\ B = {n,...,ni}. Then
ANK(A)={AnB)U(A\B)\N
=(ANnBu {ni,... ne )\ N
=ANB\N
CBn K(A).

Proof of (b): If f,¢ € C(K(.A)) with f — g € co (2 Ei(c.)), it follows from the
definition of Ey in Proposition (0.5.4) that flz 4y = glg(a) . Thus, T is well
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defined and for an arbitrary f € C(K(A)) we have
NT(f +co)ll = syp F{3]

= mf sup I(f -9)(&)

cho
[9(§) =0 for g € co and £ € K(A)]
=" f + Co "

Since every f € C(K(.A)) is extendable to an f € C(K(A)) (K(A) is normal and
K(A) ¢ K(A) is closed), the assertion follows.

0.5.6 Examples: )

a) Let A:= {4 C‘1N||A| < oo or [N\ A| < oo}, Then K(A) is homeomor-
phic to the Alexandrof-compactification of IN and C(K (A)) is isometrically
isomorphic to the space c of all convergent sequences.

b) If A= 'P(]N), then K(.A) is homeomorphic to the Stone-Cech compactifi-
cation and the embedding E; of Proposition (0.5.4)(d) is surjective. Thus,
we will identify the spaces £ and C(AN), where AN denotes the Stone-Cech
compactification of IN (where IN is endowed with the discrete topoloy).

¢) There éxists an R C Po(IN) with the following properties:

)R] = |wel,-
ii) If A# Barein R, then |AN B| < oo,
iii) R is maximal in the following sense: there is no A € 'Pco(IN) \ R for
which R U {A} satisfies condition (ii).
If A is the algebra generated by R and Py(IN), then K(.A) has the following
properties:
iv) K(A) is sequentially compact, ,
v) Ej(co), with B, defined as in Proposition (0.5.4), is not complemented
in C(K(A)).
Proof of (0.5.6) :
Proof of (b): For A = P(IN), the operator E; has a dense image, thus F is an
isometric isomorphism. By [47, p.142, A 12.9] the Stone-Cech compactification of
N can be represented by the set of all ultrafilters on IN endowed with the topology
generated by the system

{{U U C P(IN) is ultra filter with N € U} |N € P(IN)\ {0}}.
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Since every h € Homp(Peo(IN),2) defines the ultrafilter
Un == {NeP(N) | A(N) = 1},

and since, conversely, each ultra filter I defines an k € Homg(Puo(IN), 2) by

1 fNel

h(N):={0 N gU for N € P(IN),

the assertion follows.
Proof of (c); The set

T := {R C Poo(IN)| R satisfies (i) and (ii)}

is not empty. Indeed, if (gn: n € IN) are the rational numbers of [0,1] we choose
for every r € [0,1], a sequence (gn(rk) : k € IN) which converges to r. Then
Ro = {{n(k,r): k € N}|r € [0,1]} satisfies (i) and (ii).

Moreover, since every subset I of 7 which is linearly ordered by inclusion has as
upper bound Ui’ , the existence of a maximal R follows from Zorn’s lemma.

To show (iv), we remark that D := RUP(IN)U {IN} is closed under taking finite
intersections and it generates A. Thus, by Proposition (0.5.3), it is enough to
show that for a given sequence (§n:n € IN) C K(A) there exists a subsequence
(Engx) : k € IN) such that (6¢"(k)(-15) : k € IN) converges for every D € D.

We can assume that the elements of ({,:n € IN) are pairwise distinct and that
they are either all in IN or all in K(A) \ IN. In the first case, we deduce from the
maximality of R that there exists an R € R such that RN {{, : n € IN} is infinite
and from (ii) we deduce that the subsequence (£,,) consisting of the elements
which are in R satisfies the desired property. For the second case, set

R := {R € R| there exists an n & IN with £, € R)}.

From Proposition (0.5.5)(a) and from condition (ii) we conclude that the intersec-
tion of two distinct elements of R with K(A) is disjoint. Thus, R is countable
and we can find a subscquence (n(k) : k¥ € IN) of IN.such that é¢, “(ﬁ) converges
for every R € R. Since limg—oo 65"(,‘)(75) =0, for every D € (R\ R)UP;(IN), we
have completed the proof of (iv).

To show (v), we suppose that there exists a linear and bounded mapping

P:C(E(A) = o, fr ((umf) :m € IN),
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(thus (pnin € N) is a o(M(K(A)), C(K(A)))-zero sequence),

such that P(x(n)) = (#m({n}) : m e N) = & if n € IN.

Since the set {R \ R| R € R} is uncountable and has, by (0.5.5) and (i), pairwise
disjoint elements, there exists an R € R such that ju,|(R\R) = 0 for every n € IN.
It follows that

un(®) = pa(R) = 3" pn({m}) =1, ifneR,
meER

which contradicts the w*-zero convergence of (y,,).




1. Introduction to the notion of limited sets

The aim of this chapter is to formulate some easy arguments about limited
sets and the Gelfand-Phillips property.

1.1 Elementary properties of limited sets, first examples

Proposition (1.1.1) gives two equivalent conditions for a set A to be limited
in X. The first is a trivial reformulation of the definition, while the second is an
easy consequence of the Theorem of Arzela-Ascoli [15, p.266, Theorem 7).

1.1.1 Proposition: For A C X the following conditions are equivalent:
a) A is limited in X.
b) For every sequence (zn:n € IN) C A and for every o(X', X)-zero sequence,
limp_oo{z),2n) =0
c) T(A) is relatively compact for every T € L(X, ¢, ).
In particular, we conclude that limitedness is countably determined.
Proof of (1.1.1) :
(a) <= (b): obvious.
(a) <= (c): Since every T € L(X,c.) defines in an obvious way a o(X', X')-zero
sequence and, conversely, every o(X', X )-zero sequence (z,: n € IN) defines the
linear and bounded operator T : X — co,2 + ({z},2) : n € IN), the assertion
follows from the following characterization of relative compactness in ¢, {15, p.
389, 13.9}: A bounded 4 C c, is relatively compact iff sup_¢ 4 ‘|(ef,“ ,x)ly:;o 0.
o

The following proposition shows that limitedness could also be defined by the
uniform convergence of sequences of pointwise converging operators.

1.1.2 Proposition: For A C X, the following ¢onditions are equivalent:

a) A is limited in X.

b) For any Banach space Y every pointwise convergent sequence (T:n € IN) C
L(X,Y) (ie., there exists a T € L(X,Y) such that | Tn(z) — T(2)}j ":—0»00 for
every ¢ € X) converges uniformly on A.

Proof of (1.1.2) :

(a) =(b): Let (Tw:n e N) C L(X,Y) be pointwise convergent to T € L(X,Y) and

let A C X be limited in X.

Since A is bounded, we can choose for every n € IN an z, € A such that

fgg 1T (z) —~ Tul=) |< 2 [| T(za) = Tulzn) |
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and, by the theorem of Hahn-Banach, a y!, € .Y’ of norm 1 with
| T(zn) = Ta(za)ll= (T(zn) = Tu(zn); yn)-
For an arbitrary = € X we have ‘
lim sup (T"(4}) ~ Ta(4h, )] = limsup(yh 7(2) ~ Ta(o))
n—o0
< hm 1 sup 1T(z) —Tu(=)|| = O.
Thus, (T'(yh) - Ta(¥h) :n € IN) converges in a(X',X) to 0, and we can deduce
(b) from the assumption that A is X-limited in the following way:
limsup sup || T(2) — Ta(a)| < 2limsup || T(2a) ~ Taea) |
n-oco €A n—oo
= 2limsup |(yy, T(zn) — Tn(za))]
n-+oQ
< 2limsup sup [(T"(y5,) ~ To(yn), 2)] = 0.
n—oo zE€EA

(b)=(a): obvious

1.1.3 Proposition: Let A and B be subsets of X.

a) If A and B are limited in X, then the sets AU B, A+ B, A and aco(A) have
the same property [4, Proposition 1 and 2].

b) Let AC B. If B is limited in X, so is A [4, Proposition 3].

c) Let T € L(X,Y); if A is X-limited, then T(A) is Y-limited.

Proof of (1.1.3) : obvious

A result due to Grothendieck [9, p.227, Lemma 2| states that a C C X is relatively
weakly compact if for every £ > 0 there exists a weakly compact C. C X such
that C C C, + B.(X). An analogous statement is true for limited sets:

1.1.4 Proposition: Let A C X and assume that for every € > 0 there exists
an X-limited set A, with A C A, + B.(X).

Then A is limited in X. o

Proof of (1.1.4) :
For an arbitrary a(X' X)-zero sequence (z!,:n € N) C B;(X') and an ¢ > 0 we

have

11m sup sup Hzh,z)| € limsup  sup |( )|
n—o0 z€Ac+Be(X)

< Emsup sup € + {zn, 2)| = ¢,

n—oo €
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which implies the assertion.
°

In the introduction, we remarked that himited sets are always bounded. The
following lemma, from {4, Proposition 4] shows that they are even conditionally
weakly compact; the proof uses essentially the Rosenthal’s £;-theorem (see Theo-
rem(0.2.2)). ]

1.1.5 Lemma: Every in X limited set is conditionally o(X,X')-compact.

Proof of (1.1.5) : (We follow the proof of (12, Proposition 1.6.])
Using Rosenthal’s ¢; theorem, it is enough to show that a given sequence
(za:n € N) C X which is equivalent to the ¢;-basis (em n € IN) is not lim-
ited in X. For every n € IN let 7y, : [0,1] = R, with r,(t) := sin(27nt) if t € [0, 1).
The operator § : Ly([0,1]) — co, f = (fol rofdt : n € IN), is well defined,
bounded, and linear [10, p.60, Example 1']. Thus, the same is true for §:= So [/
where [ is the inclusion of Loo({0,1]) in L;([O 1}). Since (zn:n €N} is equivalent
to (e(” n € IN), the operator
oo e )
T : span(z, : n€IN) — Loo([0,1]), T(Z €nn) = T(Z Eara) if (Enin eIN)e4,
n=1 n=1
is linear and bounded. By the injectivity of Loo([0,1]) [46, p.111, remarks] it is
extendable to a linear and bounded T : X — Loo([0, 1]).
For the image of (2,:n € IN) under S o T, we have

SoT(zn) = / ra(t)ra(t)dt :m € IN) = -e<°>.

Thus, SoT({zn : n € IN}) is not relatively compact, which implies, by (1.1.1),
that (zn:n € N) cannot be limited in X

1.1.6 Corollary: For A C X the following conditions are equivalent:
a) A islimited in X.
b)i) A is conditionally o(X, X')-compact,
i) each o(X, X")-zero sequence in aco(A) is limited in X.
In particular, we conclude that X is Gelfand-Phillips iff every normed, weakly to

zero converging sequence Is not limited in X.
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Proof of (1.1.6) :

(a) =(b): (1.1.3) and (1.1.5)

~(a)=>-(b): Suppose A C X is not limited in X but is conditionally o(X, X')-
compact. Then there exists a sequence (z,:n €IN)in 4, ane > 0, and a o(X', X )-
zero sequence (z/,:n € IN) such that for each n € N, (z,,,2!,) > . W.l.o.g. we may
assume that (z,:n € IN) is weakly Cauchy and that |{z,,z,m)| < &/2 whenever
n > m (if not, take subsequences). Thus, ((Zn41 — 2n)/2:n € N)is a weak-zero
sequence in aco(A) satisfying

(Tha1 (Zngr — a:,.)/2)v2 ef4, foreachn € IN,

which implies that ((zn41 ~2a)/2:n € IN) is not limited in X.
o

Proposition (1.1.7) and Examples (1.1.8) point out that there exist Banach
spaces containing limited sets, which are not relatively compact.

1.1.7 Proposition: If X enjoys the Grothendieck and the Dunford-Pettis
properties, then every conditionally a(X,X')-compact set is limited. Thus, by
(1.1.5), the limited sets are just the conditionally o(X, X')-compact sets.

Proof of (1.1.7) :
By (1.1.6), it is enough to show that every (X, X '-)-zero sequence in X is limited.
But this follows from the assumption that every o(X’, X )-zero sequence converges
in o(X',X") and that X has the Dunford-Pettis property. ‘

°

1.1.8 Examples: For every infinite compact space K, C(K) contains condi-
tionally weakly compact sets which are not relatively norm compact. Moreover,
it contains weakly conditionally compact subsets which are not relatively weakly
compaét. Since every C(X)-space enjoys the Dunford-Pettis property, it follows
from (1.1.7) that a Grothendieck C(K)-space does not have the Gelfand Phillips
property, and that, moreover, it has limited sets which are not felafively weakly
compact.

An example for such a space is £oo(I"), where I' is an infinite set. In the
literature one can find two other examples of infinite dimensional C(K)-spaces
wich enjoy the Grothendieck property and which, moreover, do not contain a copy-
of £oo:
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R. Haydon [33] constructed one without assuming any further set theoretical
axiom. By assuming the continuum hypothesis, M. Talagrand [56] found another
one which does not even admit a quotient isomorphic to £, (the results cited in
chapter 2 show that such an examplé cannot be constructed without additional
set theoretical hypotheses).

From Proposition (1.1.7) and Examples (1.1.8), we deduce the following ana-
log of the Krein-Smulian Theorem.
1.1.9 Corollary: The absolutely convex hull of a conditionally weakly compact
subset of X is conditionally weakly compact also.

Proof of (1.1.8) :

Let T be a set such that there exists an isomorphic embedding E from X into
£oo(T) (for example T' ;= B1(X')). For A C X the following implications hold:’
A is conditionally o(X ,X !)-compact

E(A) is conditionally weakly compact in £o(I")

E(A) is limited in £5(T") [(1.1.5), (1.1.7)]

aco( E(A)) = E(aco(A)) is limited in £o5(T) [(1.1.3)]

‘E(aco(4)) is conditionally weakly compact in £o(I") [(1.1.5), (1.1.7)]
aco(A4) is conditionally a(X , X')-compact. '

grree

©

Finally we want to present a necessary condition for limitedness in a Banach
space X which uses other norms defined on dense subspaces of X. It will be a
useful tool to investigate limited sets in tensor products ‘
1.1.10 Proposition: Let V C X be a dense subspace of X and let [|- || be a
normonV which is finer then ||-||. We de‘noté the completition.of V corresponding
tof-f by X

Then every in X (= (X, ||-}})) limited set A is ”alm.ost bounded correspondmg

o || - §”, by this we mean that for each ¢ > 0 there is a | - ||-bounded A(®) C V
such that ‘ »
Ac[)4“.
. >0
Proof of (1.1.10) : _
We have to show the following:
Let A C X be ||-||-bounded, (zn:n €IN) C A and € > 0, such.that .

) ra 1= inf{llsl|y € V 0 (20 + B, |- D)} = o,
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then A is not limited in (X, ||-f).
Forne N define

A= Gal) B D and By o= g+ Bua(X, I l):

We first show that A, N B, = @ for each n € IN:
Let y € Ay, then there is a § € (ra/2) - By(X, B §) with || § — i< /4, and a
J€ V with 7 — i < min(e/4,r,/2). Thus, Bl < §5li + 85 — 7] < ra, and we
conclude from (1) that ||§ — , |> € and finally

len —yliZNze — gl = N9 -Gl - NF - yll> € —2¢/4 =¢/2,

which implies the assertion. )

Since A, and B, are convex and || - ||-closed, and since, Ay is absolutely convéx,v
we find, by the separation theorem, for each n € IN an g;, € X', with |z}, ||= 1,
and an a, > 0 such that '

(2) -~ Az, y) S an < (), 7)), whenever y € A, and z € B,
For n € IN we choose y,, € B,lg(X, i) with {(z},,yn) = €/4 and we conclude .

&) (I;,$n> = (37:”-"5" = Ya) + (T Yn)
Za,+e/d>ef4.
[:L',. ~Yn € By and a, 20]

Thus, we are finished, if we have proven that (z);:n €IN) is a weak®-zero sequence
in (X', - ).

" To this end, we first observe that by (2) sup,en |an| < supnen,zea H{zh, 2)| < oo,
and secondly that for each v € V it follows from (1) and (2):

2ol 20l
2 gl <

e, o)l =

can — 0]
n—oo

Since V is dense in X and (z:n €IN) is bounded this implies the assertion.
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1.2 Gelfand-Phillips spaces

Proposition (1.2.2) develops some topological conditions on the compact space
(Bi(X'),0(X", X)) which imply that X has the Gelfand-Phillips property, similar
considerations were done by L. Drewnowski in [13].

Then some classes of Banach spaces are investigated which cortespond to these
conditions, and so we get a first inventory of Gelfand-Phillips spaces. Besides the
easy fact that every subspace of a Gelfand-Phillips space enjoys this property also,
and that the complemented siim of two Gelfand-Phillips spaces is again Gelfand-
Phillips (Proposition (1.2.2) (8)=+(b) and (d)=>(a)), we do not consider hereditary
properties-of the Gelfand-Phillips property (see chapter 4).

1.2.1 Proposition: The following are equivalent:
a) X is Gelfand-Phillips. :
b) Every subspace of X is Gelfand-Phillips.
- ¢)- Every separable subspace Z of X is contained in a subspace Y C X which

has the Gelfand-Phillips property and is complemented in X.
d Xis ‘the complemented sum of two Gelfand-Phillips spaces.
e) For every Banach space Y, the limited operators from Y to X are compact. .
f) Every limited operator from ¢, to X is compact.

Proof of (1.2.1) :

" (a)=>(b): follows from (1.1.3)(c)

(b)=>(c): obvious

(c)=(a): By (1.1.1) it is enough to show that a non compact sequence (z,:n €IN)
in’ X is not limited, whenever X satisfies (c). But by (c) there exists a comple-
" mented subspace Y of X enjoying the Gelfand-Phillips property and containing
(zn:n €IN). Since (z,:n € N) is not limited in Y it follows from (1.1.3)(c) that
it cannot be limited in X, since it is the preimage . of the projection from X onto

'(9_)=>(d): X=X {0}
(d)=(a); (1.1.3)(c)

¥(d): Let (z4:n € IN) be limited (in particular bounded) in X and assume
"satisfies (f); we have to show that (z,:n € IN) is relatively compact. The
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operator

n
T:6; X, y=(yn)~ ) YaZn
neN

is bounded and linear and T'(B,(¢;)) C aco(z, :n € IN).is limited in X. Since
every limited operator T : ; — X is compact, and since (zn:n € IN) C T(B1(£1)),
(zn:n €IN) is relatively compact.

1.2.2 Proposition: . The following implications hold:
(a) = (b1) &= (b2) = (c1) &= (¢2) <= (c3) =(d)
a) By(X') is o(X', X)-sequentially compact, '
b;) B;(X') contains a (X', X )-sequentially pre-compact subset C which norms
X, ie |lz|l= supyec |(2',z)| for ecach z € X,
by) There exists a compact K containing a sequentially pre-compact and dense
subset such that X can be isometrically embedded in C(K).
¢1) There exists an equivalent norm .Jl on X such that (X, }J.§) satisfies (b, ).
cz) There exists an equivalent norm §|.§ on X such that (X, }.}§) satisfles (bz).
c3) There exists an r > 0 and a sequentially o(X', X) pre-compact subset C of
By(X'), such that | |< r sup,scc I(e!, ).
d) X has the Gelfand-Phillips property.
(The implication (¢1) =>(d) is also observed in [13, Theorem 2.2].)

Proof of (1.2.2) :

(a)=(b;): obvious ‘

(by)=>(bz): Let C C By(X') be as in (b;) and set K := C Then
K, furnished with o{X’,X) N K, has the desired properties and the operator
E:X - C(K), z+ (K 32"~ (2/,2)), is an isometric embedding.

(b2)=>(b1): Let K be a compact space which contains a dense sequentially pre-

(X', X)

compact subset K and admits an isometric embedding E : X-— C(I(); then the
set C := E'({8¢ | € € K}) satisfies the conditions of (by). :
(by)=>(c1): obvious

(c1) <= (c2): asin ((b1) &= (b2))

(c1) <=> (ca): obvious

(c3)=>(d): By (1.1.6), it is enough to show that a given normed o(X, X')-zero
sequence (zn:n € IN) is not limited in X. Suppose that r > 0-and C C By(X') are
as in (cs). Then there exists for each n € N an z!, € C with |(z/,,z,)| > r/2. By
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3); we may assume that (zy,:n € IN) converges in ¢(X’, X) to an z§ € X' and,
since (zn:n € IN) converges in o(X, X') to 0, we may assume that |(z},zn)] < r/4
forne IN; thus we have

limsup |z, - 5, z0)| 2 7/4,
N OO

~ which implies the assertion.
o

' 1.2.3 Notation: Condition (a) from Proposition (1.2.2) will be denoted by
(w*-sc) ("w*-sequentially compact”), (b1) by (w*-spcn) (*w*-sequentially pre-
compact and norming subset”), and {c, ) by (w*-spenc) (¥ w*-sequentially precom- -
pact up to a constant norming subset”). These will be considered as properties of

the Banach space X.

1.2.4 Examples: The following Banach spaces’are (w*-sc):

a) By aresult of D. Amir and J. Lindenstrauss all subspaces of weakly generated
spaces have the property (w*-sc)[9, p.228, Theorem]. For eaxample:

- separable Banach spaces,

- reflexive Banach spaces,

- co(I"), T any set, (note that (e(o) 'yEI‘) is relatively a(c.,([‘),ll(l")) compact),
- C(K), if K is an Eberlein compact [1, p.37, Theorem 2},

- Ly(p)-spaces, for o-finite measures p.

b) If X is a Banach space whose dual X' does not contain ¢;, we deduce from
Rosenthal’s ¢; theorem that B;(X') must be conditionally weakly compact
and thus, by the theorem of Alaoglu-Bourbaki, sequentially weak*-compact. "

. Examples for this situation (not satisfying (a)) are the non separable versions
of the James and James-tree spaces as introduced in [16] and [5] respectively.

1.2.5 Examples: = The following spaces are (w*-spcn)but in general not

{w*-sc):

a) C(K)-spaces, where K contains a dense sequential pre-compact subset as for.
example C({0,1)7) (the set {(8.:7€l) C {0,1}| [{y € T'|8y =1} < oo} isa
sequentially pre-compact dense subset of {0,1}T ).

b) Spaces X which can be isometrically embedded in dual spaces Y’ whose pre-

dual does not contain £;.
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¢) Banach lattices not containing c., for example AL-spaces (by [51, p.114, The-
orem 8.5), AL-spaces are representable as L, (11)-spacess, where p is a positive

measure),

Proof of (1.2.5) :

Proof of (a): Proposition (1.1.2)((b1) <= (b2))

Proof of (b): Let E : X — Y' be an isometric embedding and ¢; ¢ Y. By
Rosenthal’s ¢; theorem we deduce that By(Y) is a o(Y",Y’)-sequentially pre-
compact subset of B;(Y") and by Goldstine’s theorem it is w* dense in By (Y").
Thus, C := E'(B;(Y)) satisfies the conditions of (b;). '
Proof of (¢): For a Banach lattice (X, <), we use the notations of chapter 1 in
[41]. The proof will use several basic results about Banach lattices and a theorem
of {42].

K X has no copy of co, it follows from {41, p.6, Theorem 1.2.5.] that X is o-
complete (every increasing and bounded sequence in X has a supremum in X).

Thus, the operator P, given by

o0 o0
Po: X - X,y \/(nz/\y"‘)-—- V(nz/\y')

n=1" n=1

is well defined for every z € X, z > 0, and is by the remarks in [41, p.12f], a
continuous projection of norm 1 onto the closed subspace generated by the lattice-
interval [0, z].

From [42, Theorem 2 (~(d)=> —(e))] it follows that for each z > 0 of X, the set
[0, z] is conditionally weakly compact. Since ¢, is not in X, X must be sequentially
complete; thus, by the theorem of Eberlein-Smulian, [0, z] must be weakly compact
for every non negative z € X. Thus, the image of every P, is weakly compactly
generated and is (w*-sc)by (1.2.4)(a). '

To finish the proof, we show that C := U,>o PL(B1(X")) is o(X', X)-sequentially
pte-compact and X-norming.

Since z = Pjyy(z) for each z € X, we can deduce for an z-norming z' € By (X') that
(z, Ply(=')) = {Pjzi(z), 2"} =]z l; by this we have shown that C is X-norming.
Let (z},:n €IN) C C be arbitrary. By definition of C, there exists for each n € N
a non negative z, € X such that P, (z}) = 2!, and we set

=2 2| Imnll

neN



33

For any non negative z € X and any n € IN we have;

‘ P, 0P (2) = V (mzy A V (€z A 2))

meN LEN
= V (mz, Alz A z)
meEN LEN '
= V'(mx,, Az) = Pe,(2)
meN )
[note that (mzn) A (2"m ||z, || ) = mz,).

It follows that for any z € X
(zn — Pi(zy),2) = (P, (3%) — Pz, 0 Pi(20),2) = (2, Pro(2) — Pr,y Pa(2)) = 0,

which means that (z!,: n € IN) lies in P;(B,(X')) and has a o(PL(X), Pz(X))

converging subsequence, Since
(7, 2) = (Pi(z}),2) = (=}, P:(2)}) forneNandz€ X,

this subsequence converges also in o(X, X'), which finishes the proof.
o

1.2,6 Example: The Schur spaces are of course also Gelfand-Phillips spaces
(there, relatively compactness and conditionally weakly compactness are the same).
We do not know if in general they enjoy one of the stronger properties introduced
in (1.2.2).

1.2.7 Remark: Theexamplesin (1.2.5)(a) show that the implication "(a)=(b)"
in (1.2.2) is not reversible. Examples that "(b)=>(c)” and "(c)=(d)” are strict,
will be given in section (5.3) (Theorem (5.3.3)).

We showed in (1.2.2) that C(K')-spaces, where K is a compact space con-
taining a sequentially pre-compact subset, enjoy the Gelfand-Phillips property. In
(5.3) (Theorem (5.3.4)) we will show that the converse is not true. Under the
continuum hypothesis, we can even construct an infinite compact space K such
that C(K) enjoys the Gelfand-Phillips property and such that every convergent
sequence of K is eventually stationary (Theorem (5.4.7) in (5.4)).
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1.3 Characterization of non limited sets by biorthogonal sequences,

complemented c,-subspaces

"Let 4 C X be bounded but not X-limited. By definition, there exists a
sequence (zn:n € IN) C A and a o(X', X)-zero sequence such that (z},,z,) = 1
for all n € IN. Lemma (1.3.1) shows that (z,: n € N) and (z},: n € IN) can be
chosen to be biorthogonal. Using this fact, one can deduce some results concerning

complemented copies of c,.

1.3.1 Lemma: Let AC X be bounded but not limited.
Then there exists a sequence (zn:n €IN) in A and a o(X', X)-zero sequence,
such that:

{ZTh,Zm) = {(1) ' :;‘207 M for all m,n € IN,

Proof of (1.3.1) :
Since A is not limited in X, there exists a sequence (z,:n €IN)in 4 and a

(X', X)-zero sequence with
1) {2h,2n) =1 forn€IN.

Since A is bounded, we can assume that a, := liMm—oo{Tn,2,) exists for each
n € IN (otherwise we pass to a subsequence). By taking another subsequence we
can assume that one of the following three cases is satisfied: ‘
case 1: a, =0 for n € IN;

case 2: a, # 0 for n € N and lim, . an = 0;

case 3: There exists an € > 0 such that lan| > ¢ for n € N.

In the first case we take y}, = z], forn € IN.

In the second case.we may assume that
T = {2], ~ (@nf@n=1)2h_y,Tn) = 1/2.
If we now set
yn = (1/ra)(zh ~ (an/@n-1)24_y), forne IN,

the sequence (yj,:n € IN) is a o(X’, X )-zero sequence also. We'still have for every
neN, (2,,2n) = ro/rn = 1. Moreover, we deduce that, for each n € IN,

"!i_‘}lm(y:nzm) = "fiinoo((l/rn)(z:z ~(an/an-1)zp-1),2m) = 0.
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In the third case, (1/an:n €IN) is bounded and, since (z4:n € N) is a weak*-zero"

sequence, we can assume that for each n € IN
Tn = (z;‘ —(an/ans1 )z:‘_‘_l,xn) 2 1/2‘>
If we choose
U:. = (l/r,.)(zi, - (a,./an“)z:,“),
the sequence (y},:n €N) is a 6(X', X)-zero sequence also. For each n € IN we get,
as in the second case, (z},,2n) =ra/rn=1and

"!i_‘.“w(y:uzm) = "}Enw((llrn)(z:, - (a,./a,.+1)z:,+,),:t,,.) =0.
So in all three cases we have, for each n € N,

Wi ) = 1 (U2} = 0.

Thus, by taking subsequence, we can assume that

1
Z |(y:n$m)| _<. 5

meN\({n}
holds for each n € IN: This implies that the image of (zn:n €N) under T' : X — ¢,
z =+ ({z,y4) : n € IN), is equivalent to (ef,o):n €IN), as can be seen by the following
equations: ) . '
1Y 6@l = supl(u), 3 (el
i€N JEN 7 ieN :
< supjen (lajl 4+ Xz 15 zidail)
{ 2 supjen (lajl = Lix;j Mol zi)ail)
{ S (1+ §)supjen laj]
2 (1 - })supjen laji
for every sequence (a,:n € IN) C IR such that |{n € IN |a, # 0} < oo.
By the separable injectivity of ¢, [9, p.71, Theorem 4], we can extend the isomor-
phism 5 : span(T(z,.) : n € IN) — ¢,, which assigns Tz, ) the value eDifneN,
to a linear bounded operator S : co — ¢,. We deduce that §o T(z,) = e for
n € IN, which means that the components (2!,:n € IN) of S o T' have the desired

properties.
o

With Lemma (1.3.1) we can characterize the property that a given sequence
{za:n €IN) C X, which is equivalent to the c.-basis, is limited in X.
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1.3.2 Theorem: Let{zy:n €IN)C X be equivalent to (es.o):n €N).
Then the following are equivalent:

a) {zn|n € N} is limited in X.

b) For every N € Poo(IN), span({z, |n € N}) is not complemented in X.

Proof of (1.3.2) :

(a) =(b): If (z,:n € IN) is limited in X, then every bounded linear operator
T: X — c. maps {z,, | n € N} to a relatively compact set (Proposition (1.1.1)(a) <=
(c)). Thus, for no N € Poo(IN) there is a projection of X onto span({z, |n € N}).
-(a) = ~-(b): By taking a subsequence of (zn:n € IN) and by using (1.3.1), we
can assume that there exists a o(X', X)-zero sequence {z/,: n € IN) such that
{2y Zm) = &(n,m) for n,m € . This meé.né that the operator T' : X — co,
z + ({z,,2) :n € IN), maps each z, to e®. Since (zn:n € N) is equivalent to
(e(o) :n €IN) and thus, T restricted to W{—mnln—el_\f—}j is an isomorphism, T is

a projection, which finishes the proof
o

- With Theorem (1.3.2) we get the following variants of the separable injectivity
of ¢, (compare [9, p.71, Theorem 4]):
1.3.3 Corollary: ~
a) If X is a Gelfand-Phillips space, then every sequence (x,:n € IN) C X which
is equivalent to (zn:n € IN) contains an infinite subsequence (zn:n€N) such
" that span(z, : n € IN) is complemented in X.
b) If every limited set of X is relatively weakly compact, then every copy of c,
in X contains a subspace still isomorphic to ¢, which is complemented in X
. (Sufficient conditions that every limited set in X is relatively compact will be
formulated in chapter 2.)

. Proof of (1.3.3) :

Proof of (a): Theorem (1.3.2).
Proof of (b): Let (z4:n € IN) C X be equivalent to the co-basxs and set, for n € IN,
Un 1= ¥ =y @i- Then (ya:n € IN) is bounded but not relatively weakly compact;
thus, by the assumption it is not limited in X. Using Lemma (1.3.1) we find a
o(X', X)-zero sequence (y,,:n € IN) and an increasing sequence (k.:n € N) in IN
such that v

(Yo Ve ) = {(1) :f. on ™ forallm,n € IN.
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It follows that for each n € IN (setting: ko := 0 and yo := 0):
kn

1= (y:l1ykn - ykn-x) = (y:u Z 2:.') .
i=kn_1+1

Thus, the sequence (Zf;k"_ +1%i i 0 € IN) is not limited and is equivalent to

(eg,o):n €IN) and we deduce from (1.3.2) the assertion.
o

1.3.4 Remark: Let us consider the following properties of a Banach space X:
i) Every copy of ¢, is complemented in X (by {10, p.71, Theorem 4], this is true
if X is separable).

ii) Every sequence (z,:n € IN) which is equivalent to ( ene IN) contains a sub-
sequence such that the space generated by this subsequence is complexhented‘
in X. ‘

iii) Every copy of ¢, contains a subspace isomorphic to ¢, which is complemented
in X.

Of course (i} =(ii) and (i) =(iii) are true.

a) In (0.5.6)(c), we constructed a compact and sequentially compact space K

such that C(K') contained a copy of ¢, which was not complemented in C(X).
By (1.2.2), C(K) is a Gelfand-Phillips space and thus enjoys property (ii).
Hence the implication (i) =>(ii) is not reversible.
In section (5.1) we shall construct a C(K)-space which contains a limited
sequence which is equivalent to (e(,.o): n € IN) and which is conditionally weakly
compact generated. This implies, as will be shown jin (2.3.3), that all limited
sets in C(K) are relatively wéakly compact; we deduce, using (1.3.3)(b), that
(iii) =>(ii) does not hold.

b) Corollary (1.3.3) leads one to ask whether the Gelfand-Phillips property is
characterized by property (ii). The answer would be yes if one could show that
Banach spaces not enjoying the Gelfand-Phillips property contain a limited
sequence which is equivalent to (eg.o):n € IN). In chapter 3 it will be shown
that this is true for C(K)-spaces. But, in general, it seems to be unknown if
Banach spaces without the Gelfand-Phillips property contain any copy of ¢,,
a question which is solved for lattices in (1.2.5)(c).

At the end of this section we want to cite two known results which can be
proven with Theorem (1.3.2) . Corollary (1.3.5) describes the Grothendieck prop-
erty by limitedness ((a) =(c)) and leads to the characterization of Grothendieck
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spaces, a8 given in [48, p.18., Satz 3.2]. Corollary (1.3.6) was first proven in [6] for
the space C(K,X)(= C(K)®X) and has been generalized for any injective tensor
products by E. Saab [50].
1.3.5 Corollary: The following properties (a), (b), and (c) are equivalent:
2) X is a Grothendieck space. ' '
b)i) EveryT: X — ¢ which is not weakly compact fixes a copy of c,, i.e. there
exists a copy of ¢, on which T acts as an isomorplu'sm.A
ii) X does not contain a complemented copy of c,.
¢)i) Asin (b).
ii) Every sequence in X which is equivalent to (e(o) n G]N) is limited in X.

Proof of (1.3.8) :

(2) =(b): A Grothendieck space X does not admit any operator T' : X — cao
which is not weakly compact. '

(a)(n) =>(b)(ii) Theorem (1.3.2) .

(c) =(a) Let T : X — co be linear and bounded. By (c)(n), T cannot fix any

copy of ¢o; thus, by (c)(i), it must be weakly compact.
°

1.3.6 Corollary: Suppose that X and Y are of infinite dimension and that X
contains a copy of co. Then XQY contains an isomorphic copy of ¢, which is
complemented in X®Y . -

Proof of (1.3.6) : As in (6], we use the theorem of Josefson and Nissenzweig
(compare Corollary (2.4.6)).

Let (z4:n €IN) C X be equivalent to (es.o): n €IN). By the Theorem of Josefson
and Nissenzweig, there exists a normed o(Y”, Y )-zero sequence (y,:n €IN) in Y.
For each n € IN, choose yn € B3(Y) such that (y),,ys) = 1.

By (1.3.2), it is enough to show that (z, ® yo : N € IN) is equivalent to
(e:n €IN) and is not limited in XY

If we choose C > ¢ > 0 such that

cmax |a.,| <) Z anzy||< Cmax lan}
n<k

if aj,az,...,ar € Rand k € N,
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we get
: 4 < N
cmpgxlail So  sup max laily’ will

flwlix 1
< su a;ily,yi)z aiy;i @z
IEBlle,)H; i wsill= IIZ v ® il
<c  sup maxlai(y', %)l
y'eB(Y’)
_ < 2Cmax|ai
i<k
Mwll< 2]
* if a3,82,...,0¢ € Rand k €N,

which ‘implies the first assertion.

-1f we choose for each n € IN an z!, € By(X') which norms z, then the sequence
7!, @y, is weak®-convergent to 0in (X®Y) (note that (z}, ®y!, :n€lN)is bounded
and that (¢!, ® ¥4,z ® y) converges to zero foreachz € X and y € Y). Moreover,
we have for n € IN

(2 @ Y1 Tn @ Yn) = (x',,,z,.)(yf,,y,.) =1,

which verifies the second assertion and finishes the proof.
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2 A result about dual spaces which contain bounded se-
quences without any weak*-convergent convex blocks

In this chapter we want to prove the following result and use it to answer a
question poséd by R. Haydon in [34, p.11, Remarks}:

If the dual of a Banach space X contains a bounded sequence (z/;:n € IN)

for which no convex block converges in o(X’, X), then X' contains an

isometric copy of L;({0,1}*1).
In section (2.1) we will formulate the theorem and the necessary definitions and
then cite some results related to this topic. The proof will be given in (2.2).
In the last part of this chapter we will show, following a proof of J. Bourgain
and J. Diestel [4], that for spaces containing limited sets which are not relatively
weakly compact the assumption of the main theorem holds. We will also deduce
a generalization of a result in [4] (cf. corollary (2.3.3)) which says that, in Banach
spaces not containing & copy of ¢;, all limited sets are relatively weakly compact.

2.1 Formulation of the main theorem and review of related results

For a set T', let ur be the product measure ®~,er‘%(5u + 6;) on the set {0,1}7
furnished with the product o-algebra ®,erP({0,1}). As usual, we denote the
spaces Ly(pr) by L1({0,1}7) and Loo(ur) by Loo({0,1}F). Since p is finite,
Loo({0,1}7) can be viewed as a subspace of Li({0,1}F). Te avoid ambiguities,
we denote the usual norm on L,({0,1}7) by ||. |l| and the norm on Loo({0,1}7) by

e
2.1,1 Definition: .
a) Let (zn:n € N) C X be bounded. A sequence (Zf;t:'la,-x; :n € N)
‘is called a convex block (respectively an absolutely convex block basis) of
(zn:n € N) if (kn:n € N) is increasing in IN, (an:n € N) € RY (respectively
(an:n € N) C R), and Zf;t;—l a; = 1 (respectively Z:f;‘,{’:_l jai] = 1) for
each n € N.
b) We say that the Banach space X satisfies
(CBH) ( convex block hypothesis) if X' contains a bounded sequence (z!,:n € IN)
which has no (X', X)-convergent convex block;
(ACBH) (absolutely convex block hypothesis) if X ! contains a bounded sequence
(z!,:n € IN) which has no (X', X)-convergent absolutely convex block

basis.
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We remark that the definition of (ACBH) in (2.1.1) is equivalent to the condi-
tion, considered by J. Hagler and W.B. Johnson {26] and by R. Haydon [34], that
X' contains an infinite dimensional subspace Y on which o(X', X)-convergence
of sequences implies norm convergence. This equivalence will be shown in the
following proposition.

2.1.2 Proposition: The following are equivalent:
a) X has property (ACBH).
b) X' contains an infinite dimensional subspaceY in which (X', X)-convergence

of sequences implies norm-convergence.

Proof of (2.1.2) :

(a) =(b): Let (z';:n € N) be a sequence in X' without a w*-convergent absolutely
_convex block basis. In particular, (z/,: n € IN) has no o(X', X")-Cauchy subse-
» quence and thus we can assume, by Rosenthal’s ¢, theorem, that (g!:neN)is

equivalent to (es,l):n €IN). '

We are finished if we can show that a given sequence

e -]
(ynelN) = (Zas")zﬁ :n e N),
i=1
with 372, Iaf")l < 1ifn € N, is not o(X', X )-convergent if there exists an € > 0
such that ||y;, — yi, ||=> € for all n,m € IN with n # m.
" Suppose that such a sequence is w*-convergent. By taking a subsequence, we may
(n) y

‘assume that a; = limpeoa;" exists for each i € IN. Setting 2z}, := y;, — Yny1,v
we find an increasing sequence (m,:n € IN) and a sequence (Z,:n € N) C X',
with 7, = Ef;t:_l bz} for n € IN, (ky) increasing in N, and (b;) C IR, such that
N |, — 2, [1=0.

Since ||y}, — Yh41 |2 € for n € IN, we deduce that liminf,— || 2, ||> € and by this

kngisl
lim inf Y Ibl>o.

i=ky

“As a consequence, there exists an np € IN such that

kng1-1 kngq~1
(C Y b)) Y liine<nelN)
i=ky i=kg

absolutely convex block basis of (z!,:n € IN) which converges in o(X', X) to

‘0. This contradicts the assumption. R
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(b) =>(a): Let Y C X' be as in (b). Since Y is of infinite dimension, we find
a bounded sequence in ¥ without any norm-convergent, and thus, without any
(X', X)-convergent subsequence. By Rosenthal’s ¢, theorem, it must contain a
subsequence (z!:n € IN) which is equivalent to (es,l)- :n €IN). Since no absolutely
convex block basis of (es.l) :n €lN)is norm-convergeht, we deduce (a).

Now we can formulate the main theorem of this chapter:i
2.1.3 Theorem: If X has property (CBH), then X' contains an isometric
copy of Ly ({0,1}1).

In the sequel we need the following ordinal:
2.1.4 Definition: (compare (34, p.2] and (35, p.3])
The ordinal w,, is the smallest of all a € Ord such that: ,
There exists a family (Mp: 8 <a) C Poo(IN) with
a) |ﬂﬂp Mjp| = oo for each F € Pg{a), and
€

b) There is no M € Po(IN) with M&Mﬁ for every 8 < a.

2.1.5 Remark:

8) wp is an initial ordinal, i.e. wp = min{e € Ord||a| = jwp|}; and thus, it could
be considered as a cardinal. ‘

b) For every countable ordinal a there is no family (Mg: B <a) satisfying (a) and
(b) of (2.1.4). Indeed, assuming that (Ms: 8 <a) C Poo(IN) satisfies (a), we
can choose an increasing sequence (F,:n € N) C Py(a) with |, e Fn = o,
and we can choose for each n € IN my € (gep, Mp such that (ma:n €N)
increases. As M := {ma|n € IN} is almost contained in )¢ p Mg, provided
that F' € Py(a), we conclude that (Mp: # <o) does not satisfy (b).

On the other hand, if ¢ is a non-principal ultrafilter on IN (i.e. U C Poo(IN}
is a maximal filter) and (Mq: a <w.) a well-ordering of ¢ (every ultrafilter on
IN has the cardinality of the continuum), then (M,: o <w.) satisfies (a) and
(b) of Definition (2.1.4). '

We conclude that wy Slw, < We.

¢) In (35, p.3] it is remarked that under Martin's axiom we have w, = we.
Thus, under the assumption that Martin’s axiom holds but the continuum
hypothesis does not, w; < wp = w,. .

The following proposition collects some known results which are related to
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the topic of this chapter.
-2.1.8 Proposition: For a Banach space X we consider the following properties: -
(Ey) X has a quotient isomorphic to oo.

(E2) X has a non-reflexive Grothendieck space as a quotient.

(Es) X has the property (ACBH).

(Ei) X has the property (CBH).

And for w € Ord we consider:

(Es )(w) X contains an isomorphic copy of £i(w).

(Es )(w) X' contains an isomorphic copy of L1({0,1}*).

(Ex )(w) There exists a bounded and linear S : X — Lo({0,1}*),a A >0, and a

bounded family (zq: a <w), such that

18(za) = S(zp)|| = A whenever a, 8 € [0,w] with « #
1

Then the following relationships between these properties hold:

a) [34, p.2, Theorem 1]: (E3) implies (Eg){wp ).

b) i) [35, p.6, Corollary 3 CJ: If X is a C(K)-space then (E,) implies (Es )}(wp)
(in [35] it has been shown that if (Ey) is satisfied for a C(K)-space, then
there exists a positive measure u € M(K) such that L, () is isometrically
isomorph to Ly({0,1}*7) ).

ii) [35, p.6, Theorem 3 DJ: Under the (set theoretical) assumption that w, >
wy, the property (E,) implies (E; )(wp ).

¢) [43, p.1083, Theorem 4.7]: For any w € Ord (Es)(w) implies (Es )(w).

d)  From [3, p.80, Theorem 1.2 we easily deduce (see the proof below) that if
w > wy, then (Ep )(w) implies (Es )(w).

From (a)-(d) it is easy to deduce (e),(f) and (g).
e)  Without any further set theoretical assumption,
(Er) &= (Bs)(we) = (E2) = (Es) = (Es)(wp)s
(Es) =(E,), and (Es J(w) = (Ey)(w) for any w € Ord.
f)  Under the assumption that w, < wy, we deduce moreover
(Ba) = (Bs)p) <= (Ee)iip) <= (Br)op):
g) I weassumew; < wp = w,, then
(B1) &= (B) & (Bs) = (By) &> (Bs)(we) =
(Be)(we) <= (Er)(we). '
h) The Grothendieck C(K), constructed by Talagrand under the continuum -
hypothesis [56, p.189, Théoréme 4], does not satisfy (E, ) but it does satisfy
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(Ez) and thus (Es ),(Es),(Es )(wc) and (Ex)(we).

Proof of (2.1.8)(d), (e), (f) and (g) :

Proof of (d): [3, p.80, Theorem 1.2] states the following:

(1) Let w > wy and suppose (fo:a <w) is & fa.mxly in Loo({0, 1}*) such that there
exists a A > 0 with:

| fa = fall = A whenever a,8 € [0,w,[ with a # 8.
1

Then there exists an I C w with {I] = |w| such that (fo : « € I) is equivalent
to (e(l) a € 1)
Now let S, (za: @ <w), and A be as prescribed in (E7)(w). Then the family
(S(zq4):a < w) satisfies the assumption of (1) and we find I C w with |I] = |w]
such that (S(z4) : @ € I) is equivalent to the corresponding f;-basis. We de-
duce from the lifting-property of £;(I) [40, p.107, Proposition 2.£.7. and following
remarks}, that (zo : o € I) is also equivalent to (e(l) a€l).
Proof of (e): It remains to prove (Ey) <= (Es)(w.), (E2) =(Es3), and (Es){(w)
=(E7)(w) for any w € Ord ((E1) =+(E:) and (E3) =>(E,) are obvious).
(By)=(Es)}(w.): Let @ : X — £, be a quotient mapping. Since {x contains a
copy of £3(w.) [9, p-211, Exercise (1) (i)] and since £1(w,) is projective [40, p.107,
Proposition 2.£.7. and remarks] X ¢ontains a copy of £ (w.) as well.
(Es)}{we) =(Ep): Let (zq:a <w) C X be equivalent to (e(l) a <w,.) and choose
an algebraic basis B of £y, in Bi(fe) (span(B) = €x). Since |B| = {loo] = |wel,
we can-well-order B by (by:a <w.). From the property of an ¢;-basis, we deduce
that the mapping

span(za a <we) — Lo, Z ToTq + Z raby whenever F € Py(w,),
a€EF aelF

is linear, bounded; since span(B) = £u, it is also surjective and can be extended
to a linear and bounded, and still surjective @ : X — €, by the injectivity of {u.
By the open mapping theorem, the spaces X/Ker(Q) and £, are isomorphic.

(Ez) =(E3): Let Z be a quotient of X which is Grothendieck and not reflexive.
By(Z’) cannot be weakly compact and according to the theorem of Eberlein and
Smulian, B;(Z') contains a sequence (2},:n € IN) without any o(2', Z")-convergent
subsequence. Thus, by the Grothendieck property, it has no ¢(Z', Z)-convergent
subsequences and, by Rosenthal’s #; theorem, we can assume that it is equivalent
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to (e%:n € N). Thus, no absolutely convex block basis of (z/,:n € IN) is norm-

convergent, hence, by the theorem of Schur, also not o(Z’, Z")-convergent, and

finally, by the Grothendieck property of Z, not even o(2’, Z)-convergent. Since

Z' can be 0(2',2)-0(X', X)-embedded in X', we deduce (E3).

(Es}(w) = (Er)(w) for w € Ord:

Let B : [,({0,1}*) — X' be an isomorphic embedding. For @ < w we define

Ya = X{pa=1) —X{pa=0), Where pa : {0,1}* — {0,1} is the a-coordinate projection
“for & < w, and consider y, as an element of L1({0,1}*) as well as an element of

Loo({0,1}*) (in both spaces it is of norm 1). For I C w we denote the o-algebra on

{0,1}*, generated by (pa:a €I), by Iy and note that ; and I; are independent

if I, T C w are disjoint.

If the cardinality of w is not equal to w; we deduce from [43, p.1084, Theorem 4.9]

that there exists an isomorphic embedding T : £;{w) — X. Thus, the operator

5:6(w) > Leo({0,1}*),  (bata<w) Y fava
a<lw
is extendable to a linear and bounded operator § : X — Lo ({0,1}*), by the
injectivity of Loo({0,1}*). We observe that

ISoT(e) ~ ST =lve~usll =1 0<p<a

and deduce the assertion.
If w = w, we set §:= E'|x (note that E' : X" — Loo({0,1}¥)) and, in order to
show the assertion, we choose by transfinite induction z, € X, for each a < w,
such that

15(a) = (@] 2 & 1= —;—iréfd I E(»)|| for B < a.
Assuming that (zg: 8 < a) has been chosen for a < w we note that there is a
7 < w such that for each < «a, S(vs) is measurable with respect to ., (note
that B is countable and that each f € Loo({0,1}*) is measurable with respect
to L, where A < w is sufficiently large). Then we choose z, € B;(X) satisfying
(E(yy):%a) 2 A (which is possible by the definition of A). Since T, and I, are
independent we deduce for each 8 < « that

I S(za) ~ S(VB/J)III 2 (S(za)s¥y) = (S(=8),y) = (5(2a), yy) = (Tay E(y)) 2 A.
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This implies the assertion.
Proof of (f): (b)(ii), (¢), (e}, and (d).
Proof of (g): (e) and (f), for w = w,.
o

If we combine the result cited in: Proposition (2.1.6)(b)(ii) with that of The-
orem (2.1.3), we get the following generalization of (2.1.6)(2).
2.1.7 Corollary: If X satisfies property (CBH), then X' contains an isometric
copy of Ly ({0,1}*) . (Under the assumption "w, = wy” take (2.1.3), and under
the assumption "w, > wy”, use (2.1.6)(e)(ii) and (2.1.6)(e))

2.1.8 Remark: The proof of (2.1.6)(b)(ii) depends in an essential way on the
equivalence "(E7)(wp) <= (Es)(w,)”, which is not true without any additional set-
theoretical assumption. The proof of (2.1.3) uses the countability of all a < w;.
Thus, neither proof can be dispensed with.




2.2 Proof of Theorem (2.1.3)

The following lemma is due to H. P. Rosenthal {49], who used it to show that
if X satisfies (CBH), then X contains ¢;:
2.2.1 Lemma: (cited from [35, p.4, Lemma 34]) -
Let X satisfy (CBH). Then there exists a bounded sequence (z',:n €N) in X' and
¢ € IR such that '
(3) sup_ose((eha)) = 1,

z€B1(X)

where 0sc(ry) := imsup, o, Tn — liminfy—con for a bounded (ro:n €IN) C R,
(b) for every convex block (yp:n €IN) of (z!:n €IN) and every 1) < § there exists

an z € By(X) such that

limsup(y),,z) >c+n and  liminf(y,,z) <c-7.
n—00 n—o00
Proof of (2.2.1) :(Since the original paper of H. P. Rosenthal was not available,
we include a proof.)
For a bounded sequence (y,:n € N) C X', let CB(y;,) be the set of all convex
blocks of (y):n € N) and set

6y ):= sup oscly.,z) and e(¥,):=  inf  &(z,)
(yn) :EBl‘()X) (yn’ ) ( n) (z‘,)ECB(y‘,) ( u)

We remark that 8(y.,) = O if and only if (y,: n € IN) is w*-Cauchy and thus
convergent. Since for each (z4;:n €IN) € CB(yy,) we have

limsup(y,,z) > limsup(z},z) and liminf(yp, o) < liminf{zh,2) forzeX,
7n—r00 R 00O n--+0Q n—+00 .

and since CB(2,) C CB(y},), whenever (z,:n €IN) is a convex block of (yh,:n € IN)
we conclude that for every bounded (yp:n €IN) C X',

(1) 8(yl) 2 6(4) > e(h) 2 e(yp)  whenever (z:n €IN) € CB(y,)-

In the first step we want to show the existence of a bounded sequence (#:neN)

in X' which satisfies

2 1=8(2,) =&,
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For this, let (y,:n € N) C X' be bounded with no (X', X)-convergent convex
block. We set (z’( - IN) := (y,: » € IN) and inductively, assuming that
for a k € N, (z’(k l) :n € IN) € CB(y;,) has-already been chosen, we choose
28 € CB(z* ™) such that

1
®) 8(2'"W) < (et + ¢

Finally, we define §/, := z ™ for each n € IN. Thus, (#, : n > k) is a convex
block of (z'“) n € N) for any k¥ € IN. From the property of (y,: n € IN) we
deduce that § := §(},) > 0. Since 6(.) and E() do not change if we pass to cofinite
subsequences, we deduce from (1) and (3) for every k € IN that

§=8(i) S 8('V) S ez D) + % < elfn) + % < 8() + %

and thus, § = &) = e(¢h,).
If we define &), := /6, (2) follows.
Now we define for (y,in € IN) € CB(#},) and ¢ > 0

A(e,yn) := {z € Bi(X)|osc((yn, z)) > 1 — €}
and

R(y\):=inf su limsup(y’,z and r =
(4n) B, m sup(yy, z) (n) : _")GCBM) R(jn),

By (2), A(e,y},) is not empty and one has A(€,y},) C A(e,y!,) for 0 < € < ¢. This

implies that

4) Ry, = limi(r,xf sup limsup(y),z) for each (y):n €IN) € CB(3),).
o

2€A(e,yl) n—oo

Secondly we note that A(s,yn) C Ale,u), whenever (#,:n € IN) € CB(y;,) and

we conclude
(5 R(yn) 2 R(§n) 2 1(§n) 2 r(y) , whenever (§:n € N) € CB(y)

in the same way as was shown (1). Now we can proceed in a similar way as in
step 1 to show that there exists a sequence (z},:n €IN) € CB(,) such that

(6) r:=r(z),) = R(z},).
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Defining ¢ := r — }, we deduce (a) of the assertion from (1) and (2), while we get
(b) as follows:

Let (y4:n € IN) € CB(z},) and 1 < } be arbitrary. From (5) and (6) we deduce
that r = R(z},) = R(y,) and by (4) we find an 0 < € €]0,¢/2}, where ¢ := § ~ 3,
such that

) sup limsup(y;,z) —¢/2<r < sup limsup{y,,z).

TEA(Ey,) Moo ZEA(E,yp) P
n

Thus, we find an z € A(E,y;,) with

1
limsup(yy,z) > r—(5-n) =c+n

n—oo

On the other hand, we deduce from the definition of A(é,y,) and (7) that
Liminf(y,, z) = limsup(y,, z) — osc({¥h,z})
n-—oo n-—co

[ 1 1
(1 - < === =~ = —
<r+2 (1 6)_7‘ 3 2+€—c n

which completes the proof.
o

For the sequel, we assume that X has property (CBH) and that we have
chosen (z,;:n '€ IN) C X' and ¢ € R as in Lemma (2.2.1). To handle the space
Li({0,1}F), we need the following notations: For a finite set A, the set of all

mappings ¢ : A — {0,1} will be denoted by 24; for A' C A and ¢' € 24', the set
of all extensions of ¢' onto the whole of A will be denoted by 2¢'+4. For any set
I, the union {J{24]4 € P;(T')} is denoted by Sr and for the domain of ¢ € Sr we
write D(yp). ‘
: R. Haydon [34, p.6, Lemma 3] provided the following characterization for a

Banach space Y to contain an isometric copy of L;({0,1}7).

2.2.2 Lemma: LetY be a Banach space and I" a set. Then Y contains an
isometric copy of L, ({0,1}") if and only if there exists a family (y, : ¢ € Sr) in
Y satisfying (a) and (b) as given below;

) Yo = ol4|=14] Z v, for any A€ Py(l),A'C Aandy'€ 24’
pe2vA
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(note, that [2¢"4) = 2MA1=14l and hence, that y,s is the arithmetic mean of
(vo : p € 2¢91)).

() 1Y, apveli= Y. layl for any A€PyT) and (a,: p€24) C R.
pe24 pe2?

In this case, there exists an isometry T : L1({0,1}7) = Y such that T(ep) = Yo
for ¢ € Sp, where e, € Li({0,1}7) is defined by

0 =220, 7 € T) € 0,1 18, = o) f 7 € DL)

Another sufficient condition, for X’ to contain L;({0,1}) can be formulated
using the following definition,
2.2.3 Deflnition: Let I'beaset. A family F = (z(A, B) : A € Py(T"), B C 24)
in By(X) is said to satisfy (Fr) if the following condition hold:
(Fr) For every A € P4(I') and n € IN there exists a family (z'(p,n) : p € 24) C
X' such that

(a) #'(¢,n) € co{zinlm 2 n}), if ¢ € 24, and
() -
M-y - 1) ' e B

) > L
ola’l-14] 2'(p,n),z(A',BY) —¢{ ~ + ;
( G%;P,A (50 ) ( )) S"%(l‘lﬁﬂ_%) lf<pl¢Bl
“ )

whenever A' C 4, ' € 24" and B C 24'.
For the sake of brevity, we will denote the set {(4, B)]4 € P4(I'), B C 24} by Ir,
the set of all families F' = (z(4, B) : (4, B) € Ir) which satisfy (Fp) by Fr; and
the values (1~ HH— ~L%)and (1 ﬁﬁ-—) by A(A,n) and A(A) respectively
for A€ Pg(l') and n e N.

With this definition we are in a position to state the following result.

2.2.4 Lemma: Let I' be an infinite set. If Fr # @, then there exists an
isometric copy of Li({0,1}F) in X',
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Proof of (2.2.4) : :
Let F'=(z(4,B):(4,B)eIr) C Bl(X'S satisfy property (Fr). For each p € S[‘
and each n € IN choose z'(p,n) € B1(X') as prescribed in (Fr) and define for
each ¥ € Sr and each A € Py(T)

1) Y@ =2POnaEa 3T e At

. pE 9(¥Ip(pna4
The net (y'(,4) : ¥ € Sr)aep,(r) has an a.ccumulatlon point (¥'(¥) : ¥ € Sr)
in the product K := [] 5. co({z!, :n G lN}) , endowed with the product of
the weak*-topology on co({z}, : n € IN}) , (the elements of P(I") are ordered by

inclusion).
From (1) and (Fr)(a) we have

(2) y'($) € n co({z!, :m > n})w. for each ¢ € Sr,
neéN

Since for 4, 4!, A € Pg(T), with A' CAC A, and ¢’ € 24 we get from (.1)

ola'1-141 Z y(p, A) = 241-140 S~ glA-lAL ST gy, 4]+ 1)

peavh pe2v pe20h
=oAL 3 (g, |4 +1)
e2v4
=y'(¢', 4),
we deduce that
(3) () =241 S ()
P e 2¥A

whenever A' C 4 € Py(I') and ¢' € 24’
From (F1)(b) we conclude for 4, A € Poo(T), with A C 4, for ¢ € 2# and B C 24

(W' (%, A), 2(4, B)) — c = 241711 5™ 2y, 14| +1),2(4, B)) -
Lp€2“"‘a
{2 - Ml“ l—xl’—ﬁ)lif:/;eB
<-40-@ ) HYESB
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Since y'(3) is a w*-accumulation-point of the net
(v'(%,4) : A € Py(T), with D() C 4)

for every 9 € Sr, it follows that
] > A(A) ifpeB
@ woeam -2 24 Hes
whenever A € Py(T'),p €24 and BC 24,
We now choose a ﬁ)&ed v €I, Since T is infinite, it suffices to show that the family
(') — ¥'(¥°)) : ¥ € Sr\(y)), satsifies (a) and (b) of Lemma (2.2.2), where
¥? DU {y} = {0,1}, is given by ¥®|p(y) = ¥ and $°(7) = 0 if 8 € {0,1}.

and ¥ € Sry\{»)-
Condition (a) follows from (3). To show (b), let A € Py(T'\ {7}) and
(ay : ¢ € 24) C R. From (2) and the choice of (z},:n € IN), it follows (compare

(2.2.1)) that for.any z € By(X) and ¢ € 24
(@,9'(4") ~ ¥ (") S osclaah) ST,
which implies tﬁat
1Y ey’ @) -y < Z lag|.
pe2t p€2?

To show ">" let ¢ > 0. Without loss of generality, assume 2A(4) > 1 —e.
Otherwise replace A by an Ae P\ {7}) with AC Aand 2A(A) > 1-¢ and
note that by (3) we have

T 2 () - V) Y apy(e) - v
peoh pe2t

Il

and

Y 2 Wlggg ) > el

pe2d ‘ @ e2”
Now take z := z(A U {v}, B), where

i

B := {¢'|p € 2%and a, > 0} U {¢’lp € 2*and a,, < 0}.
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By (4) we have

Y e -v@ NIz Y aplz,y'(e") - u(e®)
pE€ 24 pe2t
Z a,sign(a,)2A(A)
pe2t
>(1-¢) Y. lagl.
pe2t

The assertion follows since ¢ > 0 was arbitrary.
o

By (2.2.4), it is enough to show that F,, # . As we will see from Lemma
(2.2.5), it is sufficient to show that for every a € [1,wp] each F* € Fp of can be
extended to an Fy € Fio,af-

2.2.5 Lemma: Suppose that for every a € [l,uw], each family F =
(z(4,B) : (A,B) € Ill of) C Bi(X) satisfying (F1,a1) can be extended to an
Fy = (2(A, B) : (4, B) € g af) which satsifies (Fio,of)-

Then F., is not empty; in particular, L,({0,1}*!) can be embedded in X .

Proof of (2.2.5) :

In order to show that there exists an F € Fu,, we define an Fg € Fg by transfinite
induction for every 8 € [0,w:] such that Fg|r, = Fj whenever B < B

For B = 0, we remark that Iy = {(9, {8)),(9,9)} and choose z = (B, {#})==(¥,9)
in By(X) with limsup,_,o(z, #%) > cand liminf,—co(z,23,) < —¢ (this is possible
by Lemma (2.2.1)). Since A(#,n) = -1 for n € IN, (Fy) follows trivially.

If B=0+1, with B < w; and with Fp € F having been chosen, one can- use the
ssumption to get an extension Fj of Fj in F by reordering Binto (vp:n < a)

or an a < w, and where 7o = 8.

B is a limit ordinal and if we assume that (Fj : B < B) has already been chosen,
first observe that I = {Jz<515

Fg, is an extension of Fp, for 0 < By < B2 < B, we get a family

Fy =(2(A,B): (A,B)FG Is)

Al F,gh;9 = Fj whenever 0 < B < B. Since every A € Py(B) is already
f Pf(ﬁ), where f < B is sufficiently large, Fj satisfies (Fp).




In order to show the assumption of Lemma (2.2.5), one needs the following
Lemmas (2.2.6) and (2.2.7). Lemma (2.2.6) can be shown in a similar way as
{34, p.3, Lemma 2], where (ACBH) is assumed, while Lemma (2.2.7) involves the
classical Ramsey theorem as presented in [44, Theorem 1.1].

2.2.6 Lemma: Let Ay, A2, . Ax C X' be sets c:o'l‘fjning convex blocks of
(z}:n €IN) and let § > 0.

Then there exists A; C A,,fig C Ag,... ,lik C A, still containing convex blocks
of (z!,:n €N), and for every B C {1,...,k} there exists z(B) € B1(X) with

. > (y-4) iieB
(z,x(B))—C{S_g_a; ;fi¢'B

whenever i € {1,...,k}, ¢ € A; and B C {1,...,k}.

Proof of (2.2.6) : _
By assumption we can choose for every i < k a convex block (yi" ) ) of (z,:n €IN)

in A;: By passing to subsequences if necessary, we can assume that (y),:n € IN),

where y/, := 7’;2!‘:, v for n € N, is a convex block of (y,:n €IN) also.
Using Lemma (2.2.1), we find z € B;(X) and infinite, disjoint N;,N; € IN with

1 é 1,6
] > 2_L . ] _r4, 0 .
(1) (y,,,a:)_.c+2 Y if n € Nyl and (y,,z) <¢ ‘2+4Ic ifneN,.

From the properties of (z!,:n € IN) (compare Lemma (2.2..1 }), we deduce for each
1 < k that
limsup (3, z)
n~—oo0,n€EN;

=( limsup (4, z)~ lim ixész(y:‘,a:)) + n-!‘ig,é.%f!v,(y:"z) '

n—oo,n€N; n-—so00,n
1 46
< -4 =
Slte-3+q
—ct 1 + )
T
By passing to a cofinite subset of Nj, we may assume that
2) (y'® z)<c+1+—5- if nenN.
nonh= 2 2k
Similary, we may assume that
; 1 6 ’
(3) (y:f'),m)ZC—-z——El-C- if n € N,.




65

We deduce from (1) and (2) that for each i S kandn€ Ny
W,2) = k(o) = D =)

i<k, j#
> ket 5 - o)~ (k=Dle+ 5+
- 2 4k 2k
' >c+ % -6.
Similary, we deduce from (1) and 3):
(y'(') x)<c——-+6 fori <kandn € Ny.
Now let B C {1,...,k}. If we deﬁne for each i € {1,.
A ¥ neN) ifieB
' (¥Plne Ny} ifigB
and z(B) := z, then 4},..., A} still contain convex blocks of (z},:n € IN). More-
over, for i < k and y' € 4},

> ~-6) ifieB
) wem) -{2_{° 6} sh
Repeating this process for every B € {B1,...,Ba} = ’P({l ., k}) we get sets
4;D A(l) .D A(2 ) for every i < k and elements z(B1),x(B2),...,z(Bys) €

B1(X) such that for every e € {1,.. 2%}, i < kjand ¢ € A(l), (4) holds for
B := B,. Teking 4; := A( = [Negat A (o for i € {1,...,k}, we note that the
assertion holds for the chosen z(B1),...,z(B).

o

2.2.7 Lemma: Let (Jum : m € IN) be a sequence of finite sets; for every
m € N and j € J, let L(m,j) again bea finite set. For every m€ IN, j € J,,, and
eEL(m'j),Iet f(m'j).lNo-i-m-—b]R. .

Also, assume that

Z 79 (k) >0 formeWNo,j€ Jm, and k € No +m.

(m )
Then there exists a subsequence (kp) of N, and for eachme N andj € Ju, a
bijection
b(m’J) : {1)2) ceey IL(m,j)I} i L(m,j) )
such that
ogm,iyl

Z f",(n':'l”)(‘)(k () 20, whenever m<my <mgp <...<Myp, )l
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Proof of (2.2.7) : , ‘

First let be f(9 : IN — IR, for £e{l,...,k}, k € N, besuch that Ef___l fOm)>0
ifnelN. .

We show that, for given infinite set N C IN, there exists an infinite M C N and a
bijection b: {1,...,k} — {1,...,k} such that '

k

(1) Z f*mg) >0 whenever my < ... < my liein M.
. =1 |

The classical Ramsey theorem (compare [44, Theorem 1.1 and following remarks])

states that for any infinite N .C IN and any

AC Nk = {(n1,...,m) € N¥|ny <... < ng}
there exists an infinite M C N such that
either [M)s CA or AC (Me \ [M}g

Let 1 = {my,...,mx} be the set of all permutationé on {1,2,...,k}. Setting
M©® := N and using Ramsey’s theorem, we can choose successively for each
i € {1,...,k} an infinite M) ¢ N with M(® ¢ MG-1 guch that the set

» k
A% = {(na,...,mi) € MOV | 3 77 O(ng) > 0)
=1

either contains [M®]; or does not meet it. Now we have to show that there exists
at least one i < k! with [M()]; C Ax;. This can be seen as follows:

Assuming that no A™ contains {M)];, we conclude that A* N [MUV], = @ for
every 7 € II, This means that for any m; < mz < ... < myg in M*) and any
permutation = € II, Z‘f:] f*O(m,) < 0. But this would imply; that for any
my < mg... < my of MAY,

' k
0> Z Zf"‘"(m,)

#€ll £=1

k
=D " O(me)
=1 w€N
k
= {r € n(e) = j}|- f9(mye)

1

k
t=1j

k ok

=(k-11)_ Y fPmy),

=1 j=1
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which contradicts the assumption. Thus, we have verified the assertion stated at
the beginning of the proof.

Applying the same reasoning, for a fixed m € IN and for an infinite N C INg +m,
|Jm| times, we get an infinite M, C N and, for every j € Jy,, a bijection b(m, j) :
{1,..., lL(m,j)l} - L(m’j), such that

® Z O 2 0

whenever j € J, and n; < ... < Ly, ;)| BT€ in Mp,.
It can be assumed that (M,,: m € IN) decreases. For an increasing sequence
(km:m €WN), with ky € My, if m € IN, the assertion is then satisfied.

Now we can state and show the last step of the proof of Theorem (2.1.3.).

2.2.8 Lemma: Suppose a € [1,wq] and that F = (z(4,B) : (4,B) € Iyap)
satisfies condition (.7"[, o)

Then there exists an extension Fy = (z(4,B) : (4, B) € ljp,af) of F', which
satisfies (Fjo,af)-

Proof of (2.2.8) :
By induction, we will choose for every 8 € [0,a] Nwq a family

(z(A,B): AC B,withO€ Aand, if 8>0,8-1€ 4; BC2*)

such that the following condition (1)(f) is satisfied:
(1)(8) For each v € [B,a]Nwo and n € IN there exists a family (2'(p,n) : p € 27)
in X' such that
a) 2'(p,n) € co({z}, : m > n})if p €27, and
b @AY e By -o{ 2 0T HD 5D
pE 2¥7
whenever A € P(B)UP((1,7]), ¥ €24 and B C 24 .

(Since for every 8 € [0,a] Nwo:

U {4cploedandif0<f,f —1€ A} ={ACp|0€ A},
0<p'<h :

value z(A, B) is defined for each A € Py([1,a[) U P(8) and each B C 24 in
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Having done this, we get an extension (2(4,B) : 4 € Py(a),B ¢ 24) of
satisfying (F,), which can be seen as follows: For an arbitrary 4 ¢ Ps(a) and an
7 € IN, one chooseg B € [0,a] Nwy. with ACpBands family (2'(y, n):p € 28) ag
in (1)(8). Then one observes that (@'(p,n): % €24} can be defined by

z'(p,n) := 2l4I~15| Z 2'(¢,n) for pe2d,
P eaws

this family satisfies (a) of (F,,) because of (1)(B)(a) and from ( 1}(B)(b) we deduce
(Fa)(b) by the following equations;

WW'ZzMWWWw

¢ € 2¢4

= (2M41~14) Z 2l4l~1a) Z 2'(@,n), #(4',B')) - ¢
P € 2¢/ $e 20’

= (214'1-18) » #(Pyn),2(4', B') — ¢
Peavs

{z A(A,n) if e pr

S-A(dyn) ifyt g pr

whenever 4 49" €24 and pr C 24,
g=0 no z(4, B) has to be defined. To verify (1)(0), we chose fory € [0, ajNwy
and n € IN a family (@'(p,n) : o € 21t )CX'asin Fi1,0f (taking A ;= [1,7]) and
set, for each ¢ ¢ 27, (p,n) = zl(“"’ll.‘rl’")' It follows, that (2'(p,n) : pE 27)
satisfies (a) and (b) of (1)(0). Indeed, (1)(0)(a) follows from (Fir,a()(a), and
(1)(0)(b) follows from (Fu1,0)(b) which can be shown in the following way:

S pum) e, 3y — o
p € 2¥Y
= (2M1-1(1,2f) > e, n),z(4,B)) -
pE 21,4
{2 A(4,n) ifyep
S-A(4,n) ifygp

whenever A€ P([1,4]), 4 ¢ 24 and B ¢ 24,
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Suppose now that for § > 0, (4, B) has been chosen for each A C g — 1 with
0 € A and each B C 24,

For n € IN we set y(n) := max{y € « i [y| £ n} (thereby concluding that
Y(1) = 1,%(2) = 2,... and if & < wp, then a = y(la}) = y(ja + 1})...), for
A € Py(a) we set £(A) := max({A4)+1 (so wehave A C £(A) C afor an A € Pj(a))
and, for 1 € Sq, £(1) := &D()). »
Choosing for every n € IN, (2'(p,n) : @ € 27¥8) 45 in (1)(8 — 1), and setting for
each ¥ € S, and n € IN with y(n) > (),

7' (3, n) 1= 2PWI=h(muA| Z #(p,n)
¢ € 297 (M8

we get a family (§'(¥,n) : ¥ € Sa, v(n) 2 €(3)) with properties (2),(3) and (4)
as stated and verified below.

By (1)(8 - 1)(a)),
(2) #'(p,n) € co({z, : m 2 n}) if ¢ € Sa and v(n) 2 £(¥).
From the definition of §'(,n) we have

|- ~
(3) MR f(gn)
p e 2¥'a
s ) o
= 2‘A -4l Z 2‘D('/’)l Ir(n)us| Z zl(‘Pa TI-)
P g 2vA @ € 2¥n(mup

= 2|AI|_l‘1(n)Uﬁ| Z E‘((P,, n)
‘P, € 2\"’;‘1(")”/’

= gl(u"'s n) s
whenever A € Py(a), A' C A,¢' € 24" and 7(n) > £(A).
Finally (1)(8 - 1)(b) implies

(4) (#'(¥,n),z(A,B)) — ¢
> A(An) ifyeB

= (2lAl-Ir(mus Z #(p,n),z(A, B)) — c{; —A(A: n) if ¢ B
p € 2¥imuB

whenever A4 € Py([1,a]) UP(B - 1), ¢ € 24 and y(n) > {(A). ..
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Define now for m € IN
Jn={(A, B,$)|A € Py({L,1(m)) UP((B - 1) N y(m)), B C 24 andy € 24},

for (A,B,¥) € Jm

Lim,4,,) = 2047,

and for ¢ € L(m,a,B,y) and k> m:

o [ 2MAI=189BC (5o, k), 2(A, B)) — ¢ — A(A,k)) ifpEB
fm, a3, (8) = { zw—wm_(%f%:, k)',ng,B)g +o- A4, k;) iy ¢B.

We conclude from (3) and (4), that the assumption of Lemma (2.2.7) is satisfied.

Indeed, we have

Y Soann®
¥ € Lim,A,B,9)
= (24BN (i (9, k), 2(4, B))) F e — A4, k)
pEIVAVUP
= £(§' (¥, k),2(4,B)) Fc—-D(4,k) 2 0

whenever m € N, ¥ > m and (A4, B,¢) € Jn.
So we can find a subsequence (k, : n € IN) of IN such that the family
(¥'(¢psn) : @ € Say 7(n) 2 Ugp)), where y'(p,n) 1= §'(p,ka) if ¥ € S5 and
y(n) 2 €(p), still satisfies (2),(3) and (4)‘, and such that, moreover, the following
property holds:
() For every n'€ IN, A € P([1,7(n)[) U P((B — 1) Ny(r)), B C 24, and ¢ € 24,
there exists a bijection {4, B, ¥,n) : {1,...21481=141} , 2948 5ch that

9l4augl-|Al

(@M-1A9BL N (B4, B, %, n)(i)ni), 2(4, B)) — ¢
i=1

o1AuBi-1Al

Yimt FHABEMO (k. )+ A(A,ka) ifp€B

lausi-jAl

“Eia LBk, — AA,ka) ¢ B

{z A(An) ifpeB
<-A(A,n) Y ¢B

whenever n <nj; <... < 151 Aupi-]Al-
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Now we apply (2.2.6) to (4, : ¢ € 27), where A, := {y'(p,n)| 7(n) > B} for
p€2% andtoé = AR to find for every ¢ € 29 an N(p) € Poo(INg + |]) and
for every B C 2? an z(8, B) € B,(X) such that

o vemsendz 4G

whenever B C 2%, p € 2% and n € N(p).
For an arbitrary A C 8 with 0, (8 —1) € A and B C 24 we set:

) (A4, B) = z(B, | J 2¥#).

y€B

Now we have to verify (1)(#). Toward this end let n € IN and 4 € {§,a] Nwp be
arbitrary.

We may assume that y(n) > v, otherwise we replace n by a sufficiently large
7t € IN. We choose £ € IN such that .

(8) £>12.n- 2281 §uP("$;' I +1).
JEN

~Next we choose for each i € {1,...£} and ¢ € 28 an n(p, i) with
(9)(a) n(p,i) 2 2n and n(p,i) € N(p),
(b) max({n(p,i —1)|p € 2°}) <min({n(p,)|p € 28}) ,if 1 <i <.

Finally, we define for each ¢ € 27:
1
! — 1 .
(10) Z(p,n) = 5 .-§=n ylpinlelsi)). .

By (9)(2) and (2), the family (z'(p,n) : ¢ € 27) satisfies (1)(8)(a). To show
(1)(B)(b), let A € P([1,7])U P(B), B C 24, and ¥ € 24, it remains to show

) @A S e, n),a(4, B)) —c

{2 A(A,n) ifpeB
5062‘#'7

<-A(A,n) ifp ¢B

To do this, we consider two cases:

Case1: 0 € A and (8 ~1) € A (thus A C S and z(A, B) was defined in the
present induction step).
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For this case we remark first that, by (10) and (3),

alAl=Iv Z 2(p,n)
WE2¢'1 ;

(4
1 - ,
=52 24 57 y(ein(els i)
¢ € 2¢|7

=1
1t
SIS e Y )
i=1 ¢ €2¥P - 9¢'\y

I 4
= MBS ()
i=1 ‘P' € 2w,ﬂ
Moreover, '
$peB = 297 C | )29 and $¢B = 2% |J 2" =9,
JeB 3]

¢

thus,
@A SN (e n(ei)),2(A, B)) ~ ¢
‘pl € 2¢,p .
=248 S (! n(e' )24, J 2%) - ¢
AL veB
[by ()}
{z 30— i) ifveB
<-Y1-ph) HygB
{2 A(A,n) ifpeB
< -A(A,n) fyp¢B,
which implies (11).
Case 2: A € P(8—1)JUP(]1,~]) (thus, 2(A, B) was chosen in a previous induction
step or was given by the assumption).
First we want to introduce the following notations:
For ¢ € S, and A’ € Py(a) we set: & := plp(p)ng, A= ANB,
b := b(A4, B,1,2n) (compare (5) and remark that A € Py([1,7[) UPs(f ~ 1) C
Pyt v(2n) DU PH(B ~ 1)), and
1 t41—2181~141 2lB81-14]
!

S rewry= BED M LA M CORCORESEFNE
=1

Jj=1
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(Note, that b(j) € 284 if j < 2l81~14] = 9l4UBl-14l gand therefore b(j) € 2°.)
To finish the proof we will show first that
M=t 3 2 p,n) -
pE2917
is sufficiently small and secondly that y' satisfies the statement in (11) for 2n
instead of n. We first do the following calculation:

olAl=Iv Z 2(p,n)

@ € 2"’;7
t
1 . .
=52 247 %7 Y (einlels i)
. =1 ¢ € 2"’:7
[by(10)]
= = Zzl‘“ 14| Z glavsl-hl Z y' (9", n(y',3))
i=1 ‘pl € o¥,AUB ‘P" € 2?'.'7
3
= %): glAl-14usl Y (g n(g)
f=1 ‘P’ e 2\":Auﬂ
by (3N
2l81-14]
== 22“' 181 }: y'(b(3), n(b(3),4)
|—l Jj=1

[the image of b is 2% AUB)
e41-2181-131 l81-141

___2IAI Iﬂl[ 2 3 )b~ 1+5)

1=1
- glBl-14] 218114}
+ Y J0E)nkG),)
i=1 =i+l
¢ ,'_(H.l..glﬂl—l;ﬂ)
+ 2 > Y6)nt6))
i=t+2-2181-131 i=1
ffor a proof see below]
g4+1- 2814 D2t T
? y ¢ ,
[note the definition of y'; 82 and Iy are defined below]




{the second to the last equation can be seen in the following way:
Setting a(i,3) = y'(b(), n(b(7),i) for i < £ and j < 2#14), we have

¢ 2BI=1Al

_ Z Z a(i,j)
i=1  Jj=1

a(1,1) + a(1,2) + ... + a(1,21P1-14)
+a(2,1) +a(2,2) +:.. + a(2, 217141

+a(6,1)+a(6,2) + ... + a(6, 2171141

a(1,1) +a(2,2) + ... + o(2F1-141 2l81-14ly
+a(2,1) +a(3,2) + ...+ a(1 + 2/81-141 glel-14ly

+a(l+1-28-4 1)+ ... +a(e, 2181141
+a(1,2) +a(1,3) + ... +a(1,2/81-14))
+a(2,8) + ... +a(2, 21817141

‘ + a(2l81-1A1 _ 1 plsi-1Al) ]
+a(€+2—281-4 1) )

+a(e+3~2P1-4 1) 4 (e + 3 - 2191-4 )

+a(8,1) +a(6,2) + +a(€,2181-4 _ 1)}

from which we conclude the a.ssertion.]

It follows that ‘
(12) fy'-2Ah N 2 en))

¢ e 2'&17
ol4i-18] £4 1= 281-14l
154 S+ - 22 gy

14
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1 9l8l
< =2.9%8l g A i !
[note that y'(p,n),y' € co({z]j € N}) and that T, and 5
have less than 21412141 summands]
<3.2%4 L /e
< ﬁﬁ"%"/
< 1/(4n).
)
From (9)(b) we deduce that
2n < n(b(1),i—141) < n(b(2),i — 1+ 2)... < n(b(2AVAI-IAl) § 1 glavsl-laly,

: . . whenever 7 € {1,...,£+1 — 2l4vAl-14l}
and it follows from (5) for each i € {1,...,£+ 1 — 214YFI-14l} that

) 2181-14} o
(@A Sy (805, n(b(3),i - 1+ 5)),2(4, B)) —¢
j=t
{g A(A,20) ifpeB
> -A(A,20) fyp¢gB.

Since y' is a convex combination of

2181=141

(é"‘"'ﬂ' S V)G, - 1+) i S+ 1 - R4
R

we have A4 2) %€ B
I} 2 yenj) 1 €

(y’z(A’B))—C{S-—A(Aﬂn) ify¢B

So we deduce (11) from (12) and the fact that || z(4, B)||< 1, which finishes the

proof,
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2.3 Corollaries ‘

First we want to dedﬁce two properties of a Banach space which satisfies
(CBH). Both are derived from the fact that a Banach space having (CBH) admits
a linear and bounded operator S : X — Lo({0,1}“?), a family (z4:a <w,), and
a A > 0 such that

[ S(za) ~ S(zp)fl 2 A for o, B € [0,w,], with a # 8
1

(Proposition (2.1.5) (Es)(wp) =(E7)(ws)). The first property shows that such a
Banach space "nearly contains * £1{w,) (but only nearly, as shown by the example
cited in (2.1.5)(i)) and the second says that such a space cannot be generated by
a conditionally weakly compact set. )
Then we show, following a proof of J. Bourggin and J. Diestel [4, p.55, Propo-
sition 7], that Banach spaces admitting limited sets which are not relatively weakly
compact enjoy property (CBH).
2.3.1 Corollary: Let X satisfy (CBH). Then:
a) There exists a family (zo: o <wp) C X and a § > 0 with the following
. properties: ’ .
For every infinite I C wy and every familiy (ya : @ € I) C X for which
[ Ta — ya l|< & for o € I, there exists an infinte I C I such that (y, : & € )
is equivalent to (egl) rie D).
b) X is not generated by a weakly conditionally compact set.

Proof of (2.3.1) :

Proof of (2):

By Proposition (2.1.6)(b)(ii} and (g) (in the case w, > w;) and by Theorem (2.1.3)
and (2.1.6)(f)((Es {wp) =>(Ez)}(wp)) (in the case wp = wy), we get a bounded
operator §: X — Loo{{0,1}*#), & bounded family (znia <wp) C X anda A >0
as in (E7)(wp). We want to verify the assertion for § := A/(3(]| S]] +1)). To this
end, let I € Poo(wp) and (yo : @ € I) € X, such that [y, — 24 [j< §, whenever
a € I; and denote the inclusion from Lso({0,1}*) into L;({0,1}**) by 7. From
(E1)(wp) and the fact that || T{|= 1, we have

170 S(va) = To S(up)] 20 S(z0) = S(aa)] -2 I SUTY2 382 6.

Consequently, the set T'0 S{{zq4 | € I}) is not relatively compact in L,({0,1}*?),
thus not limited in Ly ({0, 1}“?) (Examples (1.2.4)(a)). We deduce that the preim-
age of this set corresponding to T cannot be limited in Loo({0,1}*?). Since
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0o({0, 1}*?) is & Grothendieck space and enjoys the Dunford-Pettis property we
‘deduce from (1.1.7) and the Rosenthal’s £; theorem that {S(za)|a € I} contains
a sequeénce (S(zq,) : n € IN), which is equivalent to (cs,l): n € N). Since ¢, is
projective, (za, ) is equivalent to (cs.l):n €1IN) as well. )
Proof of (b): Suppose that X is generated by a conditionally ¢(X, X')-compact
set €. For every a we find ko € N, r{a,1),...,r(a, ka) € R and

yla,1),...,¥{a, ka).€ C such that for every a < 8,

ka
2 = 3 rlosiyla, D)< 6,
i=1 -
where (z,) and § are as in (a).
Since w; is uncountable, we find an infinite subset I of w, such that:

k:=sup{ks|a €I} < coandr:= sup max{|r{a,i)}|¢ < k,} < oo
ag

But this implies that the family (Ef;l r{a,{)y(a,i):a € I)is conditionally weakly

compact, which cannot be true by (a).
°

2.3.2 Proposition: If X contains limited sets which are not relatively weakly
compact, then X enjoys the property (CBH). »
Proof of (2.3.2) {(We follow the first part of the proof in (4, p.55, Proposition
) .

Let A C. X be limited but not relatively (X, X'}-compact. By the theorem of
Eberlein,Smuilian, and James [36, p.103; Theorem 1}, we find a bounded se,q'uence‘
(znin €IN) C A and (z}:n €IN) C X' such that

) (Shyzm) = {1} S
1) {Znsm) 0. ifn>m.
We want to show that (z/:n €IN) has no w*-convergent ¢onvex block.
Let (y,:n €IN) be a convex block of (z!,:n € IN). Thus, there exists an increasing
sequence (kn:n € IN) C IN and a sequence of non-negative numbers (a; : ¢ € IN)
such that: ' S

) kn-}-l“1 kru}-l‘;1
(2) Y = Z a;z; and Z a;=1if ne M.

i=kn i=kn
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From (1) and (2) we have for each n € IN

. . kpgr—l . . kpgo-1 .
] ] - . ' . '
(zkn“-hyn - yn+l) = Z a'(?knu-lv“"i) - Z a'(zkn-}-l -1, %5)
i=kn i=kn41
by —1 .
= Z a; =1.
. i=kn

Since {z,,,~1}n € N} is limited in X, the sequence (vn — vhey + 1 € IN) does
not converge in o{X', X) to 0, therefore (y,;n € N) is not o(X', X )-convergent.
0

The following Corollary collects the conditions which imply that in a given

Banach space all limited sets are relatively weakly compact. They are all weaker

then the property that X contains a copy of £;, thus we have generalized the result -

of J. Bourgain and J. Diestel.

2.3.3 Corollary: The following conditions imply that the limited sets of X are

relatively weakly compact:

a) X' does not contain an copy of Ly({0,1}*?).

b) No family (za:a <wp) C X exists such that every infinite subfamily contains
a {y-basis,

¢) X is conditionally weakly compactly generated.

d) Under the set theoretical assumption that wp, > wy, X does not contain a
copy of £ (wp). ‘

2.3.4 Corollary:

a) A non-separable Banach space X cannot be generated by an X -limited set.

b) (Theorem of Josefson.and Nissenzweig) In the dual of an infinite dimensional
Banach space X there exist normed sequences which converges in o(X nX )

to zero.

Proof of (2.3.4) :

Proof of (a): Suppose X = span(A) where A is limited in X. Since A must be
conditionally weakly compact (1.1.5), all limited sets of X are relatively weakly
compact by (2.3.3)(c), which implies that X is weakly compactly generated. Thus,
X is a Gelfand-Phillips space and must be generated by the relatively compact set
A, which means that X is separable,

Proof of (b): If there does not exist a normed (X', X)-zero sequence in X', By (X)
is limited in X, Following the arguments in (a), By(X) must be compact, which
implies that X is finite dimensional, °
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2.3.5 Remark:
a) The Grothendieck C(K)- space constructed by M. Talagrand under the contin-

b)

uum hypothesis (compare (2.1.5)(h)) is a space not containing &; (w;) (Propo-
sition (2.1.5)((€,) <= (Es)(wc))). By (1.1.7) and (1.1.8) it contains limited
sets which are not relatively weakly compact. Thus, without any further set
axioms,. we cannot deduce from the fact that X has limited subsets which are

not_relatively weakly compact, that X contains a copy of £;(ws).

In (5.2) we shall construct a Banach space not containing ¢; and not satisfying
the Gelfand-Phillips property. Thus, the result of J. Bourgain and J. Diestel
(that &, ¢ X = all limited subsets of X are relatively weakly compact)
cannot be sharpened in the following sense: from ¢; ¢ X we cannot deduce
that all limited sets are already relatjvely (norm-) compact.
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3 Limited sets in C(K)-spaces
An easy argument shows that in order to characterize limited sets in any
Banach space X, it would be sufficient to investigate limited sets in C(K)-spaces;

namely, we have for an A C X,
Ais X~limited <=> A is limited in C(B1(X")),

where B, (X') is endowed with o(X’, X)NB;(X') and X is embedded in C(B(X"))
in the canonical way. -
(” = ” : obvious ;
"= =y o 0 I (20 €IN) is a (X, X)-zero sequence, then (8¢ — 6 i n € N) is
w*-zero in M(B,;(X")).)

Thus, the investigation of limited sets is of special interest.

In section (3.1), we show how to construct, from a limited but not relatively
compact subset in a C(X')-space, a normed and limited sequence (f,!n € N) C
C(K) of functions with pairwise disjoint supports. Since, in particular, such a
sequence is equivalent to (e(,.o): n € IN), we deduce that (1.3.3)(a) is reversible
for C(K)-spaces and so we can characterize the Gelfand-Phillips property of a
C(K)-space by the property that every sequence (z,:n € IN) which is equivalent
to (es,o): n € IN) contains a subsequence (zn:n€N) for which span(z,, : n € IN) is
complemented in C(X). ’

In the other sections, we formulate sufficient conditions for limitedness, which
will be applied in chapter 5 to construct spaces without the Gelfand-Phillips prop-
erty. .

In the sequel, K is always a compact space.
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3.1 The existence of limited and normed sequences in C(K) with pair--
wise disjoint supports if C(K) is not Gelfand-Phillips
"Theorem (3.1.3) shows how to construct, from a limited ‘and not relatively
compact set A C C(K), 2 limited normed sequence (f,: n € IN) whose elements -
have pairwise disjoint supports. We begin with two lemmas which contmn the
sibstance of the proof of (3.1.3). ‘
3.1.1 Lemma: Let A be limited in C(K) and let k € IN.
Then for every g € C([~c, c]*), where ¢ := supse4 || fll, the set

Aﬂ :='{g(.f1(')5f2(')al' . afk('))(fhf%- o afk € A}
is also limited in C(K).
Proof of (3.1.1) :

By induction, we first show that for each ¢ € Ny and each 7i := (ny,...,ny) € N
with Z:;l n; = £, the set

ﬂ:-{ " ;2“'f:klfhf21“‘a keA}

is limited in C(K).

For £ = 0 the assertion is trivial (4, 0) = {1})

Supposmg that the assertion has been proven for £ — 1, £ > 1,  we have to

show that for @ = (ny,na,...,ns) € NS with 5 n; = £, a sequence

(f("ll,m.) . f(';’.m)...f(';:’:m) :m € N) C Ay (ie. fjm) € A for j < k and m € N),
and a w*-zero sequence (fi,:n € N) in M(K) it follows that '

() Jim (s Sy Sy £y = 0

Since € > 1, we can assume w.Lo.g. that ny > 1. Since (h.u,in €IN) is a w*-zero
sequence for each h € C(K), we deduce from the assumption that the assertion

has been proven for £ - 1 that

-1 , -
(b (f3hmy * Fmy - F ey otim) = {3y f(z.m) Skomys hobim) = 0
for each h € C(K).

Thus, (( (';‘;‘; f(';"m) f("k"m)) fm 2 m € IN) is a o(C(K), M(K))-zero séquence: - -

also and we deduce (1) from the C(K)-limitedness of {f(1,m) : m € IN) since - .

o -1 2 n
(-fl ,m) f(”‘zl,m) v 'f(nkk,m)’#ﬂ) = (f(ln'")’(f("ll,m) f(';‘,m) e ‘f(‘k,:m))'l"m)"::;o'
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This finishes the proof of the induction step,

We conclude that the set G := {g € C([~¢, i:]")‘l Ay is C(K) — limited} contains
all polynomials, In particular it follows from the theorem of Stone and Weierstra8
that it is:dense in C([-c,c]*), so we can deduce the assertion from Proposition

(1.1.4).
<

3.1.2 Lemma: Let (fn:n € IN) be a normed, non negative, weakly to zero

converging sequence in C(K).
Then there exist k € No, g € C([0,1]*+1), with 0 < g €1, N € Poo(N), and
my,ma,...,mg € IN such that the sequence

(gntn GN), where gn = g(fﬂ(')’fmg(')vfmgq('))" 'fm;(')) forne N,

is normed and its elements have pairwise disjoint supports.
Proof of (3.1,2) : .
For the sequel, we choose a fixed h € C ([0, 1]) with
For f € C(K) and ¢ > 0 we set
AO(f) = {6 K|f(€) 21 —¢)
We will say that a sequence (fn:n €IN) C C(K) satisfies (2) if
(2) there exists an N € Poo(IN) such that (AMN(f,) 1 n € N) is pairwise disjoint.
If a-sequence (fn:n € N) C C(K) does not satisfy (2), it follows that
(3) there exists an n € IN for which the set

{m € N,m 2 n[AV/O(f) N AVIO(f,) £ 6)

is of infinite cardinality.
This can be seen in-the following way:
Assume that for each n € IN the set {m € IN,m > n| AC/O(f)n AU/ f, £ ¢}
is finite, Then we can choose for each:n € IN-an m(n) € IN such that -

AVDGINAG/F ) =0  whenever m > n't(.n).
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Setting ny := 1 and, inductively, ng4) := m(ns), the sets A/9(f,. ), k€ I, are”
pairwise disjoint, and thus, (3) is fulfilled. :
By induction, we choose now for every k € Ny an Ni € Po(NN), & ¢ in
C([0,1}¥*+1) with || ¢ ||= 1 and 0 < ¢ < 1, and an m; & Ny such that
one of the following two cases occur:
Either k > 1 and the sequence (g¢*~ l)(j',.( Wmsoy (e o  fmy () : 7 € Nioy) has
property (2), in which case
(4)(k) Ni:= Ni-1, mi i=mg—y and

g6 i) = gV Gy G TGy G €00,
or, this is not true and we have '
(5)(k) mi = min(Ny) > mi-; and Ny C Ny if k> 1, and -
(6)(k) the sequence (gs.k) :n € Ny), with

(k) _g(k)(f"() fmg() fm), 1()1 fm,()) fOl'nEIN,

is a normed weak-zero sequence and for each n € N; we have

@ s 1 £ Sl 1
{on ' 2 Z'} c g{fm.- = Z}n{fn > Z}

If k = 0, we set Nop := IN, mp := 0 and take for g(® the identity on [0,1].
Then (5)(0) is an empty condition while (6)(0) follows from the assumption on
(fun elN).”

We suppose now that for k € IN, (Ng: €< k), (me: € < k), and (g¢ : £ < k) have
been chosen, )

" In the case that the sequence (95" : n € Ni-;) (where gu¥ D i defined in
(6)(k — 1)) has property (2), we choose N, gx, and my, as prescribed in (4)(k).
If it does not satisfy (2), the sequence (6% Y :ine Necyyn > mi—1) does not
satisfy it either and we conclude from the observation at the beginning of the proof
that it satisfies (3). Thus, there exists my > mi—1 such that the set

{n € Nioy,n > mye | AG/)(gh=1yn A/ (g(k-D)) £ 9} -

is infinite. Hence, if we take

= {n € Nioiyn 2 mi [AC (gl n A9 (gE1) 5 0},
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(6)(k) is satisfied.
For &3,62... Ek+1 € [0, 1], we set

IO (&1, 820 Erpr) = R V(&1 & agr) - 962, 6a o Ekp) -

Then ¢(®) € C({0,1}**') and, by (1) and the fact that g(*~1) was assumed to be
of norm 1, we deduce that g(*) takes its values in [0, 1] and is of norm 1.

By the choice of Ny, there exists for each n € Ny an w € K with g(" l)(w) 2> 3/4
and ¢4 " (w) > 3/4. From (1) we deduce that

gf:k)(w) = h(g(kQI)(fﬂ)fmg greee ’fml)'g(k‘”(fmkifmk..l yoos »fm; ))(w)
= h(gl " w) - g W) =1,

which implies that || g ll= 1 for each n € N). Furthermore, (g(k) : n’e Ni)is®

weak-zero convergent since (g&* Dine N) has this property and h is continuous

and vanishes in 0.

It remains to show the inclusion in (6)(k).

First we remark that, for an w € K and an n € N with g(k)(w) > 1/4, it

follows from the fact that g“‘)(w) = h(g(k'l)(w)g(" l)(w)) and from (1) that
otk ”(w) > 1/4 and gl (w)) > 1/4. Thus we deduce from (6)(k ~ 1) that

(o9 2 T ol 2 e 2 5)
k-1 k~1 1

< Mfm 2 4}ﬂ{fm,, 2 330 (Y fmi 2 4}n{fn 7

i=1 i=1
= ﬂ{fm. 210tz 3t
i=1
which verifies the last assertion and finishes the induction step.

We now want to show that there is a k € IN for which (¢ : n € IN) satisfies

condition (2).
Assuming that this is not true, we deduce that for all ¥ € IN, (6)(k) and (6)(k)

are satisfied; in particular, the set ﬂ e 1y 2 1} is non empty for every k € N,
and thus, by compactness of K,

(Um 2 3} 0.
i=1
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But this is a contradiction to the assumption that (f,,: n € IN} is weakly zefo
convergent. .

Thus, we can choose & k' € IN such that (gf.k) : n € Ny) satisfies (2) and we find
N € Poo(Ny) for which the elements of (AM/*)(g{") : n € N) are pairwise disjoint.
Choosing now h € C([0, 1)) with

0< ;l <1, 7)'[0’7/3] =0, and ilkg/g,ll = 1‘,

we deduce that g 1= ho (¥, my;m,,...,m, and N satisfy the desired conditions
(note that

ST g = K
{9n>0) ={hog(k)(fmfmp-“afml)>0}
C TN fas fmps -+ ) 2 3} = AVI(g0)

whenever n € N).

3.1.3 Theorem: Let AC C{K) be limited but not relatively compact.

Then there exists a sequence (fu:n € IN) Caco(A), finitely many hy, b, ... hi
in aco(A), and a g € C([—c, c}**+!), where ¢ := supse4 || f1l, such that the sequence
(gn:n €IN), with

9n = g(farhi, heyy.oo hy) forne N,

is normed, non negative, is still limited in C(K), and has pairwise disjoint supports.

Proof of (3.1.3) :
Since A is limited in C(K), thus weakly conditionally compact by (1.1.5), but not
relatively compact, we find a o(C(K), M(K ))-ié'i*o_._‘;sequence (fain € N)'C aco(A)
with '

re= inf [[fa]l>0.

Defining for each n € N, f, := 1 min(] fa()l,7), the sequence (foin € IN) satisfies
the assumptions of (3.1.2) and we deduce the existence of k € INg, § € C([0, 1]*+!),
my,ma,...,mp € N,and N € Poo(IN) such that the sequence (g(fn,f,,,k,.) . ,f_}) :
n € N) is normned and such that its element have pairwise disjoint supports.
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: 'I_‘akir;g now

061,621 Er2) 2= G (in(ialy ), min(€al,7), ..., minjéal, )
. whenever &,..., &1 € [sup || £, —sup | FII};
JEA JEA

hji= fm; for 1<j < k,and
fi :=f~,.j forjeN,

where (n; : j € IN) is strictly increasing and contains just the elements of
"N\ {m1,...,msi}, we deduce the assertion from (3.1.1).

3.1.4 Corollary: The following are equivalent:
a) C(X) enjoys the Gelfand-Phillips property.
b) Each (fo:n € N) C C(K), which is equivalent to (cs.o): n € N), contains a
" subsequence whose closed span is complerﬁented in C(K).
¢) Each (fn:n € N) € C(K), consisting of non negative elements of norm 1
with pairwise disjoint sixpports, contains a subsequence whose closed span is
complemented in C(K). ' '

Proof of (3.1.4) :

(a) =(b): (1.3.3) (a)

(b) =(c): obvious

—{a) = ~(c): (3.1.3) and (1.3.2)
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3.2 Decompositions of sequences of measures. Auxiliary results to in-
vestigate limited sets in C(K).

Starting from the fact that a o(C(K), M(K))-zero sequence (fq:n € IN) is not
limited if and only if there exists a o(C(K), M(K))-converging (not necessarily to
zero) sequence (#n:n € IN) such that

(+) limsup(fm#n) >0,
) n—oo :

we will investigate, which additional proper:ties can be required from a weak”-zero
sequence {gnin € N} C M(K) which satisﬁés (+) for a given o(C(K), M(K))-zero
sequehce (fa:n €IN) which is not limited m C(K).

Closely following a part of a proof of [9, p.94, Theorem], we will first show
that (pn:n €IN) can be chosen to have pairwise disjoint supports (Lemma (3.2.1)
and Corollary (3.2.2)). .

Secondly, we show ((3.2.3) and (3.2.4)) that for a given sequence (Fn!n € IN) of
closed subsets of K which is "o-disjoint” (compare condition (3.2.3.1) in (3.2.3)),
we find N € Poo(IN) and a o(C(K), M(K))-converging sequence (gn:n € N)
satisfying (+) and with supports having pjairwise disjoint neighborhoods 0, for
which O NUprgnnign Fu =8 (n € N).

The necessary Lemma (3.2.3) will be formulated in the vector-valued setting
(by considering M(K, X )binstead of M(K)), because we will need it in this form
in chapter ¢, I
3.2.1 Lemﬁla: Let (2,3, 1) be a finite measure space and let (fu,:n € IN) be
bounded in L) (y).

Then there is a subsequence (ni:k € IN) of N and for each k € IN, g; and iy
in Ly{(p) such that
a) (he:k €IN) converges weakly,

b) {gx #0}N {ge #0} =0 p—almost everywhere for each k, k' € IV,
with k # ¥, and
¢) fay =gk + h; p—almost everywhere for each k € IN.

Proof of (3,2.1) : ‘
W.lo.g we can assume that (fo:n € IN) is not relatively weakly compact; oth-
erwise we find, according to the theorem of Eberlein and Smulian, a subsequence
i (f,,k: k €IN) which converges weakly and we can take hi := f,, and g; := 0 for

each k € IN,
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Forr>0and fe Li(x) we define

wef)= ewp /E f1du,

EGE;I‘(E)S

and for a bounded 4 ¢ Ly(n)
n7(r, A) := sup n(r, f) = sup / Iflde.
fea E€Lu(B)sr,realp

By the theorem of Dunford and Pettjs (compare [9, p.93, Theorem]), & bounded
ACLi(p) is relatively weakly compact if and only if

31{1‘1) n{r,A) =0.

Thus, we have

(note that the limit exist, since p(r, A)is decreasing for decreasing r).
We find therefore a strictly increa'sing (me:k e N)CN, a decreasing sequence
(re:k €IN) € R*, and (Bx:k €N) C 5 such that '

2 HE) = ry — 0
® 7= [ Umcrkta] < 272y

We want to show that the sequence (XQ\Ek fm(,,) t ke IN) is relatively weakly
compact.

Assuming that this js not the case, we find again an increasing (k,: ¢ EN)CIN,a
decreasing Sequence (7:¢ € IN) ¢ R, and (B¢ €IN) C T such that

(4) /J(E'g) =7t —0 and
koo
(5) Iﬁ' —/1;: X0\ By frngiiey dpe| < 2745,
(4

where * .= lime g n(r, {xa\g, [k e N})>o.
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'From the definition of 7(.,.) and from (2), (3), (4), and (5), we deduce for each
£€ N that ' :

a(fe+ ey {faln e N}) 2 / " fmireenlda
. EUEyy
= / [fm(r(eplde + / IXQ\Ey(gy fn(reenldn
Ety By
> nt - 2-—k(l)’?t + ﬁt = 2—lir

Since n* = liMpenoo N(reey + re, {fn|n € N}) énd since ﬁi'. was assumed to be
strictly positive, we have a contradiction. '

By the theorem of Eberlein and Smulian, we find a subsequence (ki€ € IN) of IN
such that

(6) b= XQ\Ey(y fmih(e) 18 weakly convergent.
For £ € IN we set
(N 30 = fuuy) ~ he= X Exey fmik0) -

Since (2) implies that p({|5¢| > 0}) < p(Exp) = rk(g)‘l—-» 0, there isa sﬁbséquci'xce
—00
(8(7): 5 € N) of N with

(8) Igt(j)ldf‘ < 2—j for each j €IN.

‘/ 15541 Uity 1>0)
If we define

9; i= X a;dit; , where A; 1= {{gui)] > 03\ | {ldem! > 0) for j € N,
: >3

then the 9i's have pairwise disjoint supports and the sequence (h;:j € IN), where
) hy 1= hegs) + xa\a; ey forj €N,

converges weakly according to (6) and (8). Thus (a) and (b) of the assertion are
satisfied; (¢} follows for n;j := m(k(£(5))), € N, from (7) and (9).
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3.2,2 Corollary: . - .
a) Let (vain €IN) C M(K) be bounded Then there isa subsequence _
(ni: k €IN) of N and, for each k € IN, v{) and v® in M(K) such that
i) (u(l) 1k €IN) convefges weakly in M(X),
i) supp(u( )) ﬂsupp(v,(f)) =@ for k, k' € ]N with k # &', and
i) vn, = u,‘l) + v, % for each k € IN.
b) Let A C C(K) be condxtxonally weakly compact but not limited. Then there
exists a sequence (fn:n €IN) C A and a normed o(M(K), C(K))-zero sequence
(#n:n € IN) whose elements have pairwise disjoint support such that

Jnf (n, fa) > 0.

Proof of (3.2.2) : :

Proof of (a): Let pi= Y,y 27 "|¥n|. Then for every n € IN, v, is y-continuous
and has a density f. € Lj(g). Since (f,:n € IN) is bounded, we find by (3.2.1)
a subsequence (nj: k € IN) of N and, for each k € IN, gr, hi € Ly(p) satisfying
(a),(b), and (c) of (3.2.1). Since y is regular, there are compact and pairwise
disjoint Cx C {|g&| > 0}, for k € IN, with -

/ lgkldp < 27%.
K\C}
Taking for each k € IN
v = st (xine, co)e and v = (xo, gk)a,

we deduce (i), (ii), and (jii).

Proof of (b): X A is conditionally o(C(JK), M(K))-compact but not limited, we

find by Lemma (1.3.1) a o(M(K), C(K))-zero sequence (fin:n € IN} and a weak

Cauchy sequence (fain €N) C A such that (p,.,f,,.) = 8(n,m) for n,m € N. By

(a), there is a subsequence (ng: k e]N) of IN and, for each k € lN Vm and um

in M(K) satisfying (i), (ii), and (iii) of (a). From the Dunford-Pettis property of
C(K) we have

lxmmf(uu —Vzk pfﬂzk)

= W infl{fingy = Angeoyy fage) + (Vhks =948 Fam)] = 1.
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Since (Vg,‘ - u.‘(,k_ k € IN) is a weak®-zero sequence also, there is an np € IN
such that the sequences (uj:j €IN) and (f;:j € IN) with,

(2) (2) ;

. Wa(ng) = Vi(54ng)-1)
His 0 /2 A2

2(j+no) T T2(j+no)-1

satisfies the desired conditions.

and fji= f"’(iﬂo) , forjeNN,

©

3.2.3 Lemma:  Let (4s:n € IN) be a bounded sequence in M(K, X) whose
elements. have pairwise disjoint supports and let (F, : n € IN) be a sequence of
closed and pairwise disjoint subsets of K with the following property:
(3.2.3.1) For any two disjoint Ny, Ny € Poo(IN), there are N; € Poo(N1) and
N3 € Poo(N3) such that :
U F.0 U Fa=0.
. neN, neN;
Let € > 0.
Then there exists a subsequence (ni: k € IN) of IN, two sequences (fi: k € N) -
and (hi:k € IN) in C(K), both non negatxve and normed, such that the following
properties hold:
(3.2.3.2) For eachk € N thereisa neighborhood Oy of supp((gs-hy-.. . hie1).pin,)
w:th
i) OsNOp =0 fork, k' e N thhk;ék’ and
ii) Oy ﬂm— @ for each k € IN.
(3.2.3.3) llptny = (g ~ha - oo hici)pn, IS €
(3.2.3.4) limg—coSupgypyy I(ha e oo he) (L~ g -hegr - himt)pin, fI= 0
. Proof of (3.2.3) :(The proof uses ideas from the proof of the Lemma of Rosenthal
[9, p.82, Rosenthal’s Lemma] and the proof of a result of Pelezynski [45, p.643,
Lemma 1))
W.l.o.g we may assume that || yn "< 1for n € IN, First we choose a sequence
(mi: k €IN) C IN with

© 1
1 ,Z« —
Then we choose inductively, for each k € IN, gk, hie € C(K) with Jjgill=] ke {l=1,
0<gi<sland0 < h; <1, anopen Ui C K,a strictly increasing (ng-k):j eN)in

IN, and an nj; € INg such that the following‘ properties are satisfied:
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@)k (nP:j e ) ¢ (¥ ;s 2my) and ny € (n(*-D . 5 <
k>1, ’

B)E) UinT; =9 whenever 1 SE <kand nUkl<k F,.k, = ﬂ

@k B> 0 (TruR,) =0,

6)(*) Tgx > 07 nm= ,

(6)(k) supp((hy - b, .. ’lk—x)~#n.,) C Uy,

(1)(k) || Ay “he hpoy (1= hy)p (,;) II< 1/my, and

(8)k) by - hy.. chees(1- gy, /z..,‘ I< 1/my. .

Forlc—lwesetn“ --J if § €N, hy := =1, g '=OU1 =, andm = 0, whexe
=0and F := ﬂ and we deduce easily that the desired conditions are satisfied,”

We assume now that for k > 1 and for allre{1,... k- 1}, (h;. ):j eIN), he, gr,
and n, have been chosen.

We define
. _ . . v
9 o= JU uF,,
' r<k
and for each ¢ ¢ {1,2,...2mk}
(10) A= supp((h, . hz e hk_] )./ln(k)).

From (4)(r), r < k, we deduce for eachi ¢ {1,2,.., 2my} that

A c(’]{h,>0}cﬂ(u VB )= (T uF,) =

r<k r<k r<k

Since, by assumption, the supports of the elements of {u (,,..., 11 < 2mi} are
pairwise disjoint, we may apply the normality of K to find, for each0 <¢ < 2my,
anopen G; C K such that

(11) 4iCG; and GinG; =9 forz‘,je{O,l,...,2mk}withz‘;éj.

Since the elements of {Fn("‘” l1<i< 2my} are closed and pairwise disjoint also,
we find open V; ¢ K, 1< < 2my, such that

12) P, cv and VNV =0fori ;e L2, 2m ) with 4 5 5,
n(k~D) j
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{1,2,...,2m}} we set
Mi:= {5 > 2mu | Ju (Vi UGY) < 1/my}.
3 .

Since pt_(k-1) is of norm noi greater than one, we deduce from (11) and (12) that

2my 2my
22 |u ah= it V) +1u, - n)l(U G)
2my =
2) k- iV u @)
i=1

“for each § € IN. Thus, for each j € IN, at least one of the above summands must not
be greater than 1/my, and it follows that there exists an 4o € {1,2,...,2my} for '
which M;, isinfinite. Now we decompose M;, into my pairwise disjoint and infinite
sets, denoted by anl) oo M, (0""‘), and we deduce from (3.2.3.1) and the normality
of K that there exist. M;(:) € Pw(Mg)) and open W; C K, for 1 £ j < my, such
that

(14) U F-nCW; and W;nW;=40
tem)

for 4,7.€ {1,2,...,my} with ¢ # ;.
Since g (x.1j is of norm not greater than one, thereis a jy € {1,2,...,m;} such -
i

that
(18) B =) (Wio) S 1/my.
io
Now we take n = n“’ Y and n(L) 1= "S(})i for j € IN, where (¢: eN)C N is
increasing and consists of the elements of Mfo’“) . With this choice, (2)(4) follows; °

Since A;, is closed and since Gy, is open and contains A;,, thereis anopen Uy C K

with
(16) Ay CUCT CGyy .

Using (10) and the definition of n;, we deduce (6)(k), while (11), (9), and (16)
imply condition (3)(k).
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Now we choose an k; and a gi, both in C(K') and satisfying (17) and (18) as listed
below:
(1N 0<h £1, h,,ch avs = 1, and hy vanishes on a neighborhood of UiV Fy,

(note that Fy, = F (;, -1) C Vi, by (12), and that Uk C Gi, by (16))
(18} 0L g <1, 9k|wC = 1 “and gk vanishes on a neighborhood of

Fi= UleM{: ank—l)
(note that W§ and F are disjoint by (14)),
With this choice, we deduce (4)(k) from (17) and (5)(k) from (18).
Moreover, we deduce for each j € IN that
Ny b hiema (U= hadps o | < |By b hk-l-l‘ngk)l({hk #1})
J
< ll‘n(k)l(Gio U V)
7
[ by (17)]
<1/my
[nﬁ-k) € {nsk_l) }¢ € My} and (13)],

which verifies (7)(k). Also,

Nhychae hies (U= gi)ping | < Hha - b hieriping [({9x # 13)
< ll‘nkl(Wio)
[ by (18)]
< 1/myg
[nk = nS:"l) and (15)],

which verifies (8)(k) and finishes the induction step.

To prove the assertion, we choose Oy, := Uy \m and ng, kg, and g; as in-
the induction,

From (6)(k).and (5)(k), we deduce that O is a neighborhood of the support. of:::
{grhaha oo hi—1).pin,. (3.2,3.2)(i) follows from (3)(k) and, since from (2)(k) it =
follows that (ng: k"> k) C (n(k) :j €IN), we deduce (3.2.3.2)(ii) from (3)(k) and
the above definition of O as follows: v

on | Fu =\ Fwn(U Ful ) =9,

K EN\{k) : jEN " K>k K<k
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for each k € IN.
Finally, we deduce (3.2.3.3) and (3.2.3.4) respectively from the following inequali-

ties:

Nl pay=(gehihz . hemr)pin i
SN = gedhahg . heerpa, |+ a0, = (Rrbao. hecr)pn, I
k-1

1
<—+ 2 1 = Rydhyhg B i, |l
me

[by (8)(k)]

1 k—1

1
S—+Q) —<e¢
mg m,-

=1

[by (7)(5) and (2)(5), and (1)}
and

BChy oo he) (A=gk - hegr - ov Ry )oing |
Shhae e Bima) - (1= ge)-png |l
+ Ry e he) (L= hegr oo himg)png |l

k-1
1 ;
S — + Z Il(l_'hj)hthH-hj-l)'l‘nk "
m j=thl
[by (8)(k)] ,
k-1 oo
< ._l._ + 3 .l. < ..l_ —+ 0
mg Perzl mj T SR e
. [by (7)(4) and (2)(5), and (1)}.

. This completes the proof.
. . .

8.2.4 Proposition:  Let (ug: k € N) © M(K, X') be normed, ¢ >0, and let
(hitk €IN), (gi: k € N) C C(K), satisly (3.2.3.3) and (3.2.3.4) of Lemma (3.2.3)
(with ng ;= k and X' instead of X). |
e define fig := (hyhy ... gk).ux for k € IN.

Then .
) if (uii k €IN) is 2 o(M(K, X'), C(K, X))-zero sequence, then (jix:k € IN) has

o

the same property, and
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b) for a sequence (fa:n €IN) C By(C(K, X)) it follows that

Inf Wi, fi)l 2 jnfy e, fell ~ ¢

Proof of (3.2.4) :
In order to prove (a), et fe B;(C(K)), z € By(X), and § > 0 be arbitrary.
By (3.2.3.4), we choose an £ € IN, with;

Ny

sup [(hr oo he) (1~ gk~ hegr o oo bpmg ) (|
>t ]

and ko > €+ 1 with
_é
Wahiha .. hef, pi)} < 3 whenever k 2> ko .

Consequently,
(2 f, )l < Wz fhaohes g+ Nl (ha - ht) (=g hepic o heer) <6,

which implies the assertion since C(K, X) is generated by {zf |z € X, f € C(K)}.

The assertion (b) follows directly from (3.2.3.3).
°

Combining Corollary (3.2.2)(b), Lemma (3.2.3) and Proposition (3.2.4), we have
3.2.5 Corollary: Let (f,:n € N) C C(K) be conditionally weakly compact but
not limited and let (F,,:n € IN) be a sequence of pairwise disjoint closed subsets
of I which satisfies (3.2.3.1) of Lemma (3.2.3).
Then there is a subsequence (ng: k € IN) of IN-and a o(C(K), M(K))-zero

sequence (ui: k € IN) such that
a) ‘infren(fn,,p4) > 0, and
b) for each k € IN, the support of puy has a neighborhood Oy with

i) Ok NOp =@ for k, k' € N with k # ¥, and

1) O ﬂm = @ for each k € IN.
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s

3.3 Sufficient conditions for limitedness in C(K)

In section (3.1) it was shown, that a limited and rormed sequence of non
' negaﬁve functions of C(K) with pﬂfwise disjoint supports can be constructed from
a givén limited but not relatively compact subset of C(K). By this, we teduced
the limitedness of subsets in C(K) to the limitedness of normed sequences of non
negative elements of C(K') with pairWise disjoint support. For such sequences, we
now want to find sufficient conditions for C(K)-limitedness using only tepological
properties of K. This will be done in Theoreﬁl (8.3.1), which uses essentially the
results in section (3.2). Proposition (3.3.2) formulates an easy special case of the
rather technical conditions in (3.3.1). '

3.3.1 Theorem: Let (fy:n € IN) C C(X) be normed and consisting of non

negative elements with pairwise disjoint suppdrts.

This sequence is limited in C(X) if the following is true:

For any § > 0, there exists an £ = £(6) € IN and a sequence (FS Yne IN) of

pairwise disjoint closed subsets of K such that the following conditions (3 3.1.1 )

and (3.3.1.2) are satisfied: v ‘

(3.3.1.1) iffa26}CF? forneN,

if) For any two disjoint N1, Ny € Poo(IN), there are Ny € Po(N1) and
Ny € Poo(N2) such that

U U ro=s
n€N, neEN;

(3.3.1.2) Let N € Poo(IN), p1, p2 € [6,1] with p1 < py, and let (An:n€EN) be a
sequence of pairwise disjoint closed subsets of K satisfying the following
property (i):

i} For eachn € N, there is a neighborhood O,, of A,,, with OnﬂO,,; ={
forn,n' € N withn # n', and with O, N Unten(n) F’(‘f) = § for each
n€N.

Then there exists, for eachn € N, an open o CK,i€{l1,...,8}, with

i) Aa 1 {fa <p} UL, O, forn € N, and »

iii) for each sequence (6,: nGN) C {1,2,...,¢}, there exists an M €
Poo(N) such that

U{fn PZ}nAnn U{fﬂ<ﬂl}nAnno
neM neM
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Proof of (3.3.1) 1

Let (fa:n €IN) C C(K) satisfy the assumptxon To show that (fa:n €IN)i is limited
in C(K), we consider an N € Puo(IN) and a normed sequence (pq:1€N) C M(K)
with pairwise disjoint supports satisfying .

1 . r ":‘,j‘e“fv(l‘n;fn) >0.

We have to show that (sn:n€N) does not converge w* to zero.

'{By assumption, (f»:n €IN) is weakly zero convergent and, from (3.2.2), we deduce

that for any non limited but weakly conditionally compact sequence (fa:n & IN)

there exists an N € Poo(IN) and a weak®-zero sequence (pq:n€N) C M(K) having

pairwise disjoint supports and satisfying (1).) ‘

We set € := r/2 and, for each n € N, Fy, := F,(.I/'"), where m € IN is chosen to be

greater than 24/r.

Now the assumptions of Lemma (3.2.3) are satisfied and we find a subsequence
= (nk: k € N) of N and, for each k € IN, g¢ and hs in C(K) for which

(3.2.3.2),(3.2.3.3), and (3.2.3.4) of Lemma (3.2.3) are satisfied.

By Proposition (3.2.4)(a), it is enough to show that (Va :n € Ny), with

Vo= (gk hy...hiet)pin, forn= ne € Ny,

is not weal_c‘.-:ze‘ro convergent, v

From (3.2.3.2) of (3.2.8) it follows that, for A, := supp(vs), n € N1, open neigh-
borhoods Oy can be’ chosen such that (1) of (3.3.1.2) is satisfied (with § = 1/m).
Moreover, from Proposition (3.2. 4)(b) we have

(2) {vn, fu) 2 /2 for each n € Ny,
We now want to show the following, which is central for ihe rest of the proof:

(3) Let pp > py 21/m,§>0,and M € 'Po,,(Nx) Then there is a g € C(K) and
an M € Po(M) with

05951, glamnifmze =1 and |lgwnlimgp €8 forne M.
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In order to ghow (3) for given 1/m < p1 < py and M € Peo(N1), we choose
recursively, for each k € No, an M € Poo(M) and & ¥ € C(K) with
4)(k) M C Mj— if-k >0, and
(5)(k) 0 < g <1, ¢ ann{fzm) = b and || g®val{fago1) Il (F52)* for each

neE M, where £:= £(1/m) is asin (3.3.11). :

(noté that‘(l'-;-l)"k—_—_:oo and set 0° ;= 1),
For k = 0 we define ¢(® := 1 and M(® ;= M and deduce (5)(0), since ||l vall<l #a i
forn € M. ‘ _
Assuming that g~ € C(K) and M1y € Poo(M) have been chosen for k>0,
let ¥ := M-y and, for n € N, An = supp(gt¥~).va). Then (Aw:m € N)
satisfies (i) of (3.3.1.2) (note that A, C An) and we deduce from (3.3.1.2) the
existence of open 0V forist,n€ N, satisfying (ii) and (iii) of (3.3.1.2).

For n € N we choase 8, € {1,...€} such that
lg* D wal({fn S M}NOT) = % 1g¢D wal({fa S P}NOR).-
Thus by (3.3.1.2)(ii),

©6) 1g* Vval({fa S o131\ oy .
= lg* Vnl({fa S )} - lg* Y wul({fa S P11 N o)

]
- 1 -
< gV wl({fa < p1)) — g ol iU S 1) nof
=1

< Dl S 2a)) = TVl S 21D)

-1 -
= Tlg“ Val({fa S AD-

- Using (3.3.1.2), we find an Mi € Poo(N) 5uch that

U {fanZ}n;{nn U ifnSPl}ﬂAnﬂo?‘ =

nEM) nEMy

e
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Therefore, from the normality of K, \\%re deduce the existence of i e C(K) with

(0

0<§™ <1, §®lgngzm =1 and § 0

| untsm gorynogm =
‘ : for each n € M.
Now taking gt¥) := ¢(*~D5(*) and observing that by (5)(k ~ 1) we have
An=supp(g*Vva) D AN {fo 2 p2} forne M,
we deduce that ; ar -,

0<g® <1 and g¥)4,n(fm2py) =1 for each n € My.

The last condition of (5)(k) follows from the following inequalities

I 9(k)~”n|(!n <p1} It =l g(k)g(k_,,l)“’n'(lu <p1} Il

< 16* D wl({fn < 1) 0 (G # 0} 1 An)

< g Doval({fn < p1}\ OF)
£-1

s 14

[by(86)]
-1,

S(—T) ¥ fOl'flGNk

[by(8)(k - 1),

g valisagon

which finishes the induction step and the proof of (3).

Applying (3) successively for each j € {1,2,...,m ~ 1} to p?) 1= j/m, p.f,j) =
(G + 1)/m, and & := 1/m, we find Ny D MMV > M@ | M™=1 =: N; and

g; € C(K) as in (3). Therefore we have

‘ 1
(0 0<g; <1, gilanntm2G+n/m) =1, and [[givalipmeizmp IS

for each n € Ns.
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?Deﬁning g:= Z;':i‘ (1/m)g;, we deduce for each n € Ny that
[(vnrg = foll

| m-1 1
= \(2 'nfl'(angi)) - (Vﬂifﬂ)\
=1
m~1 1
<\ ,—n-(vmafxu..zum/m))) ~ (v ol .
j=1
m~-1
1
+ \ Z “n';(l’mg_iX()‘/m<ln <(i+1)/m))\
=1
m-1 1
+ \ Y ;,;(vmwxms;/m))\
§=1
m=1
1 1 m=-1
< \(Z ;;(memzuﬂ)/m))) - (men)\ + - onll +—7
=1
[by (7) and gince Ap = supp(va)l
m~-1 - X .
= \(Z ;’n-(vmxm+z)/m>f,.zu+x)/m))) - (v,.,f..)\
=1
1 m~—1
+ = fvall + 5
m=1

= \( Z f _]n; dun)A

3=1 ((j42)/m> fn 201/ ™)

m~1 X
- (Z fndvn)_" / fn an\
i=1 ((j42)/m> fa 201/ m) {fa<2/m}

1 m~1
o el

m~1 .
< Z f \;'Jn‘ "fn\d"n

=1 ((j42)m> fa 2GHD/M)

+ 2 all o el U

m—1
<5 L+l > S 2 G DI 3fm) ol + 5

<

[jvali 18nd 1/m < rj24].

LTAS

Il Y
-
Sy
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This implies, together with (2), that
(vnr9) 2 (Vns fu) — 1[4 2 /4.

Thus, (vn : n € N) does not converge to 0 in a(M(K ) C(K )R which finishes the

proof.
o

3.3.2 Proposition:  Let (fu:n € IN) € C(K) be a normed sequence of non
negative functions with pairwise disjoint supports.

_ Suppose that that (fo:n €IN) is "subsequentially camplctc” (c. f[33]), ie.

(3.3.2.1) for all N € Poo(IN) there exists an M € Poo(N) such that (fm:m €M)

has a supremum fu in C(K),

(fm < fm for all m € M and for each g € C(K) with f,,, < g for every

m € M it follows that fy;s < g.)

Then conditions (3.3.1.2) and (3.3.1.1), with £ := 1 and F(” 1= {fn 2 6} for

§ > 0 and n € N, are satisfied; in pa.rt:cu]a.r, it follows that (fn:n € IN) is limited
in C(K).

Proof of (3.3.2) :
For an M € Poo(IN) for which the supremum fuy of (fm:m €M) exists in C(K),
it follows, for each p > 0, that {J ¢p{fn 2 0} € {fm 2 p}. Thus,

1) Ulnzetc{fu=plc{fu>p-6}forallé>0.
neM

Verification of (3.3.1.1):

For two disjoint N1, Ny € Po(IN), we choose M e Poo(Ny) and N € 'Pw(Ng)
such that the suprema fg, and fg, exist in C(K).

Let § > 0 be arbitrary.

For any n € N; and € € {f, > 6}, we choose a g € C(K), with 0 < ¢ £ 1,
9(€) = 0, and g|{s,<s72) = 1. Since the supports of fs, n € IN, are pairwise
disjoint, it follows that ¢ > f, for each n € N;. Thus, g 2 f,;,l, so that, in
particular, fg, () =0

Since n € N; and £ € {f, > &} were assumed to be arbitrary, we deduce that

{fz, >6/23n |J (fa 26} =0

neﬂg




93

and, since {fz, > 6/2} is open, that

{(fg,>8/210 Y {fo 28} =

nEN;

Then we deduce (3.3.1.1) from (1).
Verification of (3.3.1.2) with £=1:
Let p1, p2 be in [6,1] with p1 < pz, let N € Poo(IN), and let (An:n€N) be a
sequence of closed and pairwise disjoint subsets of K which satisfies (8.3.1.2)(i).
To verify (3.3.1.2)(ii) and (iii), let 0(1) = 0 for n € N, where O, is as in
(8.3.1.2)(i).
Choosing M € Poo(N) such that fu exnsts in C(K), it follows from (3 3.1.2)(1)
that for each n € M

: c , c
’ On c ( U {fn’ 2,0!}) C ( U {fn' 2 Pl}) C ﬂ {fu’ < Pl}'

n'€M\{n} n’EM\{n} n'eM\{n}
Consequently, :

) 0un (fa < 2E ¢ ) (fw < BF2) forneM.
n'eM!

Forn € M and £ € On N {fa < (p1 + p2)/2}, we can choose g € C(K) with
(o1 +p2)/2 € g S 1, 9(€) = (p1 + p2)/2, and glogu( g <(pr+ep)/2)c = 1 BY (2)
it follows that f, < g for any m € M. Thus, fi < g, so that, in particular,
Fm(€) < (p1 + p2)/2. Since n € M and an £ € On N {fn < (p1 + p2)/2} were
assumed to be arbitrary, we have shown that

U 0nnifa < 252y ¢ (i < 252

n€M
This implies that

U 0anifasmin | Oan{fa2p)

nEM n€EM
¢ U 0nifn < 25820 (fu > 212
nEM
[by (1)
c{stf—‘—;iﬁ}n{fwf”—;“—”%}ﬂ
[by (3))

which implies (3.3.1.2)(iii); (3.3.1.2)(ii) follows from the choice of 0( )
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4 Lifting results

In this chapter, we want to discuss problems of the following type:
Supposing that we know the limited sets of certain subspaces of X, we want to
characterize the limited sets of the whole space.

In the first section we utilize for this a net (T;: i € I) C L(X,X) which
approximates the identity on X and deduce an analogue of the well known result
that a set C C X is relatively compact if and only if (7;:i € I) converges uniformly
on C and T;(C) is relatively compa(;t for each { € I, Situations in which this leads
to a sactisfactory characterization of limitedness are présented in section (4.2).

In the last three sections we will discuss limited sets in tensor products and,
in particular, in injective tensor products. We will see that the known equivalence

AC XQY is rel. compact <= A(B,(X")) and A(B(Y")) are rel. compact

cannot in general be transferred to limitedness and leads only to a necessary con-
dition for limitedness in X®Y. Thus, we will formulate other necessary conditions
for a set A C X®Y to be limited for which we show that they are also sufficient
if X and Y are Grothendieck C(K)-spaces. :




4.1 Characterization of limitedness by nets of operators which approx-
imate the identity

Proposition (4.1.3) recalls a well known result [15, p.259, Lemma 4] which
characterizes relatively compact sets in Banach spaces by a directed family of
operators (T;:i € I) C L{X,X) which approximates the identity on X. Exam-
ple (4.1.3) shows that this characterization cannot be transferred to limited sets.
However, Theorem (4.1.6) formulates additional conditions on (Ti:4 € I) which
make an analogous characterization of limitedness possible.

. 4.1.1 Definition: Let I be a set with a directed order denoted by "<”; i.e.
"<" is a partial order on I under which each finite F' C I has an upper bound. v
We will call a bounded family (Ti:i € I) C L(X, X)

a) an approzimation of the identity on X if, for each ¢ € X, thenet (T(z):{ € I)

converges to z, i.e. if

VeeX,e> 03 =i(z,e) €I : || Tj(z) —z||< ¢ for any j € I with j 2 4. -

b) a sequentially complete approzimation of the identity on X, if{(a) is s‘af.isﬁéd :
and if, moreover, for every increasing sequence (in:n. € lN) in- I andévery
z € X, (Ti, (z) : n € N) converges. : '

4.1,2 Proposition:  Let (T. i€ I) c L(X, X) be bounded (I

and D C X with span(D) =

a) (Titi € I) satisfies condmon (a) of Definition (4.1.1 )
(Ti(z) : i € I) to = holds for each z € D, a.nd it sati
T:.(z) converges for each = € D and each mcreasmg (1‘

b) If(Tj:i €I) satisfies (b) of (4.1.1), then for each i increasing 1 = T= (z,.__,
I, the map T;: X 3 @ v limp—oo T, (2) is linear and bounded.

Proof of (4.1.2) : obvious.

4.1.3 Proposition: (c.f. {15, p.259, Lemma 4]}
Let (Ty:i € I) C L(X, X) be an approximation of the identity on X.
Then for a bounded K C X, the following conditions (a) aad (b) are equivalent:
a) K is relatively compact.
b)i) Ti(K) is relatively compact for each i € I, and
ii) T.--‘_—E-?Idx uniformly on K, where Idx denotes the identity on X.
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It is easy to see that the implication (b) =>(a)} is still true if we replace in
(a) and in (b)) "relatively compact” with "limited in X". In fact, if for A C X
Ti(A) is X -limited for each i € I and if (b)(ii) holds, then it follows that for each
£ > 0 there is an t(s) elwithdc B (X) + Ti(e)(A); this implies by (1.1.4) that
Ais limited i in X. The following example shows that (b) =>(a) is pot true for
hmxtedness.

4.1.4 Example: Let¢e€ AN \IN and X := {f € C(AN)|f(¢) = 0}. The
neighborhood basis L( of £, consisting of all clopen : subsets of AN containing £, (i.e.
the system U = {N™ | N € Poo(IN), €€ N™'}), will be ordered by: U > V : e=>
UcV,UVel. , ' ' :

The family (Ty : V € i) defined by

T: X=X, frxanvf, forVelu,

is an approximation of the identity on X.

Secondly, we remark that the sequence (x(} : n € IN) is limited in X, because
(X{n}  n € IN) is limited in C(AN) and E(x(n)) = X{n} for n € IN, where the
operator E ; C(AN) — X is defined by f s f —~ f(§) - xan .

But (b)(ii) is not satisfied since

sup | Tv(X(n}) = X{n} I= 8up [ xgm)xv =1 whenever V €.
nEN neN .
o

The following Lemma repreﬁénfs the essential part of the broof of Theorem
(4.1.6), which characterizes limitedness by sequentially complete approximations
of the identity. Since we will need its result in section (4.2) also, we formulate it

.independently. »

4.1.5 Lemmas: Let A C X be bounded and (T;:%i € I) a sequentially
complete approximation of the identity. For an increasing i = (in:n € IN) C I, let ‘
Ty € L(X, X) be as in (4.1.2)(b).

If for each i mcreasmgt = (intn €IN) C I, T;, converges uniformly on A, then
(T:i €I) converges uniformly on A to the identity,

Proof of (4:1.5) :
Without loss of generality we assume 4 # §.
By induction we choose, for each k € IN, an zx € A and i,k € 1 such that the

following conditions are satisfied:
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(A)(k) jk S

(2)(k) k-1 S G if k> 1,

(8)(k) | T5(xm) = @m IS } whenever j 2 ji and m < k, and
(4)(E) I Ti,(za) = w12 § 8uPizj, zea | Ti(2) - =]

For k = 1 we choose z; € A and i; € I with

1.
1T -2z 5 sup I1Ti(e) =<l

and set j; :=1;; we deduce (1)(1) and (4)(1) while (2‘)(1) and (3)(1) are empty.
If im, jm, and z, are choosen for all m < k, where k > 1, we find by Definition
(4.2.1)(a) j& 2 #x—1 in I which satisfies (3)(k). Then we choose ij 2 ji in I and
zx € A satisfying (4)(k), which finishes the induction step.

For i := (ix: k € N} we deduce from (3)(k) and (1)(k) that
Tzn) = klim T (#s) = 2o foreachn€IN.

Since, by assumption, (T;, : k¥ € IN) converges uniformly on 4 to T;, we find for
an arbitrary € > 0 an n = n(¢) € IN with

HTim(ze) — 2z ||< €/2, whenever m > nand k € IN.
Thus, by (4)(k),

sup || Ti(z) - z[|< 2| Tia(2a) — zall< e,
i2jn,2€A ]
which implies the assertion.

o

4.1.6 Theorem: Let (T;:¢ € I) be a sequentially complete approximation of
the identity on X,
Then the following are equivalent for a bounded A C X:
a) A is limited, respectively relatively compact, in X.
b)i) Ti(A) is limited, respectively relatively compact, in T;(X), for each i € I,

and

i) T;, = Ty uniformly on A for each increasing i = (in:n €IN) € I.

¢)i) asin (b), and
ii) T.'—’.-é;vldx uniformly on A.




Proof of (4.1.6) : » :
(a) =(b)(i): (1.1.3)(c), respectively (4 1 3),
(a) =(b)(ii): (1.1.2)

(b)(ii)=>(c)(Gi): (4.1.5)

(¢) =(a) :(L.1.4), respectively (4.}.3)

- From (4.1.6) we deduce
4.1.7 Corollary: Let (T i€l)bea sequenhally complete approximation of the
identity on X.
Then X is a Gelfand-Phillips spacé:: if and only if Ti(X) isa Gelfand-Phillips
space, for eacht € I, ;



4.2 Applications of Theorem (4.1.6) to several situations

Using Theorem (4.1.6), we can characterize the limited sets of several Banach
spaces by the limited sets of certain subspaces. o '
Thus we can characterize the limited sets of

- Lp(p, X), where 1 < p < 00 and (Q, I, s} is a measure space, by the limited sets
of X (Corollary (4.2.2)), ‘

-Y®X by the limited sets of X, where & is a tensor norm andY is a Banach space
which admits a sequentially complete approximation of the identity (T;:i € I)
with dim(T;X) < oo for each i € I (Proposition (4.2.3)),

- C(lljesK;), where K; is compact for each § in a set J, by the limited sets of
all C(IL;¢ jK;), with J € Py(J) (Proposition (4.2.5)),

~ spaces having a transfinite Schauder decomposition (X, : « < 1), where 7 €
Ord, by the limited sets of all X, (Proposition (4.2.6)).

Moreover, we deduce the corresponding hereditary results of the Gelfand-

Phillips property. '

4.2.1 Proposition: Let (Q, I, p) be a positive measure space, 1 < p < oo and

1L be the set of all finite E-partitions of §1, ordered by fineness.

For 7 € Il we define:

. 0
BeiLyuX) 2 LiwX), fo Y xs ] fdu/(B) (where 3 :=0)
Bén,u(B)<oo
;4
{note that in the case ;I(Q) < o0, E, s just the condmonal expectatxon corre-

sponding to ).
Then (Ex:7 €M) isa sequentwlly complete approximation of the identity

on Ly(, X).

Proof of (4.2.1) :

For A€ B, let T4 : Lp(u, X) — Lp(pfa, X) and S4 ' Lp(pja, X) — Lp(4, X) be
the restriction and the embedding respectively and obsérve that the norm of both

operators is not greater than 1,
In the case p(Q) < oo, we deduce that (E, : 7 € I) is bounded from [10, p.122,
Lemma 3]. In the general case, we remark that

Ey= SamoExnam oTacxy where A(r) = U{AlA €m p(4) < oo}, forrell

and deduce that (E, ;7 € II) is bounded.
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Since {mxg |B € I, p(Z) < oo} generates L,,(p,X), we deduce condition (a) of
(4.1.1) from (4.1.2).

Condition (b) follows from the martingale convergence theorem [10, p. 125 Theo-
rem 1] in the finite and, thus, in the o-finite case. In general, we observe that for

an increasing (main €IN) C II the set
A= J{A|3n € N : A€ m, and p(4) < oo}
is o-finite. Thus, condition (b) follows also in the general case, noting that

E,—,. =SAOE~,,,‘nAOTA. .

4.2.2 Corollary: (Limited sets in Ly(p, X))
Let (2,2, ) be a positive measure space and 1 < p < co. Then the following
conditions are equivalent for a bounded A C Ly(p, X):
a) A is limited, respectively relatively compact, in Ly(u, X).
b)i) -For each B € L, with u(B) < oo, the set {f, fdu|f € A} is limited,
respectively relatively compact, in X, and
ii) for each increasing (my:n € N) C 11, Ey, converges um'formly on A,
¢)i) asin(b), and
ii) (Ex:m € 1) converges uniformly on A to the identity on L,(y,X ).
In particular, it follows that the elements of limited sets of Lp(yt, X') are measurable
with respect to the same countable generated o-algebra and have a common o-
finite support. Moreover, ,(y,X ) is a Gelfand-Phillips space if X is a Gelfand-
Phillips space.

Proof of (4.2.2) : Theorem (4.1.6) and Proposition (4.2.1)
(ndte that the image of Ey is a finite coinpler_nented sum of copies of X, and thus,
in this case, (b)(i) of (4.2.2) is equivalent to (b)(i) of (4.1.6)).

0

In the case p = 1, Lp{g, X) can be represented as the projective tensor product
of Ly () and X [10, p.228, Example 10] and L1 (p) admits a sequentially complete
approximation of the identity whose elements have finite dimensional range (this
follows from (4.2.1) taking X := IR). This situation can be generalized in the

following way:
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4.2.3 Proposition: (Limited sets in some tensor products)

Let || .| be a norm on Y ® X enjoying the properties (Ty), (T3), and (Ts)
(compare (3.3)( d)) and suppose that Y:admits a sequentially complete approxi-

'mation of the identity on Y, (P;:i € I} with each P; having finite-dimensional

range,

Then the family (P. ®Id x 11 € 1) is a sequentially complete approxlmatlon
of the identity on'Y ®X. Thus, Theorem (4.1.6) is applicable to T; := F; ®Idy,
i €1, and Y®Xisa Gelfand-PhiIHps space if Y is a Gelfand-Phillips space.

Proof of (4.2.3) : :
From (T3) we deduce that (P; ®ldy ;i € I) is bounded, while (4.1. 1)(&) and (b)
follow from Proposmon (4.1.2) and the fact that D := {y®z|y € Y,z € X}
generates Y @ X. .
. o
4.2.4 Example: If (Q,L,p) is 2 measure space, an example which satnsﬁes the
conditions of (4.2.3) is the space K(u, X ) of all p-continuous X-valued measures
on T with relatively compact range, endowed with the semi variation. This space
is isometrically isomorphic to Ly(#)®X [10, p.223, Example 4}).

4.2.5 Proposition: (Limited sets in C(MjeyK;))

Let (K : j € J) be a family of non-empty compact spaces and let the product
Il;esK; be endowed with the product topology.

We define I 1= P;(J) and order it by inclusion.

For each j € J, we choose a fixed 3; € K ; and define for each E € I

e+ ClljesK;) = C(IiesK;) by T(F)(t;) = F(\P) for (¢;) € ek,

(E)’___ tj ifjek
where ¢; .-{31‘ if not

Then Tg(C(lesK;)) = C(jegK;) for each E € I and the family (Tg : E € 1)
is a sequentially complete approximation of the identity.

Thus, Theorem (4.1.6) is applicalile and C(Ilj¢sK;) is a Gelfand-Phillips
space if, for each E € Py(J), C( ;'eEK ;) is a Gelfand-Phillips space.” This is
equivalent to- the the condition that C(K ) is a Gelfand- Pbxlbps space for each
J € J,which will be shown in Proposmon (4.4.3).
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Proof of (4.2.5) 3 ; -
The familiy (Tg : E € I) is bounded and C(Il;esK;) is generated by

D :=ger C(ljeeK;).
<

Finally, we want to apply Theorem (4.1.6) to transfinite Schauder decompo-
sitions. ' ; - '
4.2.6 Proposition: Let(Xy:1< A < ) be a transfinite Schauder decomiposi-
tion of X (compare [54, p.622, Definition 19.2 and p.623; Definition 19.3]; in partic-
ular, X is a closed subspace of X [64, p.624, Theorem 19.1]). Let (va:1 <A< 9)
be the family of the coordinate projections, i.e. the projections onto X which
assign to every z € X the unique va(z) such that = 3,5y a(z) (for the
definition of 37, <5 <o) compare [54, p.580]). B ‘
Then the following conditions (a),{ b), and (c) are equivalent for a bounded
ACX: ! -
a) A is limited, respectively relatively compact, in X.
b)i) v,\(A) is limited, repectively relatively compact, in X for each 1 < A < 9,
i) for increasing (An:n €IN) C [1,9], T,<,, Va converges uniformly on A.
c)i) asin(b), and | :
ii) foreach A€ [L,9], T, s va = Yo u<a va uniformly on A.
In particular, X is a GelfandoPhillipé space if, foreach 1 £ A < 9, X\ is a )
Gelfand-Phillips space (for example, if X has a transfinite Schauder basis, i.e. if
dim(Xy) =1, A< 9). ’

Proof of (4.2.8) :
For 1 < A < ¥ we set

un: X - X, z Zva.

: a<li

By {54, p.625, Theorem 19.2], u, is a continuous projection onto the space X :=
span(lJ,<» Xa) and the function S, : [0,9] 3 A = ua(z) € X is continuous for
each z € X. This implies that, for each 1 € A < ¥, (Yalxy 1 a < A)is a
sequentially complete approximation of the identity on X ),
We now show the desired implications:
(2) =>(b): Theorem (4.1.6)
(b)(ii) =>(c)(ii): If A is a successor, the assertion is trivial; if not, we deduce it
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. from Lemma- (4 1.5). : ,
(c) =>(a) By transfinite induction we show that for each A € t9 u,\(A) is 11m1ted -

- in X,

Assuming that for a given A ua(A) is limited in X (%) whenever a < Ay 'we deduce
" from (¢)(i), in the case that A isa successor, that ua(4) is limited in X, In the
case that ) is a limit ordinal, we deduce it from Theorem (4.1.6) (c) =(a) applxed-
to X 1= X™ and (uq : & < A).

i

4.2.9 Remark:

a) Independently it was proven in (14, p.4, Theorem 3.1] that Ly{u, X), where
1 € p < o, inherits the Gelfand- Phillips property from X. ’

b) The result that K(u, X) has the Gelfand-Phillips propeity if By(X') is weak®
sequentially compact was shown in [17 Theorem 1}; the generalization for any
Gelfa.nd-Phxlhps space X follows from [13, p.407, Theorem 3.1.].

¢) The statement that C(H,eﬂ\ i)is a Gelfand-Phxlhps space if C(K;) is a
Gelfand-Phillips space for each j € J was first shown in [14, p.8, Theorem 4.2,
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4.3 A combinatorial result for L (g, X)

"This section serves to prepare the next one, where we want to investigate
limited sets in injective tensor products, in particular in C(K, X). We will show
the following result:

Let (fa:n €IN) be a sequence in L (g, X), where (R, L, 4) is a positive

- measure space. Then (at least) one of the following two cases happens:

Case 1;

There exists a subsequence (fn, : k¥ €IN) admitting, for every € > 0, a b

countable T-partition #¢ of § such that the essential oscillation of every

fni on every B € n° is not greater than .

Case 2: v

There exists a subsequence {(fn,: k €IN), an ¢ > 0, and a tree of sets
(A(k,5): k € No,7 € {1,...,2¥}) C T whose elements have strictly
positive measure, such that the essential oscillation of f,, on A(k,j) is 4
not greater than ¢/4 and the essential distance between A(k,2: — 1) and :
A(k,2i) under f,, is at least ¢ whenever k,i,j € IN and 1 < ¢ < 2F1

B S

and 1< j <2k,
Since this result leads in the scalar case to Rosenthal’s £; theorem we could call it j
a vector-valued Rosenthal result.

In the sequel, (2, T, ) always denotes a measure space. i

4.3.1 Deflnition: v
a) We denote by II the set of all countable I-partitionis of §?, where a countable
" 7 C D is called a countable Z-partition of Q if the elements of 7 are almost
(always corresponding to p) pairwise disjoint and if their union is almost .
For A€ D weset njg:={BNA|Ben}ifnrellandII(4):= {n]|a|r eI}
b) For two bounded subsets 4, B C X, let D(A) be the diameter of 4, i.e.

D(A):= sup [jz—y|, with D(8):=0,
z,y€A

and d( A, B) the distance between 4 and B, i.e. ‘
d(4,B) = ||:z: - y|| with d(8,) = d(+,8) 1= c0.

ff:Q9—Xis bounded, measurable, and has separable image, and if 4,B €
L, we define the essential oscillation of f on A by

essosc(f, A) := inf D(f(A~))
A=A
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and the ea_acntihl distance between A and B under f by:

ess dist(f, 4, B)i= su up d(f(A) f(B))

: AEA B=8
where "inf ;_," and "sup ;- A B= B”fmean;'that the infimum and the supre- -
mum are taken over all Aand B € £ with

WAV (AN D) = w(BUB)\ (BN B) =o.

For two almost equal, measurable, and bounded f, f: 9 < X with separable
image, there is an ) € B, {8 = Q; for which f(w) = f(w) whenever w € .
Thus,
essosc(f, A} = inf D(f(A)) = _ inf  D(f(A4))
: A=a ; A=A,ACfina

= inf  D(f(A)) = essosc(f, 4)
A=A4,ACONA

=4,

for each A € 2. Similary
essdist(f, A4, B) = ess dist(f, A,B), whenever A,B€ X,

Thus, essdist( -, A) and essosc( -, 4, B) are well defined on L& (i, X).
In the case that we consider L¢ (ZK,X ) (which is by the observation in
(0.3)(b) representable as an L¢ (;z,X )-space ) we write osc instead of essosc
and dist instead of essdist.

c)Let A€ X, v €ll(4), ande > 0. AnfeL (#,X) is said to be (7,¢)-
compatible on A if, for each B € n,

essosc(f,B) Se .

F C L, (p,X)is called (,¢)- cbmpat;ble on A_ife_very f.G F has this property.
A sequence (fn:n €IN) C L& (#,X) is called totally e-incomputible on A if,
“for every w € II{A4), no subsequence is (¢, 7)-compatible, i.e. if

Vr € TI(A), N € Poo(IN), 3B € m,n € N such that essosc(fn, B) > €.

Now we are in the position to state the main result of this section.. -
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4.3.2 Theorem: Let (f.:n€lN)c L (y’ X).
Then at least one of the following two cases happens: .
Case 1: There exists an increasing (n: k elN) C IN such that (f,.,, ke IN) has the
following property: e X
For-all € > 0 there isan® € Il for which (fay )-is-(w4ss)-compatible. :
Case 2: There exist an ¢ > 0, an increasing (ny:'k € IN) C IN, and a family
(A(k,5):k € Ng,j € {1,...,2*}) C £, such that:
a) For each k € Ny and i € {1,...,2*}, u(A(k,9)) > 0,
A(k +1,2i = 1)U A(k +1,2¢) C A(k,¢) and
A(k +1,2i = 1) N A(k + 1,2¢) = 0 almost everywhere
b) essosc(fu,, A(k,i)) < /4 and essdist(fn,; A(E,2j - 1), A(k,27)) 26 ;
whenever k€ N,i € {1,...,2*} and j € {1,...,2%1}. ;

The following Lemma (4.3.3) collects ssome frequently used results, while
Lemma (4.3.4) represents the central step of the proof of Theorem (4.3.2).

4.3.3 Lemma:

a) Let f € L (p,X).
J) If Ay, A2,B1,B; € E, Ay C Az, and B) C By, then

essosc(f, A1) < essosc(f, A2) and essdist(f, A1, By) 2 essdist(f, Az, Bs).

ii) f Ap,By € L for n € IN then

mmmUMUmp essdist(f, An, Bm).
nEN ne€N ,me

iii) If A,B,C € S and p(C) > 0, then
ess dist(f, 4, B) < essdist(f, 4, C) + ess dist(f, B, C)
+ ess osc(f, A) + essosc(f, B) + essosc(f,C).
iv) If A, € Z forn € IN then

essose(f, U Ap) <2 sup essosc(f, Ap) + sup ess dist(f, An, Am).
neN neN

b)Let A, A€, F, F cLe(1,X), and e > 0.
i) If |[F| < oo, then there exists 2 w € II(A) such that F is (n,¢)-compatible

on A.
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ii) If, for = € TI(A), F is (r,¢)-compatible on A and if A C A, then F is also
(7| 4,€)-compatible on A.
iii) If F and F' are (x,¢)-, respectively (#,¢)-compatible on A, then FU F s
(7 V #,¢)-compatible on A, where 7V & := {AN AlAernand A7)
iv) If v € T{A) and 78 € TI(B) for each B € I and if F is (%, ¢)-compatible
on B for each B € =, then F is (Jgg, 78,¢)-compatible on A.
c) Let A, € T forn € N, and let € > 0. If (fa:n €IN) C LS (p, X) is totally ¢-
incompatible on A := Usen An, then there exists an n € IN and a subsequence
“of (fo:n €EN) which is totally e-incompatible on A,,. »

' _ Proof of (4.3.3) :

Proof of (a): If we replace f by a fixed representative and essosc(f,.,.) and
essdist(f,.) by D(f(.)) and d(f(.), f(.)) the inequalities to be shown are obvious.

_ Next, \\%e remark that for f = 3 ;. xB;i, where B; € L with u(B;) > 0 for
i € N and { ;¢ Bi = Q, and where (z;) C X is bounded, we have

essosc(f, A) = D(f(A)) end essdist(f, 4, B) = d(f(4), f(B)),

where A := J{Bi| (A N B;) > 0} and B := Y{B;|pu(B N B;) > 0}.

Finally, we observe that essose¢(:, A) and essdist(+, 4, B) are continuous on
Lé(p,X). In fact, if € > 0 and f,g € LS (p,X) with || f — ¢ ||< €, then we
find an 2 € T with p(2\ ) = 0 and || f(w) - g(w)||< €, for w € 2. Thus,

essosc(f,A) = ,q.it,:t;,ﬁ d(f(A) <e+ j:.i-x;f'-.ﬁ d(g(A)) = ¢ + essosc(g, ),

and by symmetry, essosc(g, 4) < ¢ + essosc{f, A).
For ess dist, we show the continuity in a similar way.
-From these three observations we deduce (a).

Proof of (b) : obvious

Proof of (c) : Let (fo:n €N) C LS (4, X) and (Apin €N) € B.
" Suppose that the conclusion is false, i.e. that

(1) VEEIN,N € Poo(IN)IM € Poo(N), 7 € T(Ay) such that
{fm:m €M) is (7,e)—compatible on A,

we show that the assumption of (¢} is not true.
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For this we may assume that the A,’s are pairwise digjoint almost everywhere;
otherwise we pass to A := 4y, \ Ui<n Ai- Using (1), we can define by induction
for each k € IN, an infinite My C IN and # € II(As) such that My C My (with
My 1= IN) and such that (fin:m €M) is (%x;€)-compatible on A (we apply in
the k-th inductionstep (1) to N := M;_; and k).
Then we choose an increasing sequence (mi) C IN such that my € My for k €
IN and we choose, for each & € N, a refinement m; € TI(Ax) of # such that
{fmys-+ fm, } i8 (€, 7k )-compatible on A;. This implies that (fm, + k € N} is
(&, €)-compatible for each k € IN and, by (b)(iv), (fm;:k € IN) is (Uyen Trr€)-
compatible on A = | Jyep Ax, which finishes the proof.

°

4.3,4 Lemma: Let A€ X ande > 0, and let (fo:n €N) C L& (4, X) be
totally e-incompatible on A.
Then there exist n € IN, M € Poo(IN), and A;, A; € £ N A such that
a) essdist(fn, A1, 42) > ¢/4 (in particular Ay N Ay = 0 almost everywhere),
b) (fm:m €M) is totally e-incompatible on A, as well as on A;.

Proof of (4.3.4) :
Let (fa:n €lN) C LS, (4, X) be totally e-incompatible on A,
We suppose that the assertion of the lemma is not true, i.e. that

(1) ¥n € IN,M € Poo(IN) and Ay, A2 € £N A with ess dist(fn, 41, A2) > /4

[( fm m €M) is totally e-incompatible on 4; =
IMe 'Poo(M),ﬂ' € I'I(Az) (fm:m €M) is (,€)-compatible on Ay
Under thxs assumption, we first choose inductively for each k € INg an mk € N,
an My € Poo(IN) and By € T such that
(2)(k) mp € Mr—y, mi > my.. 1,andeCMk 1,if k>0,
(8)(k) By C By—y if k>0,
(4)(k) ess0scfmy Be) S € it £ >0,
(6)(k) (fm:m €My) is totally e-incompatible on By, and
(6)(k) there exists a m € TI(A \ By), such that (fm:m €M) is (7, €)-compatible
on A\ By. :
For k = 0, let mg := 0, My := N, and By := A. Then (2)(0),(3)(0), and (4){0) are
empty conditions, while {5)(0) is just the assumption and (6)(0) is trivial.
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If we assume that fora k > 0, (m¢ : 0 S € < k), (Mg : 0 £ ¢ < k), and
(Bt : 0 € £ < k) have already been chosen, we set

RG] my := min{m € Mg~y |m > mi-1 and essosc(fmy Bm,_,) > €},

remarking that such an my exists because of (5)(k —1).

Since fm, € L&(#,X), we find a # € T(Bi-)) for which fm, is (%,€/16)-
compatiBle on Bg-;. From (4.3.3)(c) and (5)(k — 1) we deduce that there exists a
By € # and an M € Poo( Mi-1), such that (fm:m €M,) is totally e-incompatible
on By.

Setting

By :=| J{B|B € #'}, where #' := {B € # |essdist(f, By, B) S ¢/4},

we deduce (3)(k) and the fact that (fm m EMg) is e-incompatible on By (since

By C By).
From (4.3.3.)(a)(iii) and (iv) we have

(8) essosc(fm,,Bx) < sup essdist(fm,, B, B) + 2 sup ess 0s¢(fm, , B)
B,Bext

<2 sup essdnst(f,,.,‘,B,Bg) + 5 sup essosc(fm,, B)
Bex! ; Bex!
$e/248/16<e

. which implies (4)(k).
Defining Az := Upea\a B = Bi- \Bk and applying (4.3.3)(a)(ii), we have

ess dist(fm,,, A2, Br) = R é?{, essdist(fm,, B, Br) 2 ¢/4.

Now we are in a position to apply (1) to M i= My, n i= my, A, := By, and A, as
defined above; we deduce that we can fchoose M, € ’Pw(l\;!k) and 7 € [I(A2) such
that (fm:m €M) is (7, €)-compatible on Az,

Since A\ By = (A \ Bi=1) U (Bi-1 \ Bx) = (4\ Bi-1) U 43, we deduce (6)(k)
from (6)(k — 1) and the choice of M. Property (2)(k) follows from (7) and the
fact that My was chosen to be a subset of M., while (5)(k) follows from the fact
that By C By and that subsequences of totally incompatible sequences inherit this

property. This finishes the induction step.
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Now we note that, by (3)(k)-and the choice éf By,

A=By=|J (B \By)U () Bx.
keN kEN
From (6)(k) and (2)(k) we deduce that, for each k € IN, there exists a
mx € I(Bk-1 \ By) such that (fm;:Jj € lN) is_(mx,€)-compatible on Bi_1 \
" Be. (3) (k) and (4) (k) imply that (fm;: jeN)is ({N;en Bj)s€)-compatible
on Beo = (\;en Bj. From (4.3.3) (b) (iv) we deduce that (fm;:Jj € IN) is
{Uken ™k U {Boo}, €)-compatible on A, which contradicts the assumption of this

lemma.

Proof of Theorem (4.3.2)
We start the proof by showing that, for a sequence (fa:n €N) C LS (1, X) which
does not satisfy case 1, there exists an § > 0 and a subsequence which is totally k
é- incompatible:

We prove this by showing that if (fuin EIN) sahsﬁes the property

1) VNEPOO(IN),; >03IMePuo(N),rell :: (f.,.:m €M) is (7, &) — compatible,

‘then case 1 is satisfied.

For this, we choose inductively for each k € IN an Ni € Poo(IN) and anp €11
such that Ny C Ng-1 (where Np := IN) and such that for each B € 7 and each
m € Ny, essosc( f,,.,B) < } (this can be done by applying, in every induction
step, (1) to N := Ni—y and €= k) ~

Then we choose an incréasing sequence (nk) C IN with ni € Nk for k € N. To
show that (fn,tk €IN) satisfies the assertion of case 1, let € > 0 be-arbitrary and
choose kg € IN with ¢ > ;‘— Since (fa, 1 £ 2 ko) is (wko,e)-compatxble, we find a
TE. II which is finer than 7y, and for which (foy : k€ IN) is (m, €)-compatible.
To prove (4.3.2), we assume that (fu:1i E]N) does not satisfy case 1 and we show
that. it satisfies case 2,

By ‘the above remark we can _assume that there exists an £ > 0 such that
(fatn €N ) is'totally é-incompatible. -~

By mductnon, wé choose for each k € INo an nx € INo, an Ny, € POO(IN), and a
family (A(n,7):1 <7 < 2")C T such that | : v
(l)(k) nx € Niwy, ng > ng—y, and Ni C Nk-l_if k>0,

(2)(k) A(k,2i — 1)U A(k, 2i) C A(k,i) and



A(k, 2 -1)N A(k, 20) = 0 almost everywhere if k > 0 and i € {1,...,2¢"},
(8)(k) essosc(f,.,‘,A(k,i)) < /16 and essdist(fn,, A(k, 25 — 1), A(k,25)) 2 £/4 if
k>0,i€{1,...,2*} and j € {1,...,2""!}, and
(4)(k) for each j € {1,...,2%}, (fm : m € Ni) is totally £-incompatible on A(k, 7).
If k = 0, we put A(0,1) := Q, ng := 0 and Ny := IN. Then (1)(0),(2)(0), and
(3)(0) are empty, while (4)(0) is just the assumption.
We suppose that for a k > 0, ng—y, Ni-y and (A(k — 1,5) : j < 2¥71) has been
chosen,
First we want to verify the following:
(6) Let M € Poo(Ni-y) and j € {1,...,25} be arbitrary.
Then there exists an increasing sequence (fig : £ € N) C IN and for each
2 € N an My € Poo(M) and A(1,0),A(2,8) € £ A(k — 1,j) such that for
each £ € IN: ‘
8) fie € My—y (Mo = M), M(€) C M(£~1),
b) the conditions (a) and (b) of Lemma (4.3.4) hold for

n =i, M 1= My and 4, := A(1,8), A := A(2,0).

We prove this by applying (4.3.4) successively for each £ € IN to the sequence
(fm:ime Moy, m > fig—y) and A := Ak - 1,5).

Applying (6) successively to each j<2*~!, we find sequences (7i(7,£):£e N)C NN,
(A5, 1,0) : € € ), (A(,2,€) : € € N) C N A(k — 1,5), and decreasing (M” :
£ € INp) € IN, such that _

(7) the condition (6) holds for each j € {1,...,25"!}

. and, moreover, /

N =M 5 (31,0 eelN)— MP > ((2,0): eelN)
=M. oHEE -0 e N) = M 5 (25,0 : L€ IN).

Now we are in a position to choose n € {f(2¥~?,£)|£ € IN} with ng > ni_y
and we set Ni := {#(26,€){€ € IN}. By (7), we find for each j € {1,...,2"1}
an ¢; € IN such that n; = 13(j, £;).

Then we choose, for each j € {1,...,257%}, a 7} € I(A(j, 1,4) and a 7% €
(A(,2, ¢;) such that f,, is (1r &)-compatible on A(J,z £)fori=1,2, Applymg
(4.3.2)(c) 2* times, we deduce from (7) that we can choose A(k,2j — 1) € 7} and
A(k,2j) € n¥ respectively and Ny € 'Pm(_ﬁg), such that (fm : m € Ni)is totally &-
incompatible on each A(k, §) with j € {1,...,2*}. Thus, we deduce (4)(k) and the
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first part of (3)(k). (1)(k) and (2)(k) follows from this choice also, while the second
part of (3)(k) follows from (7). Thus, we completed the proof of the induction step.
The assertion of the theorem follows from (1)(k),(2)(k), (3)(k) and (4){k) if we
take € := 5/4 and remark that from (4)(¥) it follows that u(A(k 1)) >0forke N
and i € {1,...,2%}.

4.3.5 Proposition: Let A C LS (s, X). Then the following are equivalent:
a) Every sequence in A fulfills the conditions of case 1 in Theorem (4.3.2).
b} Every sequence in A contains a subsequence (fn:n €IN) such that

Aor all € > 0 there exists 7¢ € Il and (z(B,n) : B € n*,n € N) C X such that

Ifa= ) xpa(B,n)||S¢e forallneN.
Bext i .

Proof of (4.3.5) : : obvious
o

4.3.6 Proposition: = Let A C L (s, X) be bounded and such that every
sequence (fnin €IN) C A satisfies case 1 of (4.3.2).

Then for each ' € X', each sequence in A(z') := {(f(-),z')|f € A} has a
subsequence that converges u-almost everywhere,

Proof of (4.3.8) :

Let (fa:n €IN) C A and 2' € X'. By assumption and by (4.3.5), we can assume
that there exists an increasing sequence (mi: k € N) C II, 7% = (B(k,m) : m € IN),
and a bounded family (z(k,m,n): n,m,k € IN) C X such that

(1) I fo ~ Z X B(k,m)z(k,m, n)"< 1 for each knelN
meN

Since A is bounded, we find by the diagonal method an N € Po,(IN), such that
(2) r(m, k) 1= neg,i'x:l_'w(x', z(k,m,n))

exists for each m, k € IN, .

By the definition of countable Z-partitions and by (1), we can assume that for ea.ch
w € 2 and each k € IN there exists a unique m(w, k) € IN with w.€ B(k,m(w, k))
and that || fo(w) — z(k,m(w, k),n) ||< L for each n € N; otherwise we pass to a
suitable {2 € T with p(Q\ ) =
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Therefore, we deduce for each w € Q, n,n’' € N, and k € N that
(2’ fo(w) = far(w))]
<l falw) = 2(ky m(w, k), ) [ + ll2' [ farlw) = 2(k, m(w, k), n') ||
+ &', 2(k, m(w, k), n) — z(k, m(w, k), n'))}
< 2 +1(e',alkm(w, k), ) = ok, m(w, k), ),

which implies the. assertion together \élith 2).
©

Finally we want to collect the resixlts as we will need them in the next section,

and formulate them for the space L&:(E, X).
4.3.7 Corollary: Let (Q, L) be a measurable space and A C L, (Z, X).

_a) At least one of the following cases happens:
case 1: For each (fn:n €IN) C 4, théx‘e is a subsequence (f,,:n €IN) such that:

For cache > 0 there is a cou?:tab]e $-partition 79 of @ with
ose(fo,B) <l¢ forn € Nand Benl®,

case 2: There is a sequence (fu:n €IN) C 4, an € > 0, and a tree of non-empty
sets (A(n,7) in € No,§ € {1,..2"}) C £, such that

ose(fnr A(n,7)) < €/4 and dis(fa, A(n,2i = 1), 4(n,20)) 2

whenevern € N, j € {1,..2"} andi € {1,.2" 7'},
b} If A is bounded and satisfies the: above case 1, then for each (f:n €eIN) C A
and each ' € X', ((z', f) : n € IN) has a pointwise converging subsequence.
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4.4 Limited sets in X®Y and K,+(X’ ;Y)

In Proposition (4.4.1) we recall the known result [62, p:22, Propositon 2},
which characterizes compactness in XQY and Ky+(X',Y) by compactness in X
and Y. We will observe that this result may be carried over to limitedness only in
special cases (Proposition (4.4.2) and Examples (4.5.5) respectively). In general, it
only leads to a necessary condition for & set to be limited in X@Y and K (X' Y)
respectively. We deduce from this observation that X®Y and Ky« (X", Y) inherit
the Gelfand-Phillips property of X and Y (Corollary (4.4.3)).

In addition, we will formulate two other necessary conditions for a set to be
limited in X®Y and Ky+(X',Y). ‘The first one follows from the observations
in section (4.3) and states that the limited sequences in X ®Y and K,+(X",Y),
viewed in LS, (Ex,Y) and LS, (Sy, X) respectively (where £x and Dy are the the
o-algebra of the weak* Borel sets of By(X ') and B, (Y") respectively), must satisfy
case 1 of Theorem (4.3;2). Secondly, we will observe that limited sets'of XQY
must be "almost” bounded in the projective tensor norm (compé.re Proposition
(1.1.10)).

In the next section we will show that these two conditions are also sufficient
for limitedness if we suppose that X and Y are Grothendieck C(K)-spaces.

4.4.1 Proposition: For A CKy+(X ’,Y), the following properties (a) and (b)
are equivalent, ;
a) A is relatively compact in Kye(X', Y)
b) A(B,(X')) {T(=ITeA,z' € B;(X )} and
A(B1(Y)) = {T'(y) [TeA,y € By(Y")} are relatively compa.ct subsets of
Y and X respectively.

Since X®Y is a closed subspace of K.‘,o‘(X ,Y) (compare (0.3)(e)), we deduce
that (a) and (b) are also equivalent for A G X®Y.

Proof of (4.4.1) :(We could prove (4.4.1), by showing that we are in a special
situation of {52, p.22, Proposition 2], where the locally convex case is described;
but it is just as fast to prove it in a direct way.) '

(a) =>(b): Let (Tn(=}) : n € IN) be an arbitrary sequence in A(B;(X')) (i-e.
T, € A and z!, € By(X')). Since A is assumed to be relatively compact, there is
an N € Peo(IN) for which (Tn:n€N) converges to a Ty € Ku+(X',Y). Since Ty is
a compact operator, there is an M € Poo(N) for which (To(z},) : n € M) converges
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" to ayp €Y. This implies that, for n € M,

L ELICEST 1<t (2h) = Tolah) || + Il%(zn) - Yo ll

ST~ Toll + ITaCet) =0l i O
We deducg ‘that A(By(X')) is relatively qomp_act and it follows that the same is
true for A(B;(Y"')) noting that

I Kw'(-X"Y) = Koo (Y, X), T T',

is well-defined and an isometric isomorphism, and that (I{A))(B,(Y')) =
A(By(Y")). '

(b) =>(a): We view for this X, Y, and Ku+(X',Y) as subspaces of C(B;(X")),
C(B,(Y")),and C(B1(X')x By (Y")) respectively, where B, (X"), By(Y') and
Bi(X') x By(Y") are endowed with o(X', X), o(Y*, Y), and o(X', X)xo(Y',Y)
respectively.

From

sup [Tf=  sup  |IT@")[l= sup |iyfl,
TeA 2'€B1 (X", TeA vEA(B1(XY)

we deduce that 4 is bounded and so, by the theorem of Arzela-Ascoli, it is suf--

ficient, to prove the equi-continuity of 4 in C(B1(X')x By(Y')). For this let

(z',y') € By(X")xBy(Y') and & > 0.

By (b) we find open sets U C By(X') and V C By(Y"), with z' € U, y' € V and
1f(@) - f(E) S ef2 and |g(§') - g(#")| < /2

whenever ',3' € U, §,§' € V, f € A(B;(Y")), and ¢ € A(B, (X’))
This implies that, for each h € 4 and (z . § ) (#,9)eUxV,

W, §") - W&, 5| < lh(i’,ﬁ') - K&+ Ih(i',zi') h@,§) se

which implies the equi-continuity of 4 and finishes the proof.
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4.4,2 Proposition: For A C Ky +(X",Y) or A C X®Y it follows that
(8) >(b) (o),

where
a) Ais h;mted in Kw~(X Y), respectively in X®Y,
b) A(.Bq.()L)) and A(B;(Y )) are limited inY and X respectxvely, and
¢) A(By(X')) is limited in Y and A({y'}) = {T\y ;IT € A} is limited i in X for

eachy' €Y. poe
If Y is a Gelfand-Phillips space and has the approximation property, then
"(c) =(a)" is also true.
Proof of (4.4.2) ;.
 Proof of (a) =>(b) Smce X®Y isa closed subspace of Ky+(X', Y), it is enough
[ to show the assertion for Ky+ (X', Y)
For an arbitrary sequence (T,.(a:,,) n € N) in A(Bi(X")) (ie. T, € A and
2!, € By(X') for n € IN) and an’ a.rbxtra.ry a(Y' Y )-zero sequence (yh:n € IN), we
* have to show that hm,._.oo(y,,,jl),.(:c,.)) = 0. ISmce for every T-€-Kie (X',Y') the
: adjoint T' maps (y},:n € N) to a norm-zero sequence, we deduce that’

. (T'(yh)y ) = (T(z}), yn)"-_:_.oo for T € Kue (X', Y).

 Thus, (=, ®@ ¥, : n € IN) converges in o(Kuwe (X', Y)Y, Kye (X", Y)) to zero (where
i 2% @ Un(T) = (T(},), yp) for each n € IN) and we deduce from the. assumption
_5! that

;

(Tn(zh)rym) = {Tn, T, ® !I:,)"‘:;'OO )
;. which proves the assertion.
"::_‘ In the same way we can prove that A(B,(Y")) is limited in X.
“(b) =>(c): obvious,
(¢) =(a):(Under the additional assumption that Y is a Gelfand-Phillips space
enjoying the approximation property, and thus, by (0.3)(e), XY = K+(X',Y).)
Let A C.Kw- (X', Y) satisfy (c). From the assumptions on Y we deduce that, for
each € > 0, there is a finite-dimensional projection
n(e)
PO Yoy, e e (6,

where y(¢,1),...,u(e,n(e) € ¥, ¥'(6,1),...,v'(e,n(€)) € V', and n(e) € NN,
such that || P¢)(y) ~ y||< € for each y € A(B1(X')). Thus,

(1) [P9oT~T|<e¢ whenever T € A.
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For each ¢ > 0, we now want to show that A(e) := {P®) o T|T € A} is limited in
Ku+(X',Y). To see this, we remark that by assumption (c), the set

Aleyi) = {T’(y (6 NIT € 4}
is limited in X, for each i < n(e) Thus, the set
Ale,d) == {u(e,9) ®T'(y'(€, NIT € A}

is limited in Kyo(X',Y) (it is the; image of A(e,i) under the operator
X3zw+m ykEi)®z € K,,,.(X’ Y)). Since for each z' € X' and T € 4 we

have . .
o n(e)
PO OT(") = 3 yle,ifT(a'), (e, )
) =1
n{e) n(e)
= 3w T = (X e 0 TW e )",
i=1 . i=1

-we deduce that A(e) C )::'_f‘,) A(g, ), and thus, that A(e) is limited in Ky+(X',Y).

From (2) we deduce finally that Ac n¢>o B (Kuwe (X', }’)) + A(g). The assertion
follows from (1.1.4).

From Proposition (4.4.1) and the implication ”(a) =>(b)" of (4.4.2), we deduce
that X®Y and K,+(X',Y) have the Gelfand-Phillips property if X and Y enjoy
this property. This is a result which is already proven in [18, p.486, Theorem 2.1.]
for X®Y under additional assumptions?on X and in [13, p.407, Theorem 3.1] and
{14, p.2, Theorem 2.1.] for general X®Y and K+(X',Y) respectively:

4.4.3 Corollary: If X and Y are Gelfand-Phillips spaces, then K,+(X',Y') and
X Q@Y have the Gelfand-Phillips property also.

Proof of (4.4.3) : By (4.4.1) and (4.4:2)((a) =(b)).
i (o]

To formulate other necessary conditions for limitedness in K,»(X',Y) and
XQY, we need the following Lemma whxch uses essentially the results of section
(4.3).




4.4.4 Lemma: Let K be compaci and let L be the o-algebra of the Borel

sets of K.

Let A C C(K, X) have a common X—hm:ted range A(K) := {f(6)|€ € K}.
Then the following are equivalent:

a} Every sequence (fn:n € N) C A enjoys, as a sequence in LS (X, X), the
condition of case 1 in Corollary (4 3.7)(a).

b) For each positive and finite Borel x}:easure on K, T,(A) is limited in Ly (p, X},
where T, : LS(Bk, X) = Li(p, X), f+= f.

In particular, we deduce that a set A C C(K,X) which is limited in C(K,X)

satisfles condition (a).

Proof of (4.4.4) ¢

Proof of (a) =>(b):

Let p be a finite measure on Tg. It is enough to show that an arbitrary sequence
(fn:n € N) C A contains a subsequence whose image under T is lxmnted in
Li(p, X). ‘

Thus, let (fn:n e N) C A. By taking a subsequence, we may assume by (a)
that there is an Increasing sequence ;of countable Eg-partitions (mi: & € IN),
mg := (B(k,m): m e N),and a famxly (z(n,k,m) : n,k,m € N) C A(K)) such
that

(1) = D xBtm)z(n,k, m)| < k, for each n, k € IN.
meEN )

Thus (note that || T, [|= {¢l(K)),

(Tu(fw) i n e M) € U (9 1n € N} + Bygrope(Lali, X)),
keEN ;

where ﬁ :
£ = Z XB(k,m)&(n, k,m) for each n, k € N,
mEN
By (1 1.4) it is sufficient to show that, for given k € IN, (f(") n € IN) is limited in .
Li(p, X). In order.to show this, we ﬁrst remark that for any BeZgandnelN,

[0du= 3 wen B, ))e(n, by m) € u(K) - ST,
B meN

which implies, together with the assumption, that (b)(i) of Corollary (4.2.2) is
satisfied.
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Secondly, we observe that for any ¢ > 0 and for an mg € IN for which

> w(B(m, k)) < (1+ sup Jl=(m, B,

m>mg

it follows _that _
(k) _ B (¢(k) (k) . .

Il f& Ex(fa )lll <2|f; lUm>mo B(m.k)lll <eg,

for each n € IN and each finite L k-partition = which is finer than

7€ = (B(l,k),B(2,k),..',B(mo,k), U B(mvk))’

m>mg

(where E, is defined as in (4.2.2)).

This implies that (fn:n € IN) satisfies (c)(ii) of (4.2.2), from which we deduce the
assertion, .

~(a) = ~(b):

Using Corollary (4.3.7)(a), it is enough to show that, for a sequence (f,:n € IN) C
A admitting an € >0 and a tree of sets (A(n,7) : v € WNy,1 < j £ 27) such that
the conditions of case 2 are satisfied, there is a finite Borel measure on K for which
(Tu(fn) : n € W) is not limited in Ly (x, X).

For this we set

ﬂU i,Ji andC(n,])-Kn Z,]i for n € Ng,j < 2",

nEN j=1
From the property of (A(n,j) : n € Ng,1 <4 £ 2") and the compactness of K we
deduce that no C(n, j) is empty.
Since fn is continuous for each n € IN, we deduce from the assumptions that

(2) sup [Ifal§) - fn(E)II<- and inf (&) - SalE)l2

€.6eC(n.j) ¢€C(n,2i),{EC(n,2i-1)
whenever n € N, j < 2", and igant,
Moreover, for m € IN and ¢ < 2"~! we have

C(m—-1,i) = KNA(m -1,3)
2“
= ( n U Aln,g)) N (A(m, 2)U A(m, 20 - 1))

nEN j=1
=C(m,2/)U C(m,2: - 1),
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and thus (together with the second part of (2)),
(4)  C(m,2)UC(m, 2% —1) = C(m,2) and C(m,2)NC(m,2% —1)=0.

For each n € IN and j < 2% ‘we choose an £(n,j) € C(n,j) and an accumulation
point ¢ € M(K) of the sequence (yq:n € IN) := (27" E?:: S¢(n5y : n € N) in
o(M(K), C(K)). We observe that for n € IN, m > n, and j € {1,2..2%},

pm(C(n,5)) = 27" {i < 27| C(m,i) C C(nyj)}| = 27".

Since C(n,7) is clopen in K (note that K \ C(n,j) = Uieqs,..2n 5y €(ns8)) for
each n € IN and j < 2"), we dedu_ce that

)] #(C(n,j)) = 27" for each n € IN and j < 2"
Taking 7, 1= {C(n, )] < 2"} U {K \ K}, we have
| Enp 0 Tu(fn) = Eroey © T#(fn)lll

2n—l
=||22"”[2XC(':,2;) / Sadp 4+ 2X0(n,2i-1) / fadu
i=1 C(n,20) C(n 2i-1)
= XC(n-1,) / fnd#]ll
C(n-1,8)
2»*1
=2""! "Z[XC(n.ﬁ)( / fadp — / fndﬂ)
i=1 C(n,24) C(n,2i-1)
+xc'(n,2.'-1)( / Sndp - /fud#)]lll
C(n,2i=1) C(n,2i)
2"—1
D I VX TR
' =1 o(n,2i) C(n2i~1)

2n—1

2 Y 27 Ifn(6(n,20) = falé(n,2i = )|
=1
R N EORYAGI S RN FGE AGL

§,€€C(n,2i) £,£eC(n,2i-1

21:—1

> Z (e ~2¢/4)27" =¢/4,
i=1
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where Ey is defined as in (4.2.1), Thus, we have shown that (E,, : n € IN)
does not converge uniformly on {T,(fn}|n € IN} 4 a.nd from (4.2.2) we deduce that

T,(A) is not limited in Ly (s, X).
°

Using Proposition (1.1.10), Proposition (4.4.2), and Lemma (4.4.4), we are
now in the position to give the following necessary conditions for limitedness in
Kye(X',Y) and in XQY:

4,4.8 Theorem: Let Z be the space XQY or Ky+(X',Y).

Let Kx and Ky be two compacta for which X and Y can be isometrically
embedded in C(Kx) and C(Ky) respectively, and thus, Z can be isometrically
embedded in C(Kx xKy). Let £x and Ly be the corresponding Borel sets. (For
example Kx 1= (B1(X"),0(X', X)); if X = C(K), then Kx := K is possible also.)

Then a limited set.A in Z satisfies the following conditions (a), (b), and (c):
a) A(Bi(X')) is Y-limited and A(B,(Y")) is X -limited.

b) Every sequence (zq:n elN) contains a subsequence (2a:nEN), N € Poo(IN),

such that
for any € > 0 there are countable Lx- and Sy-partitions ¥ and x¥ of

Kx and Ky respectively such that
0sc(zn, Bx B) < ¢ whenever B € 1rx B €ny,andnelN

(we view Z as a subspace of Loo(Ex ® Ey)).;
c) IfZ= X ®Y, then A is almost bounded in tI;e projective tensor norm, i.e,
for any ¢ > 0 there is a ||-||-bounded A* C X®Y such that
A

Ac()a+ B,(x®Y).
e>0

Proof of (4.4.5) ¢

(a) : Proposition (4.4.2)(a) =+(b)
(b) : We note that Z can be embedded in C(Kx,Y) as well as in C(Ky, X)
in a canonical way. Applying Lemma (4.4.4) (b) =(a) twice to a sequence

(fn:n € N) C A, we get an N € P(IN) and, for each’c > 0, countable Zx-
and Dy- partitions #) and 7® of Kx and Ky ' respectively, such that the se-
quence (fo: n€N) is (x(),¢/2) compatible on Kx (viewed in L (EX,Y)) and




(7®,¢/2) compatible on Ky (vieﬁe& in L;(ﬁ‘y,x )) Thus, f
each BM € ") and B® € 7, and any £(1),£(1) € BW and £(2),
we deduce that ‘ '

whxch implies (b).
(e): Proposition (1.1.10), applied to V

4.4.6 Remark:
a) Let | " be a reasonable norm on X ® Y. By [10 p 223 Pmpos

b)

: we-showed that a Z-limitedset A C 2
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for: eac

{zn(6M @) — 20 (€D, £ . e
< 12alE,62) = 206D, ED)] (6D, D)  24(E0)
Slan( €2) = 2 ENI+ a6, = 2alE, S e

X®Yad|-| =

continuous lmeax Io: X Y » X ®Y
So it follows from LA&) that for any limited set in X ®Y the imagé.i
I, enjoys the properties (a),(b) and (¢) of (4.4. 5) :
Let Z be an arbitrary Banach space, Kz a compact space for w}nchs
1sometnca.lly embedded in C(Kz), and Yz the Borel sets of K Z. Ix'x i

but this is equwnlent to the property
satisfies in Loo(S2) = L&, (T, RY the property of. cas\é inGoroth "B
i.e. there is a subsequence (Z,:n € IN) of (zn:n €IN) e.nd fbr each €
countable ¥ z-partition 7 of Kz such that for each ne N and eacli B
the oscillation o n B is not greater than e. . s
Now Theorem (A—%‘%S sharpens this result in the followmg sense' o
If Z is the injective tensor product of X and ¥ and if we ta.ke Kz
(Kx, Ky,Ex and Ty as in (4.4.5)), then for each ¢, the above pg
can be taken in Sx ® By having only rectangular sets, .e. T

that eagh sequgs:ce (z,.‘ n€ ]N)

of the form
R RV o) I {B(’)xB(z): 'B(l) T OR

where 7(1) and 7(®) are countable £x- and Ty-partition:
respectively.
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Moreover, We’f\avef shown that in Grothendieck C(K)-spaces the class of con- -

dltxonally Weakly compact sets and the class of limited sets comcnde ‘In the
next gectioi, we will prove that in injective tensor products of Grothendieck
C(K)-spaces the conditions (b) a.nd (c) of Theorem (4 4:5) characterize the

limited sets. A w5 B 1“;‘\( TL’( 3

j@,,\ (0P g {

N




and By respectxvely For A C C(K i XKg) the fo]Iowmg conditions (a) and ( b) are’
equxva.lent
a) A is limited in C(Ky X K3).
b)i) Each sequence (fn:n € IN) C A contains a subsequence ff,.. neN), Mg’
\ 'P@(lN), /pt'}’i bh/'fdﬂ/mg Byperty \1 .
> 0 there ounta, E;- and” 22— pa.rtxons m and 73 of K;
@V{ - o |

% respectzvel -

L T T | sy,
oscé',.,A»(B) e Forall 4 € 1r1,B/e 2 and € N

ii) Aisalmost bounded in C(K)®C(K3) (mmmmmrﬁo))

Before we can show Theorem (4.5.1), we need the following Proposition and

. Leminas.




f
b -
d
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4.5.3 Lemma: Let K be a compact space such that C(K) is a Grothendieck

space. We consider a bounded sequence (fain € IN) C C(K, X} with the following

properties (&), (b), and (c):

a) The sequence (fa(€):n € N) i is limited in X for each (e K

b) Every subsequence of (fuin € IN) satisfies the property of case 1 in Corollary
(4.3.7) (we view C(K,X) as a subspace of LS (Bk, X)), where L are the
Borel sets of Tk ).

¢) (fa:in €NN) is not limited in C(K, X).

Then it follows that there is a subsequence (fain €N) of (fain €IN), a sequence

(Cnin G]N) of closed subsets of K, and a sequence (On:n €IN) of open subsets of

K such that.

d) 0#£C.C0,and 0, N0y =0 ifn,n' €N, withn#n', and

e) for each sequence (hn:n € IN) C C(K) with 0 < h, < 1, hale, = 1 and
halog =0, forn € N, the sequence (hnfa : n € IN) is not limited in C(K, X).

Pyoof of (4 5.3) 3 ‘
By the assumptions in (b) and (c) we can assume that there isane > 0 and a

normed w*-zero sequence (pn:n € N) in C(K, X)' = M(X, X') with
(1) ' e < (ptn, fn) forallne N

and that, moreover, there is a countable I g-partition 7 = (Bm:m € IN) such that
(fa:n € N) is (¢/6, 7)-compatible on K. Choosing for each m € N a {;m € Bin
and setting z(n,m) i= fa(€m), we deduce that

(2)  Mfa= Y XBaz(n,m) u <e/6 foreachne N,
mEN

Since for arbitrary z € X and B € Lx we deduce from (4.5.2) and from the

Grothendieck property of C(R’) that

{(#a(B),z) = (f‘mz)(XB)":‘c'oor
it follows that
(3) p,.(B)n—:ZOO in o(X',X) for any B € L.

Now choose inductively, for each k € IN, ny and m; both in IN such that




(4)(k) nip < mg and if k > 1, then mg—y < ny,
(5)(1‘7) ll‘nkl(Um>m,, "l) < sc'

where c 1= 1 + sup{]| z(n,m)]| {n, m € ]N}, and
(6)k) Htngr Dongmyey XBmZ(nksm))| < §,if k> 1.
If k =1 we choosen; =1andanm; >n, l‘a.rgebenough so that (5)(1) holds (note
that || 4;||=1 and that the sets Bj’s are pairwise disjoint).
If my—y and ng_; are already chosen for k£ > 1, we deduce from (3) and the
limitedness of (z(n,m) : n € IN,m < mg_1) in X (assumption (a)) that there is
an ng > mg~; such that

. €
PRI, < -
] Hitny, z(ne, m)x e, M < ——F for each m < my_y,

which implies (6)(k). As in the first induction step, we can choose an my > ny
satisfying (5)(k).
Setting Dy = U, | 41 Bj for each k € IN (with mo := 0), we deduce that

8 (/-‘anD;,fnk) > (l‘npfng) I(l‘nl,yXDCfnh)l
>e— 5/6 = Hbnpr x0g Z xa...f(nk,m))l
. meN

{(1), (2) and "l“nk‘ fI= 1]
>5€/6— I Hnyy Z XBmz(nk1m)),

m<mk 1

_Kl‘np Z mez(nk,m))'

m>m;

> bef6—2/6 =¢/2
(by (5)(k) and (6)(k)].

Since for any f € C(X) and z € X the sequence ({fotiny,z) 1 ke IN)is weak'-cho
convergent in M(K), and thus weakly convergent, since by (1.1.7) (xp, : ¥ € IN)
"is limited in Loo(2k) (we recall that Loo(EXk) is a Grothendieck space with the -
Dunford-Pettis property and that (xp, : k¥ € IN) is weakly zero convergent in -
Leo(Zk)), and, finally, since Loo(Z ) is a subspace of C(K)", we deduce:

(/“nnguf z) = (f.linp:)(xok)k:;o;Whenéver f € C(I{)7 TE Xv

which implies that (#nilp, * k € IN) converges in o(M(K, X'), C(K, X)) to zero.
Since pun,, is regular for k € IN there is for each k € IN a compact Dy ¢ Dy with
liny (Dx \ Di) < 5%, where & := sup,en(1+ | fa ).
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A
B
i

his \lmp.hes' that the assumptions of Lemma (3.2.3) are satisfied (taking F; :=#
for j € IN) and, together with (3.2.4), we can find a subsequence (kg€ €IN) of IN |
an a wh-zero sequence (7¢: £ € IN) in M(K, X') such that the supports C¢ of i

~ have pairwise disjoint open neighborhoods O and such that

fve—sell<e/(1+6 sup {fnll) for each £€ IN.
. ng

.Taking fo:= fay, for £ € N, we deduce for an arbitrary sequence (het € € IN) C

C(K) with0 < he €1, helc, =1, and h¢|o‘c =0 that

(hljl,ul} = (fl"’e)
(fng‘:l’kg) llfn,;, 0Nk, = ol
/6,

v

which implies that (hefy : € € IN) is not limited in C(X, X) and so the assertion
follows,
o

4.5.4 Lemma: Let K, and K; be compact spaces with C(X;) and C(K;)
being Grothendieck spaces.

We consider a sequence (fa:n € IN) C C(K) x K3) and an ¢ > 0 with the
following properties (a) and (b):
a) Forn € N and 6 = 1,2, there are c}osed C? c Ky and open 0’ C Kg-with

CO co®, 09 n0Y =8, and suppfa C CHxCD

for n,n' € N withn # 11).
b) There is a sequence (fn:n €N) C C(K))®C(K>) with

| fo = full < € and sup ||l < oo forneN.
v neEN A

_Then for any weak®-zero sequence (pqin € N) in By(M(K) x K3)) it follows that

limsup |(pn, fa)l S €.
N=r OO
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9 < 1 g(”l o =0 and gt |(o$‘a))c =1

s PO O(Ke) - c(K,) ks gwh _ ,
Py= P“’éP(’) and B, := PMWGP® forn e N and o= 1,2

(c f(O 3)(d)) a.nd observe that for fi e C(K,) and fp € C(K;) we have
Pﬂ(fl 8 f)= P(f)® Pm(fz) ="M h) =P o) (e fz)

. Thus, Ba(f) = (6 @ 92 - £ for f € O, x K)
By condition (b) and the definition of the projective tensor norm, we can choose
»"“for each n € IN finite families

(z(n, i E(n)) c B;(C(K, ),

(U(n, ) 1§ £ €(n)) C By(C(K2)), and

“(a(n,d):i < 4n)) CR

such that each F.. defined by

iUn)
fn o= Za(n, $)z(n,i) @ y(n,i) forne N

i=1

satisfies Il fa = fall < € and such that
v

Un)

Zla(n i) <2 sup I f,,:l[ <oo fornelN.

i=1
From assumption (a), from (1), and from the definition of f,., we deduce for each
n € IN that

(@) P"(fn) = (4" @ ¢P)fn = fo and
t(n)
CPafa) = Pu(fa) = Y a(n,i)(a(n, ,)gm)@(y(n ).

=1
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Thus, since || B ll=1,
3 . .”Pn(fn)"Pn(fnx\!SE

Since C(Ky), 6 = 1,2, have the Gtotheddieck property, we deduce from the fact
that the elements of (9(0) :n€N) have pairwise disjoint supports and from (1.1.7)

that the sets
AW = (gfz(n, i) |i < €(n), neN} and A(z) —{g(g)y(n,i)lisl(n), nelN}

are limited in C(K;) and C(K3) respectwely By (4.5.2)(b) the set ANVQAP), and

thus the set
A= 2 sup | ful - 2co{ ADRAD),
n'€N A

‘is limited in C(K,)é‘C(K_g). Since (P,(fa) : n € IN) C A and since the identity on
C(K;) ® C(K2) can be extended to a linear and bounded operator
T : C(K)®C(K;) —~ C(K1)®C(K3), w}e deduce that (P,(f,) :€ IN) is limited
“in C(K) )®C(I\g)

Thus, for any normed weak®-zero sequence (yn n €IN) in M(K, X') it follows from
(2) and (3) that

lim sup [(n, fu)| = limsup (s, Pa(fa))]
n-—o0 R~+00
< limsup|(pn, Pa(fa))l + € =€,
=00

which finishes the proof.

Proof of Theorem (4.5.1)

- (a) =(b): Theorem (4.4.5). i
(&) = -(b):We have to show that if A C C(K1x K3) is not limited and satisfies
(b)(i), then A does not satisfy (b)(ii).
For this suppose (fy:n €IN) C 4 is not limited in C(X1 x K3) and satisfies (b)(i).
We first observe that the conditions (b) and (c) of Lemma (4.5.3) hold by taking
Ki=Kjand X = C(K,). Moreover, (a) of (4.5.3) is satisﬁed, which can be seen’

- as follows: Co
The sequence (fn:n € N), viewed in Loo(EK, , C(K1)), satisfies case 1 of Corollary
(4.3.7)(a). This implies, by (4.3.7)(b), that for each £ € K and each N € Poo(IN),
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there is an NV .€ Poo(N) for which the{sequence (fa(&,7) 1 n € N) converges

pointwise on Kz. Thus, (fu(¢,)) : n € lN) is conditionally weakly compact. in

C(X ), which implies, by (1.1.7), that it is limited in C(K,).

Thus, all of the assumptions of Lemma (4 5.3) are satisfied and we can choose an

N1 € Pso(IN) and, for each n € Ny, an open O( ) c K, and a closed C(l) CKr
satisfying (d) and (e) of (4 5.3). We now choose, foreach n € Ny, a g.. € C(Ky)

with . .

(1 : 0= 95.” <1, ggl)lcv(‘l) =0, and gs.l)l(og))c =1
By taking K '= K, and X := C(X}), we }nay proceed as above to show that the
sequence (g,. o fn ¢ n € Ny) also satisfies the assumptions of Lemma (4.5.3). Thus,
we can choose an Ny € Poo(N;) and, for ea.ch n € Ny, an open O C K; and a
closed C? C K, such that (d) and (e) of (4.5.3) are satisfied and we can choose,
for each n € Nz, a g., ) e C(K;) with

2 0<g® <1, o) (,) _0 and g{! Nowye =1

By (e) of (4_.'5.3), we dedﬁée the existence 6f N; € 'Poo(Nz) and a normed w*-zero
.sequence _(.p,. tn€N3)C M(K1 xKg) with:

@ -e~=§ <un (ym ‘”)f)

" We have shown that ((gm ) fnin € Na) satisfies condition (2) of (4.5.4) and
for the above chosen 0(9) and C,(.a) ,n € Ny and @ = 1,2, but it does not satisfy
the assertion of (4.5.4). This xmplxes that (b) of (4.5. 4) cannot be satisfied, and
thus, .

(4) any sequence (ky : n € N3)C C(In)@C(Kg), with ||k, —(g(” aNfll <e

v
for n € N3, is unbounded in C(I\1)®C(K2).
To show that (b)(ii) is not valid, let (. :n€ N3) ¢ C(K;)®C(IKz) be arbitrary
with || fa — f,.ll <eifn €N Smce u (g(l) I (fu — Fafl S e for n € Ns, (4)
v .

implies that ( f,.(g"’ ® @) : n € Ny) is unbounded in C(K:1)®C(K2) and since
i fn” 2l (9 ® ¢V fall if n € Na, we deduce that (f,:n € N) is unbounded in
A i ) :

C(K 1)®&C(H;), which finishes the proof.




Finally, we want to construct three bounded subsets 4, B, and C of £oc®%0c
which demonstrate the following: =
- The implication (b) =>(a) of Proposition (4.4.2) is not true in general (A and
B). ' ' , :
~ Neither (b)(i) nor (b)(ii) are superfluous in Theorem (4.5. 1), i.e. both are,
necessary to imply limitedness (C' and B respectively). - N
~ Not every limited set of £,c®€s can be obtained in the way described by
Proposition (4.5.2)(b), i.e. not every limited set is almost (in the sense of
(1.1,3)) a finite sum of products of limited sets in £o (this shows the set 4).
4.5.5 Examples: Foreachn €N we deﬁne the following elements of f“,@é

(= C(ANx AN) = C(AN, £o)):

n n
Ty = me ® X (=~Z X{Giy)

n-l i=1
n
Un = le ) ® Zx(,) (= 3 X(itxgiri+1,..n})» and
. i=i i=1
21\—1 n=1 '
Zni= 3 XAm) ®X(y (=), XAy © Xtiy)»
i=l =1

where (A(n i) :n € MNg,i€{1,2,...,2"°}) C ’Poo(]N) satisfies the conditions of a
tree of sets.
Then for A 1= {2, |n € N}, B:= {ya|n € N}, and C := {za|n € ]N} the
following hold:
a) For each D € {4,B,C}, the sets DW) ;= v{f(f,-)lf € AN, f € D} and
D® = {f(-,€)|€€ AN, f € D} are limited in £o.
b) A satisfies (b)(i) and (b)(ii), ‘
B satisfies (b)(i) but not (b)(ii), and
C satisfies (b)(ii) but not (b)(i) of Theorem (4.5.5).
In particular, 4 is limited in £o@%o but the sets B and C are not. |

Proof of (4.5.5) :
(1) AQ), "A®, B, B®_ 00 and €@ are limited in foo:
To see this, A1), 4@, B, B®), and €1} are subsets of the weakly cond:tnonally

compact set By(c,). Moreover,

C® = {xzmyIn € Ny, j <27} U {0},
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so each subsequence of C'? contains either a sequence with pairwise disjoint sup-
ports or a monotone decreasing subsequence, This implies that C(*! is condition-
ally weakly compact. The assertion thus follows by (1.1.7).

(2) A and B satisfy condition (b)(i):

To see this, we observe that 4 and B are, for both embeddings into LS (2@1, £oo )y
measurable with respect to the o-algebra generated by the countable partition

mi={{i}|i e NJU{AN \N}."
(3) A and C satisfy condition (b)(ii):
For this we first make the followihg observation: )
Let K; and Ka be two compact spaces and let g1,92,...,9x € C(K)) and
hi,ha,... kg € C(K3). Then ’ '

2t N (ei- Y e)e (Y k=D k)

AC{1,...,k} jEA JEA JEA €A

k .
=27 3" 3" (xa(i)gi ~ xac(D)g) ® (xa()hy = xac()h;)

AC[l. k) i j=1

—z**z Y (xali)gi = xac(i)e:) ® (xa(i)hj = xac(i)h;)

|,J=l AC{1L,....k}

-2"‘2 Y. (xa()gi - xac(i)g:) ® (xa(ihi = xac(i)hi)

i=1 AC{I. k)

+2°* Z 3 (m(i)g.--x,m(z')g’;)®(xa(j)h,-—-xAc(j)h,-)

iJ=1,i#j AC{L,....k}

_—_2*"2":( oo+ Y eiek)

i=1 {€AC{1,...k} igAC{1,...k)

+o* Xk: (Y = > - X + X ok

GLi=1i#s  AC(l.k}  AC{l....k)  AC{N..k}  AC{1)..\k)
ijEA i igA TWJgA

ieajga  jead
&
= Egi ® hi.

fIf moreover, (gi : £ =1,..,k) and (h; : 7 =1,...,k) are normed and have pairwise
disjoint supports, we deduce that

uzg;m.u <27HP((1,2, 0 KDl = 1.

i=1
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Now we observe that, for each n € IN, z,, and z, can be represented in the above
form with pairwise disjoint and normed gy, ..., g1 € C(AN) and hy, ..., ks € C(AN)
and so the assertion follows.

(4) C does not satisfy (b)(i):

Let N € Poo(IN) and let 4 and 7' be two distinct branches of (A(n, ;) :

N,j €2, ie. v=((n,j(n,7)):n € N) with j(n,7) < 2" and A(n,j(n, 7)) C
A(m, j(m,v)) whenever m < n.

Then there exist
§€Ay = n i ,1(7,7)) and

4 neEN
Eedy = ﬂ Al (7))
nEN:

and an n € N with || fo(§) — /(&)= 2 (take n € N with j(n,7) # j(n,7')).
Since there are uncountably many branches, we deduce the assertion.

(5) B does not have property (b)(ii).
We introduce the following notations: |
I ||, where 1 < p < 0o, denotes the usual ¢p norm on ¢, and £3 (n € IN).

Forz v €N, let ~
o f0 ifi=j
a(i,j) = ;5 fid#j
and let M and M, (n € IN) be the matrices
M = (a(i,j):4,j € N) and My = (a(s,7) : 4,7 € {1,2,..,n}).
Forn € IN and 1 € p € oo define
P,S") i~ R, z— ™= (21,32, .y Tn) for = = (2;) € &, and

Q(“) tR* = €,, T+ (z,,zg,..f,zn,o 0,..).

".Now we recall the followmg result of Schur (29, p,212, Theorem 293}:

T:fy — RN, .’L‘—(.’D,)HMO:D-—(ZG(Z,]):L‘J i€ IN),
=1

well defined, takes its values in £;, an‘d is a bounded and linear operator on ;.

om this result we deduce that for each n € IN the operator

= —Q(") oM(") oPM 1l — £
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satisfles

6 - §Tall = : supl' )l(i,j‘..(y))f

£,¥€B; (Lo

1
=-  sup l(:q,Mn oy}l
R z,y€By(€3) |

" ")l li=} Iiyll

sup
n 2,y€B)(43,) l(Ilavll

< sup |z ,Moyl-llTII
z,y€8,(4) . 2

fle] < VAl for z € R").

Finally, we need the following mequal:ty which can be obtained by passing to
integrals of minorizing functions:

n-1 =n 1 ;
(7) ,E_':,-Z.;H ;—:; 2 (n-2)In(n ~ 2) whenever n € N with n > 2.

We have, for each n € IN and each § € (y,. + B1/4(£00®200)) N loo ® Lo, that |

s N ge = 23/4 ifje{i,i+1,.,n})
(8) #(8,7) := (8¢i,5), §) { < 1/4‘: fj€{1,2.,i-1)
for any i,j € {1,2,...,n}. Viewing T, as an element of (£oo®fo0) = L(foo, ),
we deduce that » '
9 nTmdd=n Y. §i)Talxg) @ xii)
i,j€{1,...,n}) s
> o6 f)ati ) T

,5€{1,ym)

i}

n i~1

= Z Z ———y(z,n +yy ~——y(z,;)

i) j= r+l i i=1 r-l

—Z Z —~<y(z,n 03, 1)

i=1 ]—l+l
n-—l n

-EZ,_,

|-~1 =il
ln(n -2).
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.show. the assertion, let AQ/) € oo @ Loo With .
). AG/) 4 By js(Loo®os). For each n € IN, we can choose §jn € A /

= yall € 1/4, which implies by (9) that
v .

n

=2 1n(n —2) = co.
n

n—+o0

.~ limsup |(Tn, yn})| £ 5 limsup




136-

.5 Examples

- Cbnc‘eming examples of limited sets and Gelfand-Phillips spaces, we are still
in the following unsatisfying situation:

On the one hand, all of the spaces we have found up until now which do not
have the Gelfand-Phillips property, have been Grothendieck C(K)-spaces (coinpare
(1.1.8)). On the other hand, all of the concrete examples of Gelfand-Phillips’
spaces which we have considered up now have been spaces X whose dual unit-
ball contained X-norming and weak®-sequentially pre-compact subsets (compare
section (1.2)).

It seems that the literature on this field does not present any other examples,
So we want to construct the following examples in the last chapter:

Example 1 shows that the Gelfand-Phillips property is not a three space
property and that there are Banach spaces which fail the Gelfand-Phillips property
and are generated by weakly conditionally compact sets (by (2.1.6) and (2.3.1) non
reflexive Grothendieck spaces are not generated by weakly conditionally compact
subsets),

Example 2 shows that there are even spaces which do not enjoy the Gelfand-
‘ Phillips property and do not contain a copy of ¢;.

Example 3 is a Gelfand-Phillips space which does not admit in its dual ball a
norming (up to a constant) and weak*:sequentially pre-compact subset.

“Example 4 is a Gelfand-Phillips space C(K) such that K does not contain
any dense and sequentially pre-compact subset. '

Exa.mple 5 shows that under the continuum hypothesis one can find an infi-
nite dlmenslonal C(K )-space having the Gelfand—Phllllps property such that every
converging sequetice in K is eventually stationary.
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5.1 Example 1: The Gelfand-Phillips property is not a three-space-
property
Itis easily seen that quotients of Gélfand-Phillips spaces need not be Gelfand-
Phillips spaces. In fact, the space M([iN ) = £, is a Banach lattice which does not
contain a copy of ¢, and thus, by (1.2.5)(c) it is a Gelfand-Phillips space. But
£, has a quotient, namely £, wh:chfxs not a Gelfand-Phillips space (consider
an isometric embedding E : §; — £ 'and pass to the adjoint). In this section

- we want, conversely, to construct a space X, which does not enjoy the Gelfand-

Phillips property, but which contains a subspace Y such that ¥ and X/Y are both
Gelfand-Phillips spaces. By this we have proven a conjecture of L. Drewnowskl in
{12, p.14, Conjecture)].

The space to be constructed will be a C(K)-space where K is the Stone com-

pact of an algebra on IN which is generated by P;(IN) and a well-ordered family

R = (Raia € w) C Poo(IN) (w € Ord) with the following properties:
1) Forany 0 < a < f <w, either RgER, or Ry N Raf. ‘

.2) For each N € Poo(IN), there is an a < w with Ry C N,

This is a specialization of the: propertles which were considered in [25, 27 31}
(compare Definition (5.1.1)). '

8.1.1 Deflnition: Let R = (Ry:a < w) be a well-ordered (by the ordinal w)
subset of Poo(IN). We will say that R has the property (F)if
(F) for-any a,f € [0,w] with & < B, either RsCR, or Ra N Rs20,
and we will say that R satisfies (FM) 1{
(FM) R satisfies (F) and is maximal in ;the following sense: for each R, € Poo(IN),
the family R := (Rata < w + 1);d6es not satisfy (F).
5.1,2 Proposition: Let R = (R, ai< w) satisfy (F).
Then the following are equivalent:
a) R satisfies (FM).
b) For each N € Poo(IN), there is an & < w with

INNRy =00 and |N\Ra|=

Proof of (5.1.2) :
(a) =(b): Let R satisfy (FM) and let N € P, (IN) Then R i= (Rqta < w+1),
where R, := N does not satisfy (F), Since (R,:a < w) satisfies (F), there is an




a < w such that the pair (a,w} does not satisfy the alternative in (F), i.e.

either [NnRal‘-%oo and [N\ R4l =00
or |NnRa|<§oo and [N\ Ry < o0.

Since |N| = oo, the second case cannot happen and we deduce (b)
(b) =>(a): For a given R, € Pm(IN), we have to show that R = (Reta <w+1)

does not satisfy (F).
By (b), we find an a < w such that

RuNRol=co and  |Ru\Ro|=oco.

Thus, the alternative in (F} does not E\hold for fi=w.
S : : o o

5.1.3 Lemma: Let R = (Rata <w) C Poo(N) satisfy (F), A the algebra on-
lN generated by R and Py(IN), K tbe Stone compact of A (compa.re (0.5)), and
=K \IN (compare (0.5.4)).
a) Every regular Borel measure 41 on K has a metrizable support.
b) By(M(K)) is o(M(K), C(K))-sequentially compact.
¢) If R satisfies (FM ), then N bas'no converging subsequence in K,

Proof of (5.1.3) : (compa.re the proof of [31, p.322, Theorem 3 7) and Remark

(5.14)) _
Proof of (a): By (0.5.4)(c), the topology of K is generated by A := {ZK |A € A}

Thus, we have to show that for a given p € M(f( } and for C' := supp(u) the set
ANC = {ANC|A € A} is countable, Since A is generated by R U P;(IN), it is
enough to show that the set

R(C) = {CﬂRa}a<w}

is countable. For any a < w, it follows from the definition of supports of measures
and from the fact that R, is closed and open in K that either |g)(Ra N C) > 0 or
R, NC =9. Thus, it is enough to show that for a given ¢ > 0 the set

R(C,e) = {CNRala<w, Jul(CNERL)2¢}

is countable,
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Let us say that a finite family (a : § = 1,2,., ) satisfies (1) if

) BonBynC=0 and |pl(Re;) 2 ¢, whenever i,j € (1,2, 8}, i # j .
' :W'e-‘deﬁne

@) fe) = max{l € No | 3ai : 1 < i <€) C [0, with (1)}

(note that £(¢) exists because g is finite) and choose a family (a; : 1 < &(€)) C [0,w]
satisfying (1).

From the maximality of £(c) it follows that any element of R(C, €) lies in at least
one of the sets R(C,¢,1), i < é(e), where

(3) R(C,e,i) = {RanCla<w, RanFa,NC # 0} A R(C,e) fori < &e).

Thus, it is sufficient to show that R(C,¢,1) is countable for a given i < #(¢). For
this, we. first show that

B<B :e BD>B for B,B€R(C6éei

defines a well-ordering on R(C, ¢, ).
From (0.5.5)(a) and (F) we deduce (recall that C C K) that

4) _ either RgNCCR,NC or EH_R;OC=@.

whenever 6 < o < 8 < w.
To show that two elements A, B € R(C,¢,1) are cdmparable, choose a, f € w with
A=R,NCand B = RsnC. Wlo.g. we may assume that a < 8 and, by (4),
we have to show that Ra N Rz NC # 0.
This can be seen as follows: assuming that B, N Bz N C = § and deducing from
the definition of R(C,¢,1) that neither Bq N 'R: nCnor BgN —}-2: NC is empty,
we observe by (4) that

RNCCR,NCandRznCCc R, NC

1 ‘ (note that R;Tﬂ C C R, N C cannot be true since R n Tﬂ C # @ and
RaNRgNC = § (by the assumption); in the same way we show that B, N.C.C
‘Rg N C cannot be true). s o
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But this would imply that the family (&;:1 < j < £(¢) + 1), where

aj HiSHe), R
&j = {cx ifj=1i : - :
B ifj=fe)+1 for j € {1,2,...,4(e) + 1},
would satisfy (1), which is a contradiction of the maximality of £(¢). Thus, we
have shown that R(C,¢, 1) is linearly ordered.

To show that R(C,¢,1) is well-ordered, let R C R(C,¢,i) be non empty. Then
there exists & ;= min{a < W|CNR, € R}. Since for each B = BoNC € R it
follows that @ > &, we deduce from (4) that Rc, NC Cc RanNC;thus, RzNC is
minimal i in R. _ .
Now the set {B \ succ(B)|B € R(C,¢,i)}, where succ(B) is the successor of B
(with respect. to <) if it exists and @ if not; consists of pairwise disjoint, clopen
(with respect to the to‘pology on C), and non empty subsets of C with strictly
‘posi ':measure Smce |,u| is finite, we deduce that R(C,¢,1) is countable,

‘“':the assertxon

et‘ (p,. n: E]N) C B1(M(K)) and set p 1= EneNZ ®lin]. Then
ps) contams the support of each s,. Since C is metrxzable, M(C) is
"ally compact Smce the inclusion E : M(C) - M(K ) is weak*-
t is the adjoint of the Testriction-map R : C(It) — ¢(C)) a.nd since
E ‘maps each p,, to itself, we deduce the assertion.

Proof of (c): Assume that R satisfies (FM) and let N € 1;°°(IN). By (5.1.2), there
isana<wwith '

”éimjx_lfo‘:;&"(}?a) =0 and llmsup 6,.(Ro,) =1,

€N,n—oo

which implies that N does not converge in K since R, .is closed and open in K.
°

5.1.4 Remark: The idea to consider Stone compacts K over algebras generated
by systems R C Poo(IN), for wich

RCR or RER or RNRLP whenever R, R € R,

originétes from D. H. Fremlin (compare [31, p.322, line 8]). It was used to construct
* counter-examples for the weak®-sequentially compactness of dual balls:
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a) R. Haydon showed in (31, p.322, Theorem 3.2] that C(K) does not contain
£(T) for an uncountable set I' and that the dual ball of C(K) is not weak"-
sequentially compact. In the proof of (5.1.3), we use essentially his ideas.

b) J. Hagler and F. Sullivan [27, p.501} showed in a direct way (without using
(5.1.3)(a)) that C(K)/co has.a weak?®-sequentially compact dual ball (recall
that C(K)/co = C(K) by (0.5.5)), and thus, they showed that the property
of Banach spaces having weak‘-sequentially compact dual balls is not a three-
space property.

c) J. Hagler and E. Odell [25) constructed a non-separable James tree-space Y
and showed that there is a subspace of C(K) ®2 Y which does not contain a
copy of ¢; and does not admit a weak‘-sequent:ally compact dual ball; thus,
they shatpened the result cited in (a).

We want to show now that a family R = (Rq:a < w) C Poo(IN) satisfying
(FM) can be chosen with the property that the corresponding C(K'), where K is
defined as in (5.1.3), is not a Gelfand-Phillips space. Therefore, we need first the
following result about the cardinality of systems R which satisfy (FM);

5.1.5 Lemma: Let R = (Raia < w) C Poo(IN) satisfy (FM).

Then [R| = |we|
(note that this assertion follows trivially x'rom (5.1.8)(c) if we assume thé contin-
uum hypothesis).

Proof of (5.1.5) :

Let R = (Rat e < w) satisfy (FM) and hence, condition (b) of (5.1.2).
First we observe that

(1) f o, B €{0,00], |RanRﬂ| = o0, and |R(.\R,g|—oo,

then o < § and RﬂCRa
This can be seen as follows: . :

From |Rq N Rg| = o0 and (F) it follows, that

R.CRganda<f o RelRyandf<Sa

Since |R4 \ Rg| = oo the first possnbxhty cannot be true and « and 8 cannot be
equal, .

Secondly, we show that
(2) for each @ < w, there are a, a2 G]a, [ with

Ray NRay2®  and Ry URa,CRa.
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For this let a < w. By (5.1.2)(b) %(aet N = R,), there is 8 f < w with
® lRaanl-oo and lRa\Rpl-oo,
which 1mphes by (1) that a < 8 and RpCR,, Thus,

ay = mm{ﬁ E}a,wﬁ[ ] Rp satxsﬁes (3) and Rﬁ&Ra}

exists.
Then we apply (5.1.2)(b) to N := Ra \ Rq, and we find an'ay < w such that

4) {Ra ARG, NRyy|l =00 and [Re N RS \ Ray| = 0,
wich implies by (1) that
) @<z, RayCRa, and with §:= ay (3) is satisfied.

F\'brﬂ the mlmmahty of ay we deduéé that ay < a3 and from (4) we have a; < ay.
Since by (4) it is not possible that R, CR,, ywe deduce from (F) that R, NRay 0.
Thus, (2) is shown.

Using (2), we can inductively choose a farmly (a(n, j) : n € No,j € {1,..,2"})
with .

(6) Ra(n,jy N Ra(n,iy=0 and Rai;n+:,zj-x) U Ra(u+l,2j)&Ra(n,j) )

whenever n € IN and 4,5 € {1,...,2"} with i # .
.Let Br be the set of all branches of ((n, ) : n € Ny, j € {1,...,2"}), i.e. theset ofall
o = (j(m,7)in €No) € N with j(0,7) = 1 snd j(n-+1,7) € {2(m,7), 25(n,7)-1}.
For every v €Br, we choose an N, € Poo(IN) such that

M N7&Ru(,.,j(,.’.m forneN

(note that this is possible since, by (6), the sets nm<" a(m,,(m,.,)), n € Ny, are
of infinite cardinality).
Applying (5.1.2)(b) for each v €Br, we ﬁnd a(7) < w with

[Ny N Ro()] = 00 and [Ny \ Ra(pl = co.
Using (7), we deduce therefore that

{Ra(na(n)) N Rogy] = 00 and {Ro(ns(n)) \ Ra(pl =00,
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thus, by (1), Ra(y)CRatnja,m) for all p € N and v €Br.
for two distinct «,4' €Br there is an n € IN with j(n,v) # j(n,7"), it follows
¥6m (6) that

Ry N R,_,(.,;)é@ whenever 4,7’ € Br with v # +'.

In particular, we deduce that [R| > |wc| (note that |Br| = |w.|) and thus the
assertion. .
_ °

5.1.6 Theorem: (Example (1))

There exists a family R = (Rq:a < we) C Poo(IN) which satisfies (F) and,
moreover: )
(6.1.6.1.) for each N € Poo(IN) there is an a < w. with R, C N.
Let K be the Stone compact corresponding to the algebra generated by RUP(IN).
. Then the sequence (x(s) : n € IN) is limited in C(K) (we consider N as a subset
of K as in Proposition (0.5.4)). )

Using Lemma (5.1.3)(b) and (1.2.2), wé deduce therefore that C(K)/eo
(2 C(K \'IN) by (0.5.5)) and c. (viewed as a subspace of C(K) by (0.5.4)(d))
have the Gelfand-Phillips property but C(K') does not.

Proof of (5.1.6) :

Let (Na : @ < w) be a well-ordering of Peo(IN). In order to show the existence of
(Rata < wc), we choose by transfinite induction, for each f§ < w;, an' Ry € Peo(IN)
such that

(1)) Rp C Np, and |

" (2)(B) for any a < B, either Rg N Ra20 or RgCRa.

We suppose that (Ra:a < B8) has been chosen for a 8 < w, and we set.
I:={a < B||{Rs N Ng| = o0}
and
R :=(Rata € I}, where Ry i= RaNNpforace 1,

Then the ;:ardinality of R is strictly less then the cardinality of w..(|R] < |I] <
18l < lwe]). Thus, I is order isomorphic to an ordinal & less then w and R satisfies
condition (F) as a subset of Poo(Np). From Lemma (5.1.4) we deduce that R

e BT
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cannot be maximal; thus, there is an By € Poo(Ng) such that (Ra:e € TU {8))
satigfies (F). . . : :

Taking Rg := Rg, (1)(8) is satisfied. In order to show (2)(8), let o < f.

If a ¢ I, we deduce from the definition of I and. Rg that Rg N R,=0.

If « € I we deduce from the fact that (R,:a € U {f}) satisfies (F) that

either (Rg N Ng) N (Ra N Ng)&0or Ry NgCRaN Ny,

Since Rg C Ng, we deduce the assertion, which finishes the-induction step.

Since each R, is open and closed in K, we deduce that for each N € 'P;(IN) the
sequence (X{n) : 1 € IV) contains a subsequence (choose an a« with R, C N) which
admits a supremum in C(K) (namly xz-). Thus, we deduce from (3.3.2) that the

sequence (X (n) : # € IN) is limited in C(K).
°

5.1.7 Proposition: Let R = (Ra:a < w) C Poo(IN) satisty (F) and let K
be the Stone compact corresponding to the algebra generated by R and ’Pf(IN )
Then the set

G = {xgrla <wc}U{x(ayin € N}u ({1}

is conditionally o(C(K),M(K))-compact and generates C(K).

In particular, the space C(K) of Theorem (5.1.8) is not a Gelfand-Phillips
space, but it is conditionally weakly compactly generated and, by Corollary (2.3.3),
every in C(K) limited set is relatively weakly compact.

Proof of (5.1.7) :

(1) G is conditionally weakly compact,

Let (fu:n €IN) C G = {xgrla < we} U {x(a}In'€ N}U {1}. From (F) and
(0.5.5) we deduce that for K := K \ IN the sequence (fn|z : n € IN) contains =
subsequence (fu| ¢ n € N) which is either decreasing or consists only of elements
with bpairwise disjoint support. Thus, it is o(C(K), M(K))-Cauchy. Since M(K) is
the complemented sum of M(X) and m = £), a separable space, -
we deduce the assertion (1).
(2) G generates C(K).

For this we remark that

D i=Py(INYU{IN\ 4|4 € P(I)} U {(Ra\ A) UB | < w, 4, B € P;(IN)}
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is closed under taking intersections
(remark that for « < # <w and A4, B, A,Be 'P;(IN) we deduce from (F) that the

set (Ra \ A)UB)N((Rs \ A)U B) is either almost empty or almost equal to Rj)

and we deduce the assertion from (0.5.3).
<

5.1.8 Remark: From Proposition (5.1.2) we deduce that the system
(Ratax < we) constructed in Theorem (5.1.6) satisfies (FM). In (5.4) we will con-
struct, under the continuum hypothesis; another system R = (Ra:a < w.) which
satisfies (FM) but has the property that the corresponding C(K) is a Gelfand-
Phillips space.
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5.2 Example 2: A Banach spéce which does not contain £; and does not
have the Gelfand-Phillips property

In this section we want to coxg’;st'ruct a Banach space which does not contain
£, and which does not have the Gelfand-Phillips property. This example shows
that the result of J. Bourgé.in a.ndJ Diestel (c.f. Corollary (2.3.3)(a)) cannot be
sharpened in the following way: ﬁ:om the assumption that & ¢ X, it does not
follow that all limited sets of X are relatively compa.ct;' Secondly, this example
strengthens the result of J. Hagler and E. Odell [25] cited in (5.1.4)(c) (note that
the weak*-sequential compactness of the dual ball of the space X implies the
Gelfand-Phillips property of X). ‘

In order to construct the desired example,lwe could follow the construction
in {25] using the C(K') constructed in Theorem (5.1.8). Since the main idess of
the proof in {25] are usable, but not the results themselves, we estimate that it is
shorter to use other methods, namély the factorization theorem of W. J. Davis,
T. Figiel , W. B. Johnson and A. Pelezynski, [7). This follows an idea of C. Stegall
(cited from {32]), who proposed to use this method to find a space which does not
contain ¢; and does not admit a w‘-siequentially compact dual ball.

We recall same notations from {7}:

5.2.1 Definition: Let W be a bopnded, closed, and absolutely convex subset
of X. :

For n € NN, let || || be the Minko\{wski functional of U, := 2"W + 2~"B,(X),

n H
ie.

l|z]l := inf{r > 0}z € r(2"W +27"By(X))} forneN,z€ X.
n H
Let Y := Y(X, W) be the space '

Yi={zeX| Yz’ <o)
neN "

endowed with the norm - ‘
; . \IZ__
=R, vn{S o) )
eN " ,
Denote the inclusion of ¥ into X by j = j(X, W) and the ¢; sum of the spaces
(X)) by 2 := Z(X, W), ie.

2= {(anin €M) C X| T fzall® < oo}
i neN n

We denote the norm on Z by - .
2
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8.2.2 Lemma: . Let W C By(X) be bounded, closed and absolutely convex
and let ||} forn e N, (Y,§ - ), j, and Z be as in (5.2.1). Then
a) for n”€le andz € X, 2~0"tV) iz ||zl € 2* ||z
and |[z|| < 27" whenever z € W, "
b) W CBy(Y,]- k) and (Y, }- ) is a Banach space,
¢) E;:Y—-Z, ym(y:nelN),isan isometric embedding, and
d) Y does not contain &, if and only if W is weakly conditionally compact,

Proof of (5.2.2) :

Proof of {(a): obvious.

Proof of (b): [7, p.313, Lemma 1(j) and (ii)).

Proof of {c): obvious.

Proof of (d)(=): If Y does not contain &y, then B (Y, |- §) is weakly conditionally
compact by Rosenthal’s £; theorem. Since j is continuous (which follows from
(a)), Bi(Y,§ - §) is also weakly conditionally compact when viewed as a subset of
X and we deduce the assertion from the first part of (b). '
Proof of (d)(<): Let W be conditionally ¢(X, X')-compact. For each n € N, we
deduce from the definition of { - | that for each n € N

Bi(Y,} §) C2"W +27"By(X),

and thus,
Bi(Y, i ) C [) 2"W +27"By(X),
nEN

which implies that B, (Y, § - §) is conditionally (X, X')-compact.

In order to show that By(Y, §- ) is o(Y,Y") conditionally compact (which implies

that ¥ does not contain £,), let (yq:n € IN) C By(Y, ] - §) be arbitrary. We

first deduce from the observations above that there is a subsequence (yn:n€N),

N € Poo(IN), such that ({(z',ya) : n € IN) converges for each z' € X'. Secondly,

we remark that in Z', namely the €5-sum of ((X',]|-[|) : n € IN), the subspace V,
n

Vi={{spneN)c X'} |{n e N}z, # 0}| < oo},

is dense. For each v = (), 5,...,2,,,0,0...) € V it follows that

(v, Elyn)) 10 € N) = (Z (hns¥n) i n € N)

i=1
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is convergent. Since (E(yn) : n € N) is bounded in Z, we deduce that it is
o(Z, Z')-Cauchy, which implies by (c) that (y.:n€NY) is o(¥,Y’)-Cauchy and this
finishes the proof.

5.2.3 Lemma: Let R:=(Roia <wc) and K be as in Theorem (5.1.6).
Then for each bounded sequence (unin € IN) C M(K) satisfying:

Copo= lims‘up(p,,-,x(,,-)) >0
n~00 R .
there is an o < w, such that

. r
limsup(a, XRa) > 5 -
n—oo

Proof of (5.2.3) :
Let (up:n € N) C M(K) and r > 0 satisfy the assumptlon. Then there is an
N € Poo(IN) with

M pol{n]) = (rmixe) 2 5, (nE W),

Applying the lemma of Rosenthal [9, p.82, Rosenthal’s Lemma}, we find an
M € Poo(N) such that

@ lual(M \ {n}) < 7 forneM.

We now choose an uncountable family (M; : i € I) C Poo(M) such that M; and
M; are almost digjoint for 1 # j and we deduce from (0.5.5)(a) that M; \ M; and
M; \ M; are disjoint if { # j. Since I is uncountable, we find L := M;, such that

(3) ' ‘ lun{(Z\ L) =0, forne L.

By condition (5.1.6.1), we find a < w, with Ry C L and we deduce fram 1), (2),
and (3) that for each n € R,

#n(Ra) = pa({n}) + in(Ra \ {n}) + pa(Fa \ Ra)
2 pn({n}) = #al(Ra \ {n}) = |ua|(Ra \ Ra)

S _r_r
T4 4 2
which implies the assertion.

With these preparations we can formulate:
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] 5.2.4 Theorem: (Example 2) :
| Let R := (Ra:e < w) and C(K) be as in Theorem (5.1.6) and let Y be the
; space introduced in (5.2.1) for W := aco({x(n} |n € N} U {xz7]a < w.}).

Then Y does not contain €, and (x(n} : € IN) is not relatively compact but

it is limited in Y.
Proof of (5.2.4) :

By Proposition (5.1.7) and (1.1.9), W i-p conditionally weakly compact and we
deduce from Lemma (5.2.3)(d) that Y dées not contain ¢;.

From (5.2.2)(a) we deduce fori#jin IN that
Uxgy = xinll >I|xm =xulf 227,

which implies that (x{n) : n € IN) is not rela.twely compact in Y,

In order to show that (x(n) : n € IN) ls‘hmxted inY, let (y,:n € N) C By(Y')
with '

1) r = limsup(y;, X(n)) > 0.
n—oo ]
We have to show that (y',:n € IN) is not weak*-zero convergent.

By Lemma. (5.2.2)(c), there is, for each n € IN, a sequence (u(n,m) : m € N) C
M(K) with 35, en ll p(n,m)|* < 1 such that
n i

(ynov) = Z (n(n,m),y}, for eachy€eY,andn € NN,
meN

Choosing an mp € IN with 27™¢ < { and defining g, := Em<mo u(n,m), for
- n € IN, we deduce from the fact that -1} and |- “ are equivalent norms on C(X)

that (pn:n €N) is bounded in M(XK) and that for eachne N
(l‘mX(n]) = (y:nX(n]) - Z (I‘(n)m)1X(n))

m>mg
2 W xm) = O Nutrym)| fxm
’ m}mov m m
2 (y:nX{n)) - Z 2=m
m>mg

[since ||p(n,m)|| <1 and using (5.2.2)(a)]

r
2 (y:-nX(n)) - Zf
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This implies, together with (1), that kim 8UP, L eo{fing X{n)} 2 3/4r, and thus, by
(5.2.2),.there exists an.a < w, with “:

i

3r

hmsup(pmx,; ) 25

Since xz= € W € By(Y, 1 - §) (by Lemma (5.2.2)(b)), we deduce that

limup s x| = lim sup (s ) + 5 o) g2

m>mg
3r
23~ X lutm)l ez
>mo
3r r
2 - """’ > -
8 2 - 8

{since || p(n,m)l] < 1 and using (5.2:2)(a)},

which implies that (y},: n € IN) is not a(Y’ Y')-zero convergent and finishes the

proof. !
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5.3 Example 3 and 4: The Gelfand-Phillips property does not imply
(w*-spenc) and the Gelfand-Phillips property of C(K') does not im-
ply that K contains a sequentially pre-compact dense subset.

Using the compact space K of Theorem (5.1.8), we will construct for each
k € N a closed subspace X; of C([0,wck]x K), where [0,7] is endowed with the
order topology for 7 € Ord, such that X is a Gelfand-Phillips space and such
that every ¢ > O, for which there is a w*-sequentially pre-compact D C By(X})
with the property

i< esup{|{z',2)|}=' € D} forall z € X4,

is not greater than =7 +1

We deduce that the ¢ sum (§renXa)e, still has the Gelfand- Phllhps property
but not the property (w*-spcnc) (see Proposition (1.2.2) and (1.2.3)). We will
show that the space X; can be isometrically represented as C(K)-space such that
K does not have a dense sequentially precompact subset; this answers a question

“posed by L. Drewnowski in [13, p.408, Remarks 3.3.(3)].

We begin with the well known result about M([0, n}, X), for the sake of com-

pleteness, we include a proof.

5.3.1 Lemma: If7y € Ord, then

a, €[0,n] and z,, € X for n € IN,
EneN "31‘“ <o

M([077]];X) = {Z Tnla

nEN

Proof of (5.3.1) 3 _ :

Since p € M({0, 5}, X) is a.sum of Dirac measures if and only if the variation has
this property, it is enough to show that each positive 4 € M([0,5)]) is a sum of
Dirac-measures.

We will-show this by transfinite induction.

Assuming that the assertion is true for all j < 1, we distinguish the following three
cases:

Case 1: 7 =14 + 1 and thus

u = plo,g + s({n}) - &

which, together with the assumption, implies the assertion.
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Case 2; There is an-increasing sequence (7,:n € IN) C [0, 7] with 1 = sup,ex 7n,
and thus, . '

B = o) + #0018 + Y Bligstt,0ma»
neN

which, together with the assumption, implies the assertion.
Case 3: n = sup,, and the supremum of each sequence in [0, 7] lies in [0, ][,
Since p is regular, there is an increasing sequence (as:n € IN) C [0, ] with

1
u(l0,aal) 2 p([0,10) - L forn e I
Thus, for a 1= sup,en an (< 1),
. B = plo,op + #({n})6y,

which, together with the assumption, implies the assertion.
o

5.3,2 Lemma: Let R:= (Ryta < w.) and C(K) be as in Theorem (5.1.6).
For each 8 < w, we define, ' : : :

Yy = span(co U {xz7la < B}) and Y? ;= span(c, U {xm 18 < a <w.})

Then
a) for each N € Poo(IN), the sequence (6n:n€N) has a o(Y4,Ys) converging
subsequence, and i

b) (x{n) :n € N) is limited in Y?.

Proof of (5.3.2) :

Proof of (a): Let 8 < we and N € Poo(IN) and set I := {a < f||Ra N N| = o0}.
The system R := (R, NN : a € I) satisfies (F) as subset of Poo(N) (I is well-
ordered and thus can be identified with an ordinal # < ) and from Lemma (5.1.2)
we deduce that it cannot be maximal. Thus, by (5.1.5), there is an M € Poo(N)
such that for all a € ’

[RaNM| <00 or |[M\Rs <o,

Together with the definition of I, we deduce that lim,ga 6n(Ra) exists for each
a < B and since (6,:n € IN) converges also with respect to o(ch, &.), we deduce

the assertion.
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Proof of (b): It is enough to show that the system Ri=(Ra:f <a<uw)
satisfies condition (5.1,6.1) of Theorem (55.1.6), since then it follows from Lemma
(5.2.3) that (x(n) : € IN) is limited in Y?,

For this, let N € Poo(IN) be arbitrary. We choose a family (N : & < w.) of
pairwise almost disjoint infinite subsets of N (see (0.5.6)(c)). Since R satisfies
(8.1.6.1), we find for each & < w; an & < w. with Rz C N,. This implies that
& # & if ay # ag, and, since |f] < wc, we find an @ < w, for which § < & < w,;

this implies the assertion.

5.3.3 Theorem: (Example 3) |

Let R := (Raia < w,) and C(K) be as in Theorem (5.1.6).

a) Let k€ N, Foreachj € {1,...,k} and o € [0, w¢[, we consider the following
element of C([0,w k] x K): ﬁ

fld) = X((o)uue (=1 bawe-ihx T = (X(0) + Xlue(j= )t awe-s)) © XBS

(note that {0} and e, },0 < &« < ﬂ < w, are open and closed in [0,w.], thus
f(a,j) € C([Orwck] X K))
We define

Xy 1= span({g ® h|g € C((0,wck]), h € co} U {f(a, |0 S @ <we, j S kY.

Then it follows:
i) X\ has the property (w -spcnc) (see (1.2.3)); in particular, it is 2 Gelfand-
Phillips space.
i) The supremum of all ¢ > 0 for which there is a o(X}, X,)-sequentially

pre-compact D C By(X} ) thh
lzl}= ¢ supjl(z',z)l forallz € X
€D
is not greater than 1/(k+1). Ini  particular, X does not satisfy (w*-spen).

b) The space Y := (@renX)e, has the Gelfand-Phillips property, but not the
property (w*-spcnc).

Proof of (5.3.3) : z
Proof of (a): Since X} is a subspace of| C([O wek] % K), we can extend each z' €

X} to an element §' € C([O,wck]xI\)ﬂ = M([0,wck], M(K)) with || 2’ ||=|| # ||
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x
Thus, we view each =’ '€ X| as an element of M([0,wck], M(K)) and to avoid
ambiguities we must always be ;;recise about which w* topology we consider on
M([0,w.}, M(K)) and we distinguish between the following norm and semi-norm
on M([0;wck}, M(K)): k ’
| -}l is the variation-norm on M([O,wcki M(K }) (thus the dual norm of the usual
norm on C([0, w.k}x K)) and I § is the semi-norm on M([0, wck}, M(K)) generated
by X, e ..

fuli= sup |(u,z)| forpe M([0,wc'k],M(K))-
2€B1(Xa)

Proof of (a)(i): We first show that
(I) the sequence (uq:n €N), where

(6o®6.. an,m,.) forne N,

Jj=1

”":"k+1

converges in o(X}%, X} to zero,
For this, we observe that for a < w, J € {1,2....,k} and n € IN we have

{ttns fla)) = m(xz;(") - xf=(n)) =0
and, for g € C([0,wk])) and b € co, |

(Barg ® b) = k“(g(ﬁ) Zywc 3))h(n) =0,

Jj=1
which implies (1).
Secondly, we prove that
(2) for each j € {1,2...,k}, the set
Dj := {buc(5-1)+a ®bn[n €N, 0 < a <w}
is o(X1{, Xt)-sequentially pre—comgact.
For this let (ap:n € N) CJ0,we], (main €IN) C N, and j € {1,2,...,k}. By taking
subsequences if necessary, we may assume that (an:n € IN) and (mn:n € IN) are
both {not necessarily strictly) increasing. For each a < w¢, i € {1,2...,,k}, and
n € IN, it follows that

0 ity
(6‘“(,’_‘)_;.0“ ®6,,,",f(a’,-)) = 0 }f! -‘-"] and [ S [+ ]
X7z(mn) fi=jandan >a

By Lemma (5.3.2)(a), there is an M € Px(IN) for which (x;—,—-(m,.) n € M)
converges whenever & < sup, ey @n (< we). Thus
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v}iETl (5‘,’:(,".1‘).4.0,,, ®6mn ’ f(a i))

0 , ifis#y

0 ' xf:—-]a.ndan<aforead1nelN

hm,.eM Xfg(mn) ifi=jandif therejsannelN
with ap, > a

and, for g € C([0,w.k}) and b € co,
HmnéM(‘swc(_i—l)-ba,. ®binn g O k) =
0 if My — 00
{g(sup,,e“ weld = 1) + an)h(m) i m..-—m, for all but finitely many ne N,
which implies that (8,,(j~1)+an ® Smn 1 6 M) converges in a(Xk,Xk) and
finishes the proof of (2).
In order to show (a)(i), it remains to prove that
(3) theset D := {pn |n € N}UUJ;¢; Dj (4n asin (1)) norms X up to the constant
1/(k + 1)%
For this, let f € X and € > 0 be arbitrary, We distinguish two cases:
Case 1: || fIIS (k + 1)8uPgcoguckicex 1f (@, E)l-
Then there are m € N, j € {1,...,k}, and a €]0,w.[ with

'(5&&(‘]‘"1)'{"0’ ®bm, f)] 2 0<ﬂ$i‘:rk);£ei(lf(ﬂ’£)l €2 m "f“ —€

(note that IN is dense in K and that Uf_l]wc(j 1),wcj] is dense in ]0,w.k] ).
Thus, we deduce in this case that f is normed up to the factor 1/(k + 1) by the

elements of U, . ;< Dj-
Case 2: || f]|> (k + 1) supgcacuek; cex (@, E)l. Thus, [f(:,-)] takes its maximum
in the set {0} x K and, since IN is dense in X, we find an m € IN with

W —e < [£(0,m)}
ko k
S©Om) = Y fwe - 5m) 41 flwe - j,m)l

j=1 j—-l
{60 ® bm Z6wc,®6m,f|+zk+l i

Hence,

Ty ©6u - 5" 6 6 2 (M0 == 2 141)

j=1

>f;;1"1*)iﬂfll —¢
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Thus, in this case, f is normed up to the factor 1/(k + 1)* by the elements of
(#nin €N). :

Proof of (ii): We suppose that D C By(z}) is o(X}, Xi)- sequenhally pre-compact
and that ¢ > 0 is such that for each n € IN thereis a z/, € D with

(4) l’ff&’gﬂX(O)X(n}yzn) 2e.

We have to show that ¢ < 1/(k +1).
From Lemma (5.3.1) we deduce that for each n € IN and j € {1,...,k} there
is a sequence (a(n,j,m): m € IN) C0,w,|, a sequence (v(n,j,m): m e N) C
By (M(X)) and (v(n,j): j = 0,1,...,k) C By(M(K)) such that

k

k
(5) 33 i m)l+ 3 e )€1

Jj=1meN j=0

and

k Sk '
(6) = = 60®@u(n,0)+ Y bui ®¥(mF)+ D D bur(j=t)tainjm O V(M jym).

j=1 j=1meN
We define *
M ' B:= sup a(ngm) (<we)
j<kn,meN
" and A
8 #(n,j) =v(n,0)+v(n,j) fornelN,j<k

and choose N € Poo(IN) for which (z/,:n € IN) converges in o(X},Xi) to an z{
(assumption on D). We deduce from (6) and (7), for j € {1, ..., k}, @ €]B,w,[, and
n € N that

(9) l‘(n’j)(-R:) = (V(n$0)y-xm') + (V(hyj)t XE) = (x;’f(a,j))'E_&(x:)’ f(ﬂ'-i))b
and, for n € N and m € IN, that

#(n,J)({m}) = {v(n,0), xgm}) + {¥(,3)s X{m})
= (@ X{0)x(m) + Xluwe(i=1)+B0eilxim))

o {0 X (o)xtm) + Xjwe(i=1)+8,0eip(m) )
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Thus, we have shown that (u(n,j) : n € N) converges in- a(l"9 Y") and; 'since
(X(n) :n EN)is limited in Y by Lemma (5.3.2), we deduce that :

limsup lp(n,j)({n}v)l -;—— for each ] < lc
neEN .
Together with (8), (6), and (4) this implies that

(10) llmSUPV("»J)({"}) = hms“?( —v(m, 0)({n}) + p(n,5)({n}))
= hmsup V(n 0)({n})

=-hmmf( zh X{o)x(n)) S —€»

and thus,

12 liminf iz
: k
2 lim mf(z,,,x(o)x{n) - E X)uc(J—l)+ﬂ.ch)><(n})
- y=1
>e- hm sup Z V(J,ﬂ)({"})

e ,
Mmmmm%
2c—k(-e)=(k+1)
B '[by (10)]’

which implies that ¢ < 1/(k + 1) and ﬁxﬁshes the proof of (a)(ii).

Proof of (b): Fork € N, let By : X — (@k'eNX & )¢, be the canonical embedding.
For a w*-sequentially pre-compact DC B;((Gak:EnX &)y, ), we deduce from (a)(u)

that ‘ ,
of oo LB BEN L
z€Xe\(0l D (=il k+1

which implies that (@ en Xy )r, does né)t have the property (w*-spenc). However,
(4.2.6) implies that it is 2 Gelfand-Phillips space.
! °

5.3.4 Theorem: (Example 4)

‘

Let R and K be as in Theorem (3.1.6). We assume that Ry = IN, (otherwise we
pass to R = (Rata < w.), where Ry := lN R i= Ray, if @ < wy, and Ra = Ra
ifwe .o <we)
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Then the space X, constmcted in Theorem (3.5.3)(a) for k := 1 is iso
cally isomorphic to C(Ky) for a compact. K. - . .

From (5.5.3)(a)(ii) we deduce that K, cannot contain a dense pre-sequenti
compact set D, because otherwise it would follow that the set of all Dxrac-measu
on D would norm the eIemenes of C(K,) and is o(M(K,), C(K z))-sequentmll
compact. | -
Proof of (5.3.4) : .
It is enough to show that X is. closed under multiplication in C({0, wc}xK ) I we'
have shown this, we observe that 1 = Xjowexi = f(1,0) and deduce the assertion

from [39, p.65,Theorem 9.
In order to do this, we have to show that for any fi, f2 € G, with

Gi= {f(l,,a) ja< “’C} uf{g® kige C([o,‘."’c]rh E'C?)} ,

it follows that f; - fy € span(G)
We distinguish the following cases (whxch are the only ones up toa permutation):
Casel: fy = g1®hyand fo = gg®h2 with g1,92 € C([0,wc]) and hy, by € C([0,wc]);

then
h-fa =(Qx +g2) ® (b 'hz)E G.

Case 2: fi = g1 ® hy and fo = f(;,4), for an a € [0, w.[; then
fi-fa=(g ‘X(O:\}U)a,wc]) ®(hs-xg7) €G.

Case 3: fi = f(1,9) and f2 = f3,0) 1):with 0 £ a £ 8 < we; by (F) two cases are

‘possible:

Case 3(a): Ro N Rp20, and thus,
fi - f = X({0)upwehx(RariRy) € G.
Case 3(b): Rp&Ra, and thus,

1+ P = Xgoyuip wel(RanTiz)
= X((0)ulBwclxTTy ~ XUOIIB el R\ Ra) € 3P2D(G).

This verifies the asssertion and finishes the proof.
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CH) Example 5 and 6: Two Gelfand Philllps C(K )-spaces with
“interesting additional properties

" Using the continuum hypothesis, we wilt consirpét two compact spaces Ky
d Kgb, both of infinite cardinality, with the following properties: -

"> G(Ky) and C(X3) both have the Gelfand-Phillips property. Moreover, both
compacts have a dense subset D such that every sequence ({p:n € N) in D
contains a subsequence (¢, : k € IN) such that (6€nm) = Ogpapyy K EIN) is w*-
zero convergent {(we will easily deduce from this property that C(K;) and C(X3)
are Gelfand-Phillips spaces),

Every convergent sequence in K is eventually stationary. Roughly speaking,
this means that on the one hand sequences of Dirac-measures on K does only
converge in the trivial case, but on the other hand there are enough convergent
differences of Dirac- measures to insure the Gelfand-Phillips property for C{R?).

K, is a Stone compact of an algebra on IN which is generated by P;(IN) and
a system (Rat o < we) C Poo(IN) satisfying (F) and (FM) of Definition (5.1.1).

-The construction of K; was pointed out to the author by D. Fremlin [20], who
we whish to thank in this place for the petxmssxon to use it. The space K can be
constructed using similar ideas, Since some of the technical arguments for both
constructions are the same, we will formulate them in the following lemmas. We
begin by introducing the following notations:

5.4.1 Definitiom:
a) Let F be the set of all strictly increasing functions f : IN — N,

{so F is a representation of Peo{IN}),

b) Let £ C F, f € F and N ¢ P(IN).
N is called f-admissible if there is an ip € IN such that

f(2YeN & f(2i~1)eN forallieIN,i2 i,
N is called strictly f-admissible if
FR)EN = f2i-1)eN forallieNN,

and N will be called (strictly) F-admissible if, for each f € F, N is (strictly)
f-admissible. N

) We will say that F C F satisfyes condition (E) if
(E) for all J € Py(F) and m € IN there is a K € P7(IN) with
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T
7

i) me K, and .
i) K is strictly Joadmxssnble

5.4.2 Proposition: Let F C F.

a) The set of all (strictly) F-admissible subsets of IN is a (0-)algebra on IN.

b) Suppose that F satisfies (E), Form € IN and J € P4(F), we define recursively
the following sequence (L(J,m,n):n € No) C Pp(IN):
L(J,m,0) := {m} and, assuming tha¢ L(J m,n) has been-chosen for n € Ny,

we set

L(J, m;n+ 1) :v=
ic N and f € J, with .
L(J m, n)U {f(21 f(21 1) , {f(2l) f(2¥ inl)} ﬂL(Jv::‘z,n) ;(_, ﬂ}

Then (L(J,m,n):n€WNy) is eventually stationary in Py(IN) and the set
K(J,m) := Unen, L(J,m, n)

satisfies the conditions (1) and (ii) of (E), and is conta.med in each strictly
J- admxsszble set which owns m.

Proof of (5.4.2) :

Proof of {a): obvious.

Proof of (b): Let m € N and J C Py(F) and let K € P(IN) satisfy the conditions
(i) and (ii) of (E).

By induction we show, for each n € Ny, that

(1)(n) L(Jy,m,n)C K.

For n = 0 the assertion follows from the definition of L(J,m,0) and from (E)(i).
We suppose that (1)(n) is satisfied for n € INo and that k € L(Jym,n + 1) is
arbitrary. W.lo.g. we may assume that & ¢ L(J,m,n). From the definition
of L(J,m,n + 1) it follows that there are f € J, 8 € {0,1}, and ¢ € IN with
k = f(2i —6) and f(2i + 60~ 1) € L(J,m,n). This implies, by (E)(ii), that k € K,
which finishes the induction step, »

Since (L(J,m,n):n € Ny) is monotone and since K can be chosen to be finite,
we deduce that (L(J,m,n):n € Ny) is eventually stationary and that K(J,m) is
finite and satisfies (E)(i).
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Moreover, we deduce from the defintion of (L(J,m,n) in €INp) that
ﬂ%eLMmm)#ﬂ%fDeMLmn+U=JQOGM[mm+m
) o forn,ieWNand f€J,
which implies that K(J,m) satisfies (E)(ii).
: o
5.4.3 Lemma: Let F C F satisfy (E), R € Poo(IN) be F-admissible, and
N € Poo(IN) have an infinite intersection with R.
Then for each J € Poo(F) there is a sequence (Kn:n €IN) € Py(IN) with
a) KnNKp=0 forn,mé€N, withn#m,
b) KhnCcR and NNK,#0 forneN,and
¢} K, is strictly J-admissible for n € IN.

Proof of (5.4.3) ¢

Let J € j’P;(f' ). Recursively, we choose a strictly increasing sequence
(mn:n € N) C N N R such that the sequence (K(J,mp) :n € IN) (defined as
in (5.4.2)(b)) is pairwise disjoint. :

For n = 1 we set m; := min(N N R) and, assuming that m; < my < ..My
are already chosen, we note that {J;,, K (J,m;) is strictly J -admissible and finite.
Thus, there exists .
ma = min(N N R\ {1,2, ..., max (| K(J,m;))},

. i<n

and since the set IN \ |, K(J,m;) is strictly J-admissible (by (5.4.2)(a)) and
owns m,, it contains K'(J,m,) (by (5.4.2)(b)).

We now want to show that there is an ng such that

(1) K(J,m,)CR for any n € IN with n 2 no.

Assuming that this were not true, we find an M € Poo(IN) such that

K(J,m;)\R# 0 whenever n € M .
Since L(J,m,,,O) = {m,} C R, there e)éists, for each n € M, the number
£n 1= max{E € No| L(J,mn, ) C R}.

By the definition of L(J, mp, € +1), we find for each n € M an fo €J, an i € I,
and a-8, € {0,1} such that for each n e M

Fa(@in = 63) € L(J,mn, 8a) C R and fn(2in — 1 +6,) € L(J,mu, &y + 1)\ R.




Since J is finite, we find an M € ’Poo(M) and an f € J with f, = f for each
n € M. By the assumptions on (myu:n €IN), the elements of (f(2z,. —8y):ineM)
are pairwise distinct and lie in R, while (f(2i, —~ 1+ 6n):n€ M) lies in N\ R.
But this is a contradiction of the assumpt:on that Ris f-admissible; thus, we have
shown (1).

Now taking Ky := K(J,mpyin) for n e IN, we deduce the assertion.

5.4.4 Lemma: Let F C F satisfy (E) and be countable, let (Rpin €IN) be a

sequence of F-admissible sets with R,..m&R,. for eachn € IN, and let N € Po(IN)

satisfy [N N R, = o0 forn € IN. ' :
Then there exists an F-admissible R with the following propei‘ties:

a) RCR, for eachn € IN, and

b) |IRNNj=o00and |N\R]=

Proof of (5.4.4) :
Let F = (fa:n €N).
By induction we choose, for each n € lN a K, € Py(IN) with

(1Xn) Kn CNjcaRis

(2)(n) K.nON #80,

3)n) KaNKp=0form<n,and |

(4)(n) K, is strictly {f1, f2, ..., f,.}-admlssxble

If n = 1, we apply Lemma (5.4.3) to N=:N, R:=Ryend, J:={fi} to find &
sequence (K in €N} ¢ Py(N) satxsfymg (a), (b), and (c) of (5.4.3). Choosing
Ky := k&, we observe that (1)(1), (2)(1), (3)(1), and (4)(1) are satisfied.
Assuming that I(;, K3, ..., Kn—) have already been chosen, we apply Lemma (5.4 3)
to N := N, R := {(Vj<n Bj (note that RﬂN Ry NN € Poo(IN)), and J :

{f1, f2..., fn} to get pairwise disjoint K(") € Pys(IN), m € IN, each of them satis- -
fying (1)(n),(2)(n), and (4){n). Since UK” K;is ﬁgite, we find an m € IN such
that K, := K4 satisfies (3)(n) also. 'Th(:xs, we have finished the induction step.

H

We now choose R :={J, cpy K2n and dedu‘ice from (1)(n) that for each m € IN

R\ R, = U KZn\Rm’C U Kzie'PI(INI):’ ;

neEN L 2<m -



163

which implies (a). From'(2)(n) and (3)(n) we deduce that .

RAN = | | K2a NN € Poo(IN) and
nE€N

N\R=N\{J KN D | Kza-1 NN € Poo(IN).
nEN neEN
Finally, we deduce for n € IN and each 1 € IN with § > 4o 1= 1 + max({i €
IN| fa(2i) € Uy, <q K2;}) from (3) ( n) and (4)(n), that

f2(2) €R == fo(2i) € | Kyj &= fulZi~1) € | Kzj = fal2i- 1) €R,
220 2j2n

which implies that R is (fu:n € IN)-admissible.
' o
5.4.5 Lemma: Let F be a countable subset of F satzsfymg (E) and let
R C Poo(IN) be a countable subset of F-admissible sets, and let N € Poo(IN).
Then there exists an f € F with the following propertxes
a) {f}UF satisfies (E),
b) each R € R is {f} U F-admissible, and
c) f(IN)CN.
Proof of (5.4.5) :
Let F = (fain €N) and R = (Rn:n € IN) and choose a non-principal ulha—ﬁlter
Uon N with Neld. -
By induction we choose, for each k € IN, f(2k ~ 1), f(2k) € IN, and K € Pg(IN)
such that ‘ .
(1)k) fG) € Ky forall 1 i< 2k~1and {1,2,...,k} C K},
(2)(k) Ky is strictly {f1,..., fs}-admissible,
(3)(k) f(2k —1) < f(2k) and, if k > 1, then f(2k - 2) < f(2k — 1), and
(4)(k) f(2k — 1), f(2k) € Ny, where

o= (90 (W13 <8, 5 200 YASLS <, 8 210)\ )

(note that Ny is a finite iﬁtersection of elements of Y, and ﬁxus, Ny el)
For k =1, we take K) := K({f1},1) (defined as in (5.4.2)) and

£(1) = min(N;) and £(2) 1= min(V; \ {£(1)})
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and note that (1)(1)-(4)(1) are satisfied.
If, forak€ N, k> 1,and each i < k, f(2i), f(2i—1), and K; are already chosen,

we set

K= U K({fiyou fi}hym).

m< f(2k-2)

Thus, K is finite, by (5.4.2)(b), and satisfies (1)(k) and (2)(k) (note that
f(2k —2) > 2k —2 > k and that f(2k — 2) > f(i) whenever i < 2k — 2). Taking

£(2k = 1) := min(Ni) and f(2k) := min(NV \ { f2k-1)}),

(4)(k) and the first part of (3)(k) follow. The second pert of (3)(k) follows from the
fact that Ny € K§ C {1,2,..., f(2k - 2)}€. Thus, we have finished the induction

step.

For this choice of f, we now-have to verify (a), (b), and (c):

Proof of (a): In order to verify (E), let J € Py(F)U {f} and m € IN be arbitrary.
We set k := max({m} U {n| f. € J}) and show that K} satisfies (E)(i) and (ii).
Since k > m (E)(i) follows from (1)(k). For each f € J\{f}, it follows from (2)(k)
that K is strictly f-admissible, while for f = f we deduce for each { € IN that

f@)eKy= i<k 2 2{-1<2k-1
[By (4)(#), i = k would imply that f(2) € Ni C K§]
= f(2i - 1) e K;
[(1)(k)) A
= i<k =2 < 2k—1= f(2i) € Ky

[as above],

which implies that K} is strictly f-admissible.
Proof of (b). By the assumption, it is enough to show that each R = R; € R is
f-admissible. This follows from (4)({) since, for i 2 j,

f(2) € Rj = Rl < f2i-1)€R;.

Proof of (c): (4)(k) (k € IN).
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5.4.6 Lemma: Let F be a countable subset of F satisfying (E) and let.
(Ra:n €IN) C Poo(IN) be a pairwise disjoint sequence of F-admissible sets.
Then there exists R € Poo(IN) such that
a) R is F-admissible, and i
b) Rc UneN Rg,. , and Rz.._,CR <o forn e IN.

Proof of (5.4. 6)
Let F = (fa:n €IN). Foreach k € IN, we set

@ Le= U {fm(zz),fm(zz—l)tzemwd {fm(2), fm (2 = D} NRef =1}

m i<k

Since Ry is F-admissible, each L; is finite, and thus, by the assumption that F
satisfies (E),
= U K({flv""fk},e)

el
is finite also (by (5.4.2)) for each k € lN
Moreover, R\ Ky is strictly {f1,..., f;,} admissible. Indeed, for eachi € N, j < k,
and 8 € {0,1} we have

£;(2i — 0) € R\ Ki = fj(% — 1+ 6) € Ry and £;(2 ~6) ¢ K
[Otherwise, |{f;(2), fi(2i = 1)} N Re} =1,
and thus, by (1), f;(2i - 6) € Ly C Ki]
= fj(2 —1+6) € R \ Ky
[Ki is str;ctly f; — admissible].

We deduce that the set

R:= U Raii \ Kok—1 = U Ryp-1\ Kok U U Ror-1\Ku-1 (jEN)
kEN 2k—1<;5 o 2k-12j

is f, -admissible for each j € IN (by (; .4.2)(a)); hence, R is F-admissible. Since
each K is finite and since (Ryin € lN) is pau*wxse disjoint, we deduce that R

satisfies condition (b). -
) <
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5.4.7 Theorem: (Example5) |
We assume the continuum hypothesis (wy = w,).
Then there exists an algebra A on IN which contains P;(]N) such that the

Stone compact K of A has the followmg properties:

a) Every convergent sequence in K is eventually stationary.

b) Every strictly increasing sequeuce (kn:n € N) C IN contains a subsequence‘
(kn{m): mEIN) for which (6;;”(,,") 6;,"(“_.,) melN) is a(M(K), C(K))-zero
convergent.

¢) C(K) has the Gelfand-Pb:lhps property

"2

Proof of (5.4.7) :
We first well-order Poo(IN) by (Na : @ < w;) and the set of all sequences
{Antn €IN) C P(IN) \ {0} having pairwise disjoint elements by :

((A(a,n):;ze N):a<wy).

By transfinite induction we choose, for each o < wy, fo € f and R, € P(IN)
such that
(@)  fa(IN) C Na,
(2Xa)  (fp:8 < a) satisfies (E),
(8)(a) i) for each B < a the set Ry is fo-admissible, and
ii) Rq is (fs: 8 < a)-admissible,
(4)(@) i) if |A(a,n)] = 1 for each n € IN, then

{{n € N| A(a,n) C Ra}l = oo and |{n € N|A(e,n)\ Ra # 8}] = oo,

ii) if |A(a,n)| = oo and if A(a,n)is (fs : B < a)-admissible for each n € IN,
then

R, C U A(a;2n ~ 1) an?d, for each n € IN, A(a,2n — I)ERQ.
neN

We assume that for a < wy, F := (f5 : f < @) and R:=(Rp:p: B < a)have
been chosen. k _ v
Applying Lemma (5.4.5) to F, R, and N Na, we get an fo € F for which (1)(a),
(2)(e), and (3)(a)(i) are satisfied (note that F satisfies (E) because (fg: 8< &)
satisfies (E) for each & < a). !
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:{A(e,n) :1n € IN} satisfies neither of the two cases in (4)(c), we set Ro := IN
ai note that in this case (3)(a)(ii) is satisfied and that (4)(a) is.empty.

I IA(a n)} = 1 for each n € IN, we apply Lemma (5.4.4), to FU{fa), Ra:=N
,for n €N, and N :=J,¢n A(a,n) to get an F U {f}-admissible set R, (which
im hes (3)(0:)(11)) satlsfymg (b) of (5.4. 4), which implies (4)(a).

I A(a,n) is of infinite cardinality and is F U {f,}-admissible, for each n € IN, we
' apply Lemma(5.4.6) to U {fa} and R, := A(a,n) (n € IN) to get an FU {fa}-
admissible set R, € Poo{IN) (thus, (3){a)(ii) is satisfied) which satisfies (b) of
(5.4.6) and hence implies (4)(a).

Thus, we have finished the induction step.

Now taking
={ReP(N)|Ris (fa : & < w) — admissible} ,

(thus Ps(IN) C A), we have to verify that the Stone compact K of A satisfies (a),
(b), and (c) of the assertion.

We first note that (R, : & < wy) C A (for a, B € [0,w,, it follows from (3}(a)(i)
that Rp is fa-admissible if 8 < a while, if 8 2 a, then we deduce from (3)(8)(ii)
that Rg is fy-admissible).

Proof of (a): We have to show that a given family ({,.. n €N) C K of pairwise
distinct elements does not converge. W.lo.g. we can assume that one of the
following cases happens:

Case 1: ({u:n €IN) CIN.

Then there is an a < w, with A{a,n) = {£a} for n € N. From (4){a)(ii) we
deduce that '

{n€N|{n € Ra} N Ry and {n€N|{n € Ra}\ Ra

are both of infinite cardinality, which implies that (£,:n € IN) does not converge.
Case 2: ({une€N)C K\ N.

By passing to a subsequence, we may assume that there are pairwise disjoint
Aq € A (n € N) with &, € 4,,. Thus, there is an & < w; with A(a,n) = 4,, fo
n € IN and, by (4)(a} (note that |4,] = oo because £, € K \ N}, we deduce that

R, C U Aazn-1, and for each, n € IN Az,.-:&Ra < oo,
neN
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Thus; £2n—; € Ra and &2, € Rq for each n € IN, which implies that {£,:n € IN)-
does not converge,

Proof of (b): Let (kn:n € IN) be strictly increasing in IN. Then there is an a < w)

with Ny = {ky |n € N} and from (1)(a) we deduce that fo{IN) C No. From the
definition of A and the definition of admissibility we deduce, for each A € A, that

Bm (8g. 2i) = fa(2i-1) x7) = 0,

which implies the assertion.

Proof of (¢): By Theorem (3.1.3), it is enough to prove that a given normed
sequence {gn: n € N} ¢ C(K) with elements having pairwise disjoint supports
is not limited in C(K). Since IN is dense in K, we find for such a sequence an
increasing (kn:n € N) C IN such that |ga(k(r))| 2 1, and thus, ga(k(m)) = 0 for
n,m € IN with n # m. By (b), there is a subsequence (k(n(m)) : m € IN) for
which (8k(n(am)) — k(n(am-1)) : m € IN) is weak*-zero convergent. Since

1 -
(In(2m)s Sk(n(2m)) = Ok(n(zm=1))) = 5 foreachmeN,

we deduce the assertion.

5.4.8 Theorem: (Example 6)

We assume the continuum hypothesis.

Then there exists a family R = (Rq: & < wy) C Poo(IN) satisfying (F) and
(FM) of Definition. (5.1.1) such that C(K) is a Gelfand-Phillips space, were K is
the Stone compact of the algebra generated by Pg(IN) and R.

Proof of (5.4.8) :
Let (Nq : @ <wy) be a well-ordering of Poo(IN).
By transfinite induction we choose, for each a < wy, Ry € Po(IN) and f, € F
such that ; v _
(1) a)  either Ra&Rp or Ry N Rg=p for each f < ,
(2)(a) [Na N Ro| = 0o and |Na\Ra| "‘_;°°1
(3)a) (fs:f < a) satisfies (E),
(4)(a)  fa(IN) C N, and
(5)(ar) i) Rp is fo-admissible for each § < @,
ii) Rais (f5 ! B < o)-admissible,
Assuming that for & < w; the families  := (f3 : § < @) and R:= (Rs : 8 <a)
are already chosen, we note that (fg : # < a) has prdperty (E) because, for each
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& < a, (fs: B < &) satisfies (E) and (Rg : B < a) satisfies (F) because of (1)(&)
(& < a). o ‘
Applying Lemma (5.4.5) to F, R, and N i= N, we find an fo € F such that
(3)(a), (4)(a) and (5)(a)(i) are satisfied.
By the Zorn’s lemma, we find an I C [0, of satisfying the following properties (6),
(7) and (8): :
(6) |Rs N Naf = oo for each B € I,
) Rﬁ&Rﬂ whenever 8, § € I with < ﬁ, and
(8) I is maximal in the following sense:

For each 8 € [0,a[\], TU {3} does ;not satsify (6) or (7).
(Note that @ satisfies (6) and (7) and that for each linearly ordered (by inclusion)
T ¢ P([0, af) consisting of elements satisfying (6) and (7), the set | J T satisfies (6)
and (7) also.) ‘
If I # 0, we choose a non decreasing sequence (ap:in €IN) C I with

(9) sup ay =sup [
neN

(we recall that a is countable)
and, if I := [0, a[\] is not empty, theré: exists a sequence (fBp: 1 € IN) such that
I={Bn|n €N}

For each n € IN, we define

N fI=F=9

_JN\Ujc Rs.  ifT=Dand [#0
(10) Ani= p - S I#4Dandi=0

Rag \Ujca Bp ifI#0and I #8.

By (7), the sequence (4q:n € IN) is decreasing with respect to 2E2, We want to
shiow that for each n € N ' ’

(11) ' " |Ap N Ng| = 00

Ii £ = 8, (11) follows from (6).
We suppose that I 3 # and that (11) is not true; hence, we find an n € N for

which (if I = @, set Rq, := IN)

Ran N Nal | J Rg; N Na,
' i<n




and thus, by (7),

Ra, N No.C U Rg; NNy whenever m 2 n,
isn |

We deduce from (6) and (7) that thereéis a jo <n such that
[Rap N Rp; | = oo for each m € N end [Rg; N No| =00,
By (1)(a), this implies that for each mE N |
either B, < am and Rc.,,,CaIRpjoi or B, > am and Rg;, &Ram .
From (7) and (9) we conclude for each & er
either  B; < &and Ra&Rﬂjo% or  fj, >d&and Ry CRs.

This implies that T U {8;,} satisfies (6) and (7), which contradicts (8). Thus, we
have proven (11). »
Now we are in a position to apply L_cr;nma (5.4.4) to FU {fa}, Ry := Ap for
n € N and N := N,, to get an FU{f, }-admissible Ry € Poo(IN) (thus, (5)(e)(ii)
is satisfied) which satisfies (a) and (b) of (5.4.4). Thus, we deduce 2(a). In order
to show (1)(a) let § < a.
If B € I, then we deduce that R N Rﬂ=ﬂ from (5.4.4)(a) and (10).
If B € I, then there is an n € IN with 8 < &, and we deduce from (7) and (5.4.4)
that (

RaCRa,ERy,

which implies the assertion and finishes tihe’ induction step.

From (1)(a), (2)(a), and Proposition (512) we deduce that (Rs: & < wy) sat-.
isfies (FM). To show that K is a Gelfand-Phillips space we proceed as in the
proof of Theorem (5.4.7): first we deduce from (4)(a) and (5)(a) that each
(ka:n €IN) contains & sybsequence (ky(m) : m € IN) such that

(6’=n(zm) - 6*;.(:;»-1) :m € NN)

is a w*-zero sequence; and then we obs%arve that this, together with Theorem
(3.1.3), implies the Gelfand-Phillips property for C(K).
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