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Foreword 

It began with an error: I. Gelfand [21, ll §2, Sa.tz 1] and S. Mazur (cited from 

(38, p.22]) independently stated the following assertion: 

A subset A of a. Banach space X is relatively compact if and only if each 

w•-zero sequence of the dual X' converges uniformly on A. 
(We have formulated the assertion using modern terminology). 

It is easy to see that on a. relatively compact set C C X, every wea.k•-zero 

sequence converges uniformly. Indeed, let e; > 0 be arbitrary. Then there are 

finitely many Z!) Z2, ... , Zn E X such that c c u::.l Zj + B.(X). This implies 

that limn_,00 sup.,ec l(z~,z)l ~ e:supn€1'1 II x~ Jl for each wea.k•-zero sequence 

( z~: n E IN) C X', and thus, the assertion, since a weak• -zero sequence in the dual 

of a. Banach space is bounded. 

However, it Wa$ observed by R. S. Phillips (46, p.525, line 6] that the converse 

is not tru,e. He showed (46, p.539, 7.5 and preceding remarks] that on the unit-basis 

of c01 viewed as subset of l 00 , all wea.k•-zero sequences of i:X, converge uniformly. 

Nowadays, this observation can easily be deduced from two results, both proven 

by A. Grothendieck (22, p.139, Theorem 1 and p.168, Theorem 9], which state 

that C(K)-spaces {and ioo is representable as a C(K)) enjoy the Dunford-Pettis 

property, which means that all u(i:X,,i~)-zero sequences converge uniformly on 

0'( eOO I i:X,)-compact SetS, and alSO that 0'( e:x,, ioo)-COnVergenCe of SequenCeS implieS 

u( e:x,, e~)-convergence. 
G. ·Kothe [37, p.l96, Definition) introduced the notion "begrenzt" for subsets 

A of locally convex spaces E having the property that each u( E', E)-zero sequence 

converges uniformly on A. Grothendieck (24] translated this notion into "limited". 

Thus, we will call a. subset A of a Banach space X fimited in X or X-limited i1 
each u(X', X)-zero sequence converges uniformly on A, i.e. if 

lim sup l(x~, x)l = 0 
n-oozeA 

whenever x~ --+ 0 in u(X', X). 
n-oo 

Following J. Diestel (8) we will call a Banach space X a Gel/and-Phillips space or 

say that X has the Gel/and-Phillips property , if all X-limited sets are relatively 

norm-compact. 

Before we begin the discussion of these ideas, we want to give a short survey of 

I. ·Gelfand's arguments because they lead us to the important difference between 

limitedness and various types of compactness, namely norm, weak and condi

tional wea.k compactness. He first observed that limited sets of Banach spaces 
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are bounded. Indeed, if A C X is unbounded, we find a norm-zero sequence 

(x~: n E 1N) C X' such that limsupn-+oo sup.,EA (x~, x) #: 0. He also observed, 

and this was still correct, that each limited set in a separable space is relatively 

compact. He deduced this by using the fact that a separable Banach space can 

be isometrically embedded in a C(K)-space, where K is compact and metrizable, 

and then applying the theorem of Arzela and Ascoli. His final step was to make 

the following conclusion (we translate literally): 

Since any countable set x1 ,x2 ••• can be embedded in a separable space E, 

this part of the theorem (that limitedness implies compactness) is proven. 

This is the crucial point: it is, in general, not true that if Y is a subspace of X, 

then each u(Y', Y)-zero sequence converges uniformly on a subset A C Y if each 

u(X', X)-zero sequence converges uniforinly on A. Here we arrive at the important 

difference between limited sets. and the above mentioned types of compactness. 

Norm, weak and conditional weak compactness are properties of the appropriate 

topology restricted to A. Limitedness for an A C X depends not only on the set 

itself and its topology, but also on the space in which we consider A. Therefore, 

it is always necessary to specify the space in which we are seeking the limitedness 

('of a given set. 

~r investigations on limited sets in Banach spaces can be divided into the 

following four categories: 

1) Limitedness and compactness. 

2) Limitedness and geometric proper.ties. 

3) Limitedness in C(K)-spaces. 

4) Limitedness in combinations of Banach spaces. 

Limitedness and compactness 

In section (1.1) (Lemma (1.1.5)), we recall a result due to J. Bourgain and 

J. Diestel .fJff, who deduced from Rosenthal's it theorem (see (0.2.2)) that the 

limited sets in any Banach space are weakly conditionally compact. We observe 

(Proposition (1.1. 7)) that Grothendieck spaces X which enjoy the Dunford-Pettis 

property have the property that, conversely, every conditionally weakly compact 

subset of X is X -limited. 

In (1.2), we will formulate sufficient conditions of a Banach space to have 

the Gelfand-Phillips property. The most general condition is the following one 

(Proposition (1.2.2)((c) =>(d))): l 
! r 

l 
i 
! 

.. f 
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If the dual unit ball B1(X') of a Banach space X contains a weak•

sequential pre-compact subset D which norms the elements of X up to a 

constant c > 0 (i.e. ifll~ll:5 csup~'eDI(x',x)l for each x EX), then X 
has the Gelfand-Phillips property. 

This easily proven statement leads us to our first examples of Gelfand-Phillips 

spaces (Examples (1.2.4) and (1.2.5)). We observe, for example, that weakly 

compactly generated Banach spaces, Banach lattices not containing c., and C(K)

spaces, with K containing a dense and sequentially pre-compact subset, are all 

Gelfand-Phillips spaces. In section (5.3), we show that the above condition is not 

necessary for the Gelfand-Phillips property of a Banach space {Theorem {5.3.3)). 

J. Bourgain and J. DiestelJ4].discovered that limited sets are relatively weakly 

compact in any Banach space which does not contain e1. We will generalize this 

result by showing that limited sets are relatively weakly compact in any Banach 

space X whose dual does not contain a copy ofL1({0,1}wl) (Corollary (2.3.3)). 

This result will be discussed in more detail in the next category. 

Limitedness and geometric properties 

Already the definition of limited sets indicates a close relationship between 

limitedness in a Banach space X and sequential convergence in the weak• topology 

of its dual X'. Thus, it is natural that our investigations are rela~ed to those of 

(25, 26, 27, 31, 34, 35) which treat the relationship between weak•-convergence 

of sequences in X' and geometric properties of X and X', like the property of X 

containing e1(f) and of X' containing L1( {0, 1}r). 

On the one hand, R. Haydon (31) found an example of a Banach space which 

shows that the failure of the w•-sequential compactness of B1(X') does not imply 

that X contains R1(f) for an uncountable set r. By modifying this example, J. Ha

gler and E. Odell [25) showed that the failure of the w• -sequential compactness of 

B1(X') does not even imply that X contains £1• By sharpening the construction 

of R. Haydon (31) and applying the factorization method of W. J. Davis, 1'. Figiel, 

W.B. Johnson, and A. Pelczinsky (7), we will give an example of a Banach space 

which does not contain £1 and does not have the Gelfand-Phillips property (The

orem (5.2.4)). 

On the other hand, J. Hagler and W. B. Johnson [26) showed that a Banach 

space X, admitting in its dual a bounded sequence which has no w•-convergent 

absolutely convex block basis (in Definition (2.1.1) we will consider this property 

as a property of X and denote it by (ACBH)), contains a copy of e1. R. Haydon 
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(34) sharpened this result by showing that ( ACBH) implies that X' contains a copy 
' of L1 ( {0, 1 }"'1 ). Ia·{26) and (34), it was observed that non-reflexive Grothendieck 

spaces enjoy the property (ACBH). In~ J. Bourgain 8Jld J, Diestel observed a 

similar condition for B8llach spaces having limited sets which are not relatively 

weakly compact: to prove their result (t~_ rt. X => all limited sets of X are rela

tively weakly compact), they showed first that any space X which contains limited 

sets that are not relatively weakly compact must admit bounded sequences in X' 

which do not have w•-convergent convex blocks (we will denote this property by 

(CBH)). In chapter 2 (Theorem (2.1.3)), we will prove the following generaliza

tion of R. Haydon's result, which leads to a generalization of J. Bourgain's 8Jld 

J. Diestel's result: 

A dual space whicl1 contains a bounded sequence without a weak• con

vergent convex block contains .a copy ofLt( {0,1}"'1 ). 

Limitedness in C(K)-spaces 

Since each Banach space can be isometrically embedded in a C(K)-space 

(where K is compact), the investigation of limited sets in C( K)-spaces is of special 

interest. 

In (3.1) (Theorem (3.3)), we will show how to construct from a given limited 

and not relatively compact set A C C(K) a normed limited sequence 

Un: n E IN) C C(K) which consists of positive elements with pairwise disjoint 

supports. Together with the result in (1.3) (Theorem (1.3.2)), where we will show 

that for a sequence (xn: n E IN) in X which is equivalent to the unit-basis of c., 

limitedness is equivalent to the- condition that no subspace generated by a sub

sequence of ( Xn: n E IN) is complemented in X, we deduce a characterization of 

the Gelfand-Phillips property of C( K)-spaces. Moreover, we will have reduced the 

problem of limitedness in C(K)-spaces to the limitedness of positive sequences in 

C(K) with pairwise disjoint supports. 

In the second part of chapter 3, we provide some auxiliary results. which ~ill 

be needed in the sequel. They deal with the following question: Suppose that 

Un: n E IN) C C(K) is weakly conditionally compact but not limited. Which 

additional properties C8Jl a weak• -zero sequence (pn: n E IN) have, for which 

(+) limsupl(pn,fn)l > 0? 
nEN 

We arrive at the following result (Corollary (3.2.5}): 
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Suppose that A C C(K) is weakly conditionally compact and not limited. 

Consider, moreover, a sequence (F .. :n E IN) of closed and pairwise dis

joint subsets of K with the following property: For any disjoint infinite 

N1, N2 C IN there are infinite N1 C N1 and N2 C N2 such that Unefi
1 

Fn 

and Unefi
2 

Fn are disjoint. 

Then a u(C(K), C(K)')-zero sequence (fin: n E IN) and a subsequence 

(kn: n E IN) of IN can be chosen such that infneN{fln.fkn) > 0 and, 

moreover, such that the support of each fin has an open neighborhood 0,. 

for which (On: n E IN) is pairwise disjoint and On n UmeN,m~n F.~;m = 0 
for each n E IN. 

This result leads us to some sufficient conditions for the limitedness of sequences in 

C(K) with pairwise disjoint supports which depend only on topological properties 

ofK (Theorem (3.3.1)). Since they are rather technical, we present a special case: 

Suppose that Un: n E IN) is a normed sequence of positive elements in 

C(K) witp pairwise disjoint supports, and suppose moreover that it is 

subsequentially complete, i.e. that each subsequence of (f .. : n E IN) 

cpntains a subsequence wlJich admits a supremum in C( K). TlleiJ 

(/n: n E IN) is limited in C(K). 

It is easy to see that C(K) has the Gelfand-Phillips property if K contains 

a dense sequentially pre-compact subset D. The question of L. Drewnowski as 

to whether or not the Gelfand-Phillips property of a C(K) implies, conversely, 

that K contains such a D will be answered negatively by the example in Theorem 

(5.3.4). Under the continuum hypothesis, we will even construct a C(K)-space 

enjoying the Gelfand-Phillips property such that each convergent sequence of K 
is eventually stationary (Theorem (5.4.7)). These two examples indicate that 

ihe relationship between the Gelfand-Phillips property of a C(K)-space and the 

topological properties of K are not obvious. 

Limitedness in combinations of Banach spaces 

It is well known that a bounded and pointwise converging net (T; : i E I) of 

operators between two Banach spaces X and Y converges uniformly on compact 

subsets of X. In Proposition (1.1.2), we note that the same is true for pointwise 

convergent sequences of operators and X-limited sets. It is also well known that, 

given a bounded net (T; : i E I) C L(X, X) which converges pointwise to the 

identity on X, a set A C X is relatively compact if and only if T;(A) is relatively 

compact for each i E I and if, moreover, T; converges uniformly on A. This 
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argument may not, in general, be transferred to limitedness (Example (4.1.4)). 

However, we will show that if, moreover, (T; : i E I) is sequentially complete, 

i.e. if for each increasing (in: n E IN) C I the sequence (T;") converges pointwise, 

then a set A C X is limited in X if and only if Ti converges uniformly on A 

and if, for each i E I, T;(A) is limited in T;(X). This observation leads in some 

cases to satisfying characterizations of limited sets (c.f. section (4.2)). So we can 

characterize the limited sets of Lp(Jl,X), 1 5 p < oo, and M(Jl,X) (see Example 

(4.2.4 )) by the limitedness in X. In spaces admitting a Schauder decomposition, 

we can characterize the limited sets by limitedness in the components. We also 

arrive at the corresponding hereditary results. for the Gelfand-Phillips property. 

We also deal with the problem of characterizing limited sets in tensor prod

ucts, in particular, in injective tensor products. We recall the known result 

that a subset A of X®Y is relatively compact if and only if A(B1(Y')) := 

{z(y')lz E A,y' E B1(Y')} (c X) and A(B1 (X')) (C Y) are relatively com

pact. We will show that this result about compactness can only be transferred to 

limitedness in special cases (Proposition ( 4.4.2) and Examples ( 4.5.5)) and leads, 

in general, only to a necessary condition for limitedness in X®Y. Thus, we are 

interested in additional necessary conditions for limitedness in X®Y. To do this, 

we need the following two results. 

In section (1.1) (Proposition (1.1.10)), we formulate a necessary condition for 

limitedness in X by boundedness with respect to other norms defined on dense 

subspaces: 

Let V be a dense subspace of X and let I · I be a norm on V which is 

finer then II· II· Then each limited set A in X (= (X, II ·II)) is nearly 

bounded with respect to m. w, i.e. for each g > o, there is a •. m-bounded 

A. C V such that A CA.+ B.(X, II·ID· 
Applying this argument to V := X ® Y and letting M · S be the projective 

norm on X ® Y, we deduce that 

a) limited sets in the injective tensor product X®Y are ~early bounded in the 

projective tensor norm. 

Secondly, we demonstrate (Theorem (4.3.2)) the following argument concerning 

sequences in L~(Jt,X) (the space of the jl-essentially bounded and jl-measurable 

functions f : 0 -+ X having Jl-essentially separable images, where (0, E, Jt) is a 

positive measure-space): 

Let Un: n E IN) C L~(Jl,X). Then (at least) one of the following cases 
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will bold: 

Case 1: There is a subsequence Un: nEN), N E 1'00(IN), such that for 
anre > 0 th.ere is a countable 'E-partition 1r of n for which the essential 

oscWation of each /n, n EN, on each BE 1r is not greater than e . 

. , . . . C~e 2: There is an e > 0, a subsequence ( kn: n E IN) of IN, and a tree 

(A(n, i)n E lNo, i E {i, .. , 2n}) C 'E of sets with strictly positive measure 

such. that the essential oscillation of /1.,. on A(n, i) is not greater than 

e/4 but the essential distance between A(n, 2j) and A(n, 2j - 1) under 

/k,. is at least e (compare Definition (4.3.l)(b)). 

This result is related to Rosenthal's i 1 theorem and its proof: If we assume 

that X = 1R and that (/n: n E. IN) is bounded, the first case implies that 

Un: n E IN) contains a weak Cauchy subsequence, while the second case im

plies that Un:n eiN) contains a subsequence equivalent to the unit-basis of eJ. It 

l~ads us to the following necessary condition for limitedness in X®Y: 

b) Let Kx and Ky be two compacts such that X andY can be embedded 

in C(Kx) and C(Ky) respectively, and consider X®Y as a subspace of 

L00('Ex X 'Ey ), where 'Ex and and 'Ey are the Borel sets ofKx and Ky 

respectively. Then an X ®Y -limited set A has the following property: 

For each (/n:n E IN) C A, there is a subsequence (/n: nEN), N E 1'oo(IN), 

such that for each e > 0 there exists a countable 'Ex-partition 1rx and 

a countable 'Ey partition 1ry of Kx and Ky respectively, such that t}Je 

oscillation of each fn, n EN, on each rectangle B x iJ E 1rx x 1ry is not 

greater than e. 

In section ( 4.5. ), we will show that, in the case where X and Y are C(K)- . 

spaces with the Grothendieck property, (a) and (b) are already sufficient for lim

itedness in X®Y. 
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0. Preliminaries 

0.1. Notations 

Let IN := {1, 2, 3, .. } and INo := IN U {0}. 1R represents the real numbers, 

while ]R+ and IRt are the positive and non negative real numbers respectively. 

The cardinality of a set r is denoted by !fl. 'PJ(r) and 'Poo{r) denote the set 

of all finite and infinite subsets of r respectively, whereas 'P{r) denotes the power 

set of r. For A c r, we denote the complement of A in r by r \A or, if there are 

no ambiguities, by AC . XA ; r-+ 1R will denote the characteristic function on A. 

Ord is the class of all ordinals. We make use of the principle of transfinite 

induction [55, p.195, Theorem schema 1], the elements of ordinal arithmetic [55, 

p.205, §7.2), the order topology on ordinals [47, p.53, Beispiel 5.3), and the fact 

that, by the axiom of choice, every set can be well-ordered [55, p.242, Theorem 6) 

and that, conversely, every well-ordered set· is order isomorphic to a unique or

dinal [55, p.234, Theorem 81). The first infinite ordinal is denoted by wo, the 

first uncountable ordinal by w1 , and the first ordinal with the cardinality of the 

continuum by We. 

In a topological space {T, 'T), AT is the open kernel and AT is the closed hull 

of an A C T; if the context is clear, they are also denoted by A and A respectively. 

Compact spaces are always assumed to be Hausdorff. A set A C T is relatively 

compact, respectively rdatively 3equentially compact, if A is compact, respectively 

sequentiaily compact; A is called 'T -3equentially pre-compact if every sequence in A 

has a 'T-convergent subsequence. Moreover, if (T, 'T) is a uniform space, A is called 

conditionally 'T -compact if every sequence in A contains a Cauchy subsequence (in 

fact, it would be more precise to say "conditionally sequentially 'T- compact", but 

we reserve this terminology for the weak topology where "conditionally compact" 

is more common). 

In a normed space (X, II . II), X' denotes the continuous dual of X. The 

dual norm on X', as well as the operator-norm of linear and bounded operators 

T : X -+ X, is denoted by II, II· The closed ball in X with radius r > 0 and center 

0, i.e. the set {x EX I II X II::; r}, is denoted by Br(X, 11-ID or Br(X). 
For a subspace V of X', a( X, V) is the coarsest topology on X such that the 

elements of V are continuous. We also call a( X, X') the weak topology on X and 

a(X', X) the weak• topology on X' and abbreviate them by w and w•. All topo

logical notations on normed spaces, when no topology is specifically mentioned, 
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refer to the norm topology. 

From now on X andY always denote Banach spaces with the norm II. II· All 

Banach spaces are taken to be linear spaces over the real field m.. For an ffi.-linear 

space V and A C V, co(A) and aco(A) are the convex hull and the absolutely 

convex hull of A respectively. The linear space generated by A is denoted by 

span( A). We say that a Banach space X is generated by A C X if span( A)= :X. 
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Special spaces 

The Banach spaces Co, Co(r), £,, £1(r), L,(/l) and C(K), where r is any set, 

1 ~ p :5 oo, ( 0, E, ll) is a measure space, and K is a compact space, are defined 

as~,u,~ual ( e.g.[9)) .. 
, . We denote the usual unconditional unit-basis (compare [54, p.577, Definition 

17.4])of£1(r) and co(r) by (e\1>:1'er) and (e~>:l'er) respectively. They have the 

· :following properties: 

0.2.1 Proposition: Let r be a set. 
a). ~bounded family (x..,:l'er) C X is equivalent to (e\1>:')'Er), i.e. there exists 

·~ isomorphicembeddingT: £1(r)-> X whichmapse\1) tox..,, iff there exists 

. a c > 0, such that for ~very FE 'PJ(r) and every family (a..,: 1' E F) c ffi: 

II L a..,x.., 112: c L Ia-, I . 
-,EF -,EF 

b) A bounded family (x..,:')'Er) C X is equivalent to (e\0>:1'er) iff there exist 

.. C > c > 0, such that for every FE 'P,(r) and every family (a..,.: 1' E F) C ffi: 

cmaxla-,1 :511 L a-,x-,11 :5 Cmaxla-,1 . 
-,EF -,EF -,EF 

·'The following result, due to H. P. Rosenthal, is frequently used and is espe

cially important for our purpose. 

0.2.2 Theorem: {9, p.201, Rosenthal's £1 Theorem) 
If a bounded sequence (xn: n E IN) C X has no a(X,X')-Cauchy-subsequence, 

then it has a subsequence which is equivalent to ( e!,1l: n E IN). 

· For a compact space K, M(K) denotes the Banach space of all regular Bot·el 

measures with the variation norm. By the representation theorem of Riesz [15, 

p.265, Theorem 3), the map T: M(K)-> C(K)', defined by T(ll)(f) := J fdJJ. for 

ll E M(K) and f E C(K), is an isometric isomorphism; in this way, M(K) may be 

identified with the dual of C(K). For~ E K, 6~ is the Dirac measure in~· Further 

notations for the space M(K) (= M(K,ffi)) can be found in (0.3)(c). 
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0.3 Combinations of Banach spaces 

a) C(l<,X) 

For a compact space K, let C(l<, X) be the space of all continuous functions 

f: K-+ X with the norm II/II:"" supeeK 11/(e)ll. This space is generated by the 

set G := {gx I x E X, g E C(K)} and is isometrically isomorphic to the injective 

tensor product {comp. {0.3){d)) ofC{K) and X (53, p.357, Theorem 20.5.6). Thus, 

the notation g ® x has meaning for elements of G and it avoids ambiguities if X is 

also a space of continuous functions. If X""' C(K), where K is a compact space,_ 

we recall (53, p.357, Theorem 20.5.6.) that the spaces C(K,C(K)), C(K,C(K)) 

and C( K X K) are isometrically isomorphic. 

For jeC(K,X); the support off is defined by supp(f):""' {e E K I J(e) 1: 0}, 

the norm-function off by II f(.) II: K 3 e .... II !W II, and for x' E X' we define 

(x' ,f) : K 3 e ,_. (x' ,J( e)). 

b) The spaces Lp(J',X) and L~(J',X) 

For a positive measure space (Q, !:,J') and 1 $ p < oo, let Lp(J', X) be the 

Banach space of all Bochner integrable functions on (n, E, I') with values in X (see 

[11, p.17 and p.222)) and let Loo(J', X) be the space of all I'-measurable, essentially 

bounded functions with values in X (see (11, p.161)). 

The subspace of Loo(J', X) consisting of all members with essentially seperable 

range, i.e. the Banach space generated by 

V ·- {X' I (xn:n ElN) C X is bounded and } 
.- L XnXBn (Bn:n ElN) C !:pairwise disjoint 

nEN 

will be denoted by L~(J',X). We remark that L00(J',X) = L~(J',X) whenever 

J.l is u-finite. If I' is the counting-measure on (Q, !:) (p(A) = lA I if IAI < oo and 

p(A) := oo if not), we put L~(!:,X) :;:: L~{J',X). Finally, we remark that for a 

compact space J(, C(J(,X) is a subspace ofL~(E,X) provided E is the u- algebra 

of the Borel sets of K. 

c) M(K,X) 

Vector measures are always assumed to be u-additive arid to be defined on 

u-algebras [10, p.2, Definition 1). If I' is an X-valued measure on au-algebra!: on 

a set n, 11'1 : E -+ IR is the variation of ll (10, p.2, Definition 4); ll is said to have 
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e"VItl.ril~ticm if IPI(O) < oo. In this case, IPI is a finite positive measure [10, p.3, 

, 9}. For an X -valued measure p on (0, E) and an I E L1 (lpl) define 

f.p: E-+ X' A 1-+ L ldp. 

=II I II< oo, I·P is an X valued vector measure of finite variation. 

K be a compact space and let p be an X-valued measure of bounded 

the Borel u-algebra E of K. The support of pis defined by 

"~'" .. ""~,-:= supp(lpl) := n{CIC c K compact and IPI(C) = IPI(K)}. 

to be regular if IPI is regular, i.e. if for every c > 0 and A E E there 

. compact C C A and an open 0 ::>A such that IPI(O \C)< c . 

. :We denote the space of all X -valued regular Borel measures on K by M( K, X), 

.. space under the variation norm. If X = Y', then the operator 

. X)-+ C(K,Y)', with T(p)(/) := f/d,p for p E M(K,X) and f E 

J,defines an isometric isomorphism; thus C(K, Y)' can be identified with 

·1 f') [19, p.735}. 

The algebraic tensor product of two Banach spaces X and Y is denoted by 

(see [53, p.344, Definition 20.1.4. and Proposition 20.1.5}). For two bounded 

operators T : XI -+ yl and s : x2 -+ Y2, between Banach spaces 

yi> Y2, T ®sis the linear mapping T ® s: XI® x2 -+ yl ® Y2,with 

n n 

(T ® S)(z) := E T(x;) ® S(x;) whenever z = L Xj ® Xj E XI® x2 
j;l j;l 

· (note that, by defintion of the algebraic tensor product, the bilinear map 

is uniquely extendable to a linear T®S: X1 ®X2 -+ Y1 ®Y2). 

In particular we defined by this x' ® y' : X ® Y -+ lR for x' E X' and y' E Y' 

(note that lR ® lR = JR). 

' For a norm a on X ® Y, the completition of X® Y with respect to a is 

denoted by X ® Y. Let us consider the following properties of a norm a on X® Y: 

(TJ) (crossnorm) a(x ® y) =llx lillY II if x EX andy E Y, 
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(T2) (reasonable norm) 

x' @y1 E (X®Y)' and a(x' ®y') =llx'llllv'll whenever x'EX',y'EY', 

(T3) for every S E L(X, X) and T E L(Y, Y), S@ Tis bounded with respect to a 

and a( S@ T) ~II S 1111 T II· In this case, S ® T denotes the (unique) extension . 
a a 

of S@ T to an element of L(X@ Y,X@ Y). 
A class of norms on tensor products satisfying (Tt), (T2) and (T3) are the so 

called @-norms [23, p.8', Definition 2] or tensor norms [30, p.l5, Definition 1.4 

and p.18, Definition 1.9]. They contain the projective tensor norm which will be 

denoted by 11.11, and the injective tensor norm, which will be denoted by 11·11 [23, 
A V 

p.lO, Theoreme 3]. 

e) Spaces of Operators 

As usual, L(X, Y) denotes the Banach space of all linear bounded operators 

on X with values in Y, with the operator-norm. A T E L(X, Y) is called com

pact, respectively. weakly compact, respectively Ro~enthal, respectively· limited, if 

T(Bt(X)) is relatively compact, respectively relatively weakly compact, respec

tively conditionally weakly compact, respectively Y -limited. 

Kw•(X', Y) denotes the subspace of L(X', Y) of all compact and u(X', X)
u(Y, Y')-continuous operators. 

ThemappingT: X®Y-+ Kw•(X',Y), Ex;@y; t-t (X' 3 x' t-t E(x',x;)y;) 

is well defined and is an isometry with respect to the injective tensor norm as one 

can see by the following equations: 

n n 

lli'Cl:.:x;@y;)ll= sup lll:.:(x;,x')y;ll 
i=l z'EBt(X') i=l 

n 

sup 112:(x;,x')(y;,y1
) II 

z1EBt(X1),y'EBt(Y') i=l 

n 

=lll:.:x;@y;il 
i=l v 

n 

if L x; @ y; E X@ Y. 
i=l 

Thus, Tis extendable to an isometric embedding T: X®Y-> Kw•(X',Y). We 

remark that T is surjective if X or Y has the approximation property, since in this 

case every element of Kw•(X', Y) can be approximated by finite rank operators. 
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hendieck property and the Dunford-Pettis property 

llfiiiti<ln: Xis said to have the Grothendieck property if every u(X' ,X)

c~nverges in u(X',X") (to zero). 

""''ivs•l"''t. (10, p.l79, Theorem] to the property that every linear and 

ori.erator T : X -+ Co is weakly compact. 

The following Banach spaces have the Grothendieck property: 

where K is an extremely disconnected compact space ({10, 

lJelinit;ion 7] and (10, p.156, Corollary 12 and p.l79 Theorem)). For 

, ioo(r) and Loo(Jl), where r is a set and (0, ~,J.I) is a measure 

Definition: X enjoys the Dunford-Pettis property if, given weakly 

:sequt~nc4es (x,.: n E IN) and (x~: n E IN) in X and X', respectively, then 

, Examples: The following Banach spaces enjoy the Dunford-Pettis prop· 

>'for a set r (9, p.113, Exercise 1 (ii )), 

. . .. · . [9, p. 113, Exercise 1 (ii)], 
(]l)~sp~ces (9, p.ll3, Exercise 1 (iii)]. 
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0.5 Stone compacts 

Some examples of Banach spaces which will be constructed are C(K)-spaces, 

where K is a Stone compact corresponding to an algebra on IN. Therefore, we 

want to recall the necessary definitions and results. 

0.5.1 Definition: Let A be an algebra on a set r. 

a) Homb(A,2) denotes the set of all Boolean homomorphisms (see (28, p.35, §9)) 

on A with values in {0, 1}, i.e. the set of all mappings h: A-+ {0, 1} with 

the following properties 

i) h(r) = 1 and h(0) = o, 
ii) h(A U B)= max{h(A), h(B)} and h(A n B)= min{h(A), h(B)} 

if A,B E A, 
iii) h(A) = 1 {=} h(AC) = 0 if A EA. 

b) We shall call the set Homb(A, 2), endowed with the topology generated by 

the system 

A:= {{hE Homb(A,2)Ih(A) = 1} lA E A}, 
:>; , ·''····<\·; I· .. :. ' ' 

SJone 3pace corresponding to A, and denote it by X(A). 
,· .· .. ·.', .. ·:. . . 

_<;:),<_,,t',(J>r,_\I·(;~IJIP',a.c~. space K, A(K) denotes the algebra of all clopen (closed and 

K is called Boolean (compare (28, p. 72, § 17)) or zero· 

t.!'f->1-!IP'IoJ:·.,. ·. p.li8, Defl~Hion 8.2.1.)) if A(K) is a base for the 

p:i:i!ii~i!~n:'<(Representation Theorem of Stone) 

ii'1"a:liP.l>r8:··on..tlieset r. Then the space X(A) defined in (O.o.l)(b) is 

i iA-+ A(X(A)), A H {hE Homb(A,2) I h(A) = 1} 

is well defined and an isomorphism in the Boolean sense. 

Proof of (0.5.2):-

By (28, p. 77, §18, Lemma 2], Homb(A, 2) is a closed subset of the Cantor space 

{0, 1}.4 ( {0, 1}.4 is furnished with the product of the discrete topology on {0, 1} ). 
By the theorem ~f Tychanoff, {0, 1}.4 is a compact space. Since its topology is 

generated by the system { {/ E {0, 1}.4 I f(A) = 1} I A E A} and since the topology 

defined in (0.5.1)(b) is just the restriction of this system to Homb(A, 2), X(K) must 

be compact. 
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For an A E A we get 

(1) i(Ac) ={hE Homb(A,2)Ih(Ac) = 1} 

={hE Homb(A,2)Ih(A) = 0} 

={hE Homb(A,2)Ih(A) = l}c = (i(A))c. 

Thus, the set i(A), which is open in X(A) by definition, is also closed. We deduce 

that i(A) E A(X(A)) and thus i is well defined. 

Similary one shows that 

(2) i(A U B) = i(A) U i(B), 

i(A n .8) = i(A) n i(B), whenever A, B E A 

and i(0) = 0 and i(r) = Hom6(A, 2). 

Thus, i is a homorphism on A to A(K(A)). 

The map i is injective: Let A f. B be elements of A; we may assume A \ B f. 0. 

By (28, p.77, §18, Lemma 1), there exists an hE Homb(A,2) such that h(A) = 1 

and h(B) = 0, which implies that hE i(A) and h (/. i(B), and thus, i(A) f. i(B). 

To show the surjectivity of i, we remark that i(A) separates the points of 

Homb(A,2) (if h f. hare in Homb(A,2), there exists an A E A with h(A) = 1 and 

h(A) = 0) and that, by (28, p.74, §17 Lemma1), an algebra of clopen subsets of a 

compact K which separates points must be the entire collection of all clopen sets 

of K. 

0 

Since X(A) is a compact space by Proposition (0.5.2), we shall call it the 

Stone compact corre3ponding to A, provided A is an algebra, and denote it by 

K(A). 
0.5.3 Proposition: Let A be an algebra on a set r and let V c A be A-

generating, closed under taking finitely many intersections, and containing r as 

element. 

Then C(K(A)) is generated by {x;(D) IDE V}, where i :A-> A(K(A)) is defined 

as in Proposition (0.5.2). 

Proof of (0.5.3) : 

Since i(D) is clopen inK:= K(A), Xi(D) lies in C(K) for every DE D. 
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Since span(Xi(D) : D E V) is closed under taking produkts (V is stable under 

taking intersections) and contains 1 = Xi(r), it is sufficient to show, by the theorem 

of Stone and. Weierstra.fi that i(V) separates the points of K. To see this, let 

6,6 E K and suppose ~1 E i(D) {::=} 6 E i(D) for every DE V; we have to 

show that e1 = 6· The system 

.A := { C C K I C is clopen and 6 E C {::=} 6 E C} 

is an algebra and contains i(V). By Proposition (0.5.2) and the assumption, i(V) 

generates A(K(A)), and thus, A is all of A(K(A)). Since the topology of K(A) is 

generated by A(K(A)) {Proposition (0.5.2)), it follows that 6 = 6, which finishes 

the proof. 

In the following propositions, we consider the case where A is an _algebra on 

1N which contains Pj(lN). 

0.5.4 Proposition: Let A be an algebra on 1N containing P1(1N). 

a) For annE 1N and an A E A let 

h,.(A) := { ~ ifn E A 
if not. 

Then h,. E Homb(A,2) and the set {hn} is open and closed in K(A). 

b) The mapping j : 1N-+ K(A), n >-+ hn, is injective and has a dense and open 

image in K(A). 

In the sequel we identify j(lN) with lN. Considering tl1is identification we get: 

c) AK(.A) = {! E Homb(A, 2)1 f(A) = 1 }, for A E A; 

in particular, we deduce from Proposition (0.5.2) that 

{ C C K(A) I C is clopen } = {AK(.A) I A E A} 

d) The mappings 

Et :Co-+ C(K(A)), X= (xn) H L XnX{n}, and 
nEt! 

E2: C(K(A))-+ foo, f >-+ {f(n): n E 1N), 

are isometric embeddings and Et o E2 is the inclusion of Co in f 00 • 

Thus, we identify in the sequel the subspace Et(co) ofC(K(A)) witl1 C0 • · 
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Proof of (0.5.4) : · 
Proof of (a): For n E IN, hn is a Boolean homomorphism on A and, since {n} E A 

and 

i({n}) ={hE Homb(A,2)1h({n}) = 1} = {hn}, 

the set {hn} is clopen in K(A). 
Proof of (b): Since for n f mit follows that hn({n}) = 1 f 0 = hm({n}), j is 

injective and has, by (a), an open image. 

For an arbitrary hE Homb(A,2), U,. := {i(A)IA E A,h(A) = 1} is a base for the 

neighborhoods of h (Proposition (0.5.2)). Since for every A E A with h(A) = 1 

(which implies that A f 0) and for every n E A it follows that h,. E i(A), we 

deduce that {hn In E IN} is dense in K(A). 

Proof of (c): Since IN is dense in K(A) and i(A) is open for A E A, IN ni(A) =A 
must be dense in i(A). Since i(A) is also closed, the assertion follows. 

Proof of (d): obvious. 

0 

Finally, we want to mention some remarks on the space K(A) \IN for an 

algebra A on IN containing Pj{IN). 

0.5.5 Proposition: Let A be an algebra on IN containing P1(1N). We set 

K(A) := K(A) \IN (note that . . by Proposition (0.5.4)(b), K(A) is compact in 

K(A)). Then 

a) For A, B E P(IN) with lA \ Bl < oo ( ·<=> : AcB ); it follows tl1at 

Ank(A) c Bn K(A). 
b) The mapping T : C(K(A))/co -+ C(K(A)), f +Co ,.... /IJ((A) is welldenned 

and an isometric isomorphism. 

Proof of (0.5.5) : 

Proof of (a): Let A, B E P(IN) and ni> n2, ... I Ilk E IN such that 

A\ B = {nb ... ,nk}. Then 

An K(A) =(An B) u (A\ B)\ IN 

=(An BU {nb··· ,nk}) \IN 

=AnB\IN 

c Bn K(A). 

Proof of (b): If j,g E C.(K(A)) with f- g E Co (=: E1(co)), it follows from the 

definition of E1 in Proposition (0.5.4) that flk(A) = 9lk(A) . Thus, T is well 
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defined and for an arbitrary f E C(K(A)) we have 

liT(!+ c.) II= sup l/(01 
(EK(.A) 

= in£ sup l(f-: g)(OI 
gEco (EK(.A) 

(g(O = 0 for g E Co and e E K(A)) 

=II/+ c. II 

Since every j E C(K(A)) is extendable to an f E C(K(A)) (K(A) is normal and 

K(A) C K(A) is closed), the assertion follows. 

<> 

0.5.6 Examples: 

a) Let A:= {A C IN IIAI < oo or liN\ AI < oo}. Then K(A) is homeomor

phic to the Alexandro£-compactification of iN and C(K(A)) is isometrically 

isomorphic to the space c of all convergent sequences. 

b) If A := P(IN), then K(A) is homeomorphic to the Stone-Cech compactifi

cation and the embedding E2 of Proposition (0.5.4)(d) is surjective. Thus, 

we will identif~ the spaces eoo· and C(,aN), where ,aN denotes the Stone-Cech 

compactification of IN (where IN is endowed with the discrete topoloy). 

c) There ~xists ann c 'P00(IN) with the following properties: 

. i) 1n1 = lwei, 
ii) If A :/; B are in n, then lA n Bl < oo, 

iii) n is maximal in the following sense: there is no A E 'Poo(IN) \ n for 

which nu {A} satisfies condition (ii). 

If A is the algebra generated by n and P1(IN), then K(A) has the following 

properties: 

iv) K(A) is sequentially compact, 

v) Et(c.), with Et defined as in Proposition (0.5.4), is not complemented 

in C(K(A)). 
Proof of {0.5.6) : 

Proof of (b): For A = P(IN), the operator E2 has a dense image, thus E2 is an 

isometric isomorphism. By (47, p.l42, A 12.9) the Stone-Cech compactification of 

IN can be represented by the set of all ultrafilters on IN endowed with the topology 

generated by the system 

{ {U IU C 'P(IN) is ultra filter with N E U} IN E 'P(IN) \ {0}}. 

'· 
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Since every hE HomB('Poo(lN), 2) defines the ultrafilter 

Uh := {NE'P(JN)Ih(N) = 1}, 

and since, conversely, each ultra filter U defines an hE HomB('Poo(lN), 2) by 

{ 
1 if N EU 

h(N) := 0 if N f/ U 

the assertion follows. 

Proof of (c): The set 

for N E 'P(JN), 

I:= {R C 'Poo(lN) In satisfies (i) and (ii)} 

is not empty. Indeed, if (qn: n E lN) are the rational numbers of [0,1] we choose 

for every r E [0, 1], a sequence (qn(r,k) : k E lN) which converges to r. Then 

Ro := {{n(k, r): k E lN} IrE (0, 1)} satisfies (i) and (ii). 

Moreover, since every subset i of I which is linearly ordered by inclusion has as 

upper bound Ui, the existence of a maximal n follows from Zorn's lemma. 

To show (iv), we remark that V := nu 'PJ(lN) u {lN} is closed under taking finite 

intersections and it generates A. Thus, by Proposition (0.5.3), it is enough to 

show that for a given sequence (en: n E lN) C K(A) there exists a subsequence 

Cen(k) : k E lN) such that (c5(n(k/D): k E lN) converges for every DE V. 

We can assume that the elements of (en: n E lN) are pairwise distinct and that 

they are either all in lN or all in K(A) \lN. In the first case, we deduce from the 

maximality of n that there exists an R E n such that R n {en : n E lN} is infinite 

and from (ii) we deduce that the subsequence ( enk) consisting of the elements 

which are in R satisfies the desired property. For the second case, set 

ft := {R E n I there exists an n E lN with en E R}. 

From Proposition (0.5.5)(a) and from condition (ii) we conclude that the intersec

tion of two distinct elements of n with K(A) is disjoint. Thus, ft is countable 

and we can find a subsequence (n(k): k E lN) of lN such that O(n(k)(R) converges 

for every R Eft. Since limk-oo O(n(k/D) = 0, for every DE (R \ ft) U 'PJ(lN), we 
have completed the proof of (iv). 

To show (v), we suppose that there exists a linear and bounded mapping 

P : C(K(A)) -+Co, f H ( {JJn, f) : n E lN), 
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(thus (lln:n E 1N) is a cr(M(K(A)), C(K(A)))-zero sequence), 

such that P(X{n}) = (J.Im( {n}): mE 1N) = e~o) if n E 1N. 

Since the set {R \ R IRE R} is uncountable and has, by (0.5.5) and (i), pairwise 

disjoint elements, there exists an R En such that IJ.Ini(R\R) = 0 for every n E 1N. 

It follows that 

J.ln(R) = /ln(R) = L lln({m}) = 1, if n E R, 
mER 

which contradicts the w•-zero convergence of (Jln)· 

<> 
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1. Introduction to the notion of limited sets 

The aim of this chapter is to formulate some easy arguments about limited 

sets and the Gelfand-Phillips property. 

1.1 Elementary properties of limited sets, first examples 

Proposition (1.1.1) gives two equivalent conditions for a set A to be limited 

in X. The first is a trivial reformulation of the definition, while the second is an 

easy consequence of the Theorem of Arzela-Ascoli (15, p.266, Theorem 7). 

1.1.1 Proposition: For A C X the following conditions are equivalent: 

a) A is limited in X. 

b) For every sequence (xn: n E IN) C A and for every a(X',X)-zero sequence, 

limn-oo(x~,xn) = 0. 
c) T(A) is relatively compact for eveiy T E L(X,c.). 

In particular, we conclude that limitedness is countably determined. 

Proof of (1.1.1) : 

(a)<===> (b): obvious. 

(a)<===> (c): Since every T E L(X,c.) defines in an obvious way a a(X',X)-zero 

sequence and, conversely, every a( X', X)-zero sequence (x~,: n E IN) defines the 

linear and bounded operator T: X-+ c.,x >--+ ((x~,x) : n E JN), the assertion 

follows from the following characterization of relative compactness in c. (15, p. 

389, 13.9): A bounded A C c. is relatively compact iff sur~eA l(el.1), x)l _, 0. 
n-oo 

0 

The following proposition shows that limitedness could also be defined by the 

uniform convergence of sequences of pointwise converging operators. 

1.1.2 Proposition: For A C X, the following conditions are equivalent: 

a) A is limited i11 X. 

b) For any Banach spaceY every pointwise convergent sequence (Tn:n ElN) C 

L(X, Y) (i.e., tlJere exists aTE L(X, Y) such that II Tn(x)- T(x) II ---> 0 for 
n-oo 

every x E X) converges uniformly on A. 

Proof of (1.1.2) : 

(a) =?(b): Let (T,.:n ElN) C L(X,Y) be pointwise convergent toTE L(X,Y) and 

let A C X be limited in X. 

Since A is bounded, we can choose for every n E lN an Xn E A such that 

sup II T(x) -.T,.(x) 11:5 211 T(x,.)- Tn(xn) II 
xEA 
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and, by the theorem of Hahn-Banach, a y~ E Y' of norm 1 with 

For an arbitrary x 'E X we have 

lim sup I(T'(y~)- T~(y~), x}l =lim sup l(y~, T(x)- Tn(x))l 
·n-oo n->oo 

$1imsup IIT(x) -Tn(x)ll = 0. 

Thus, (T'(y~)- T~(y~) : n E IN) converges in u(X', X) to 0, and we can deduce 
(b) from the assumption that A is X-Iimited in the following way: 

limsupsup IIT(x)- Tn(x)ll $ 21imsup IIT(xn)- Tn(xn)ll 
n-oo z:EA n-oo 

= 21imsupl(y~, T(xn)- Tn(Xn))l 
n->oo 

$ 21imsup sup I(T'(y~)- T~(y~), x)l = 0. 
n-oo tEA 

(b)=>(a): obvious 

0 

1.1.3 Proposition: Let A and B be subsets of X. 

a) If A and Bare limited in X, then the sets AU B, A+ B, A and aco(A) have 
the same property {4, Proposition 1 and 2}. 

b) Let A C B. If B is limited in X, so is A {4, Proposition 3}. 

c) LetT E L{X, Y); if A is X-limited, then T(A) is Y-limited. 

Proof of (1.1.3) : obvious 

A result due to Grothendieck [9, p.227, Lemma 2) states that a CCX is relatively 

weakly compact if for every e > 0 there exists a··weakly compact C, c X such 

that CCC,+ B,(X). An analogous statement is true for limited sets: 

1.1.4 Proposition: Let A C X and assume that for every e > 0 there exists 

an X -limited set A, with A C A, + B,(X)~ 
Then A is limited in X. 

Proof of (1.1.4) : 

For an arbitrary u(X',X)-zero sequence (x~;n EIN) C B1(X') and an e > 0 we 
have 

limsups~pl(x~,x}l$1imsup sup l(x~,x}l 
R->oo zEA n-oo zEA.+B.(X) 

$1imsup sup e + l(x~,x)l = e, 
n-oo zeA~ 
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which implies the assertion. 

<> 

In the introduction, we remarked that limited sets are always bounded. The 

following lemma, from (4, Proposition 4) shows that they are even conditionally 

weakly compact; the proof uses essentially the Rosenthal's irtheorem (see Theo

rem(0.2.2)). 

1.1.5 Lemma: Every in X limited set is conditionally a(X,X')-compact. 

Proof of (1.1.5) : (We follow the proof of (12, Proposition 1.6.)) 

Using Rosenthal's i 1 theorem, it is enough to show that a given sequence 

(xn: n E lN) C X which is equivalent to the i1-basis (e~l): n E IN) is not lim

ited in X. For every n E IN let Tn: (0, 1]-+ IR, with rn(t) :::: sin(27Tnt) if t E (0, 1]. 

The operator S : L1((0, 1)) -+ Co, f ,_. {f0
1 rnfdt : n E IN), is well defined, 

bounded, and linear (10, p.60, Example 1']. Thus, the same is true for S :==So I 
where I is the inclusion of L00((0, 1)) in L1((0, 1)). Since (xn: n E IN) is equivalent 

to (e~l):n ElN), the operator ' 

00 00 

t: span(xn: nEIN)-+ Loo((O, 1)), t(L: ~nXn)::: T(L enrn) if (en:n E IN)Ei!, 
n=l n=l 

is linear and bounded. By the injectivity of L00((0, 1)) (40, p.111, remarks] it is 

extendable to a linear and bounded T: X -+ Loo((O, 1)). 
For the image of (xn: n E IN) under SoT, we have 

t I So T(xn)::: (}
0 

rm(t)rn(t)dt : m E IN)== 2e~,o). 

Thus, SoT( {xn : n E IN}) is not relatively compact, which implies, by (1.1.1}, 

that (xn:n ElN) cannot be limited in X. 

1.1.6 Corollary: For A C X tl1e following conditions are equivalent: 

a) A is limited in X. 

b) i) A is conditionally a(X,X')-compact, 

ii) each a(X,X')-zero sequence in aco(A) is limited in X. 

<> 

In particular, we conclude that X is Gelfand-Phillips iff every normed, weakly to 

zero converging sequence is not limited in X. 
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Proof of (1.1.6) : 

(a) =>(h): (1.1.3) and (1.1.5) 
-.(a)=>-.(h): Suppose A C X is not limited in X but is conditionally u(X,X')

compact. Then there exists a sequence (xn:n ElN) in A, an E: > 0, and a u(X',X)

zero sequence (x~:n ElN) such that for each n E lN, {xn,x~) ;::: E:. W.l.o.g. we may 

assume that (xn: n E lN) is weakly Cauchy and that l{x~,xm)l < E:/2 whenever 

n > m (if not, take subsequences). Thus, ((xn+l - Xn)/2: n E lN) is a weak-zero 

sequence in aco(A) satisfying 

{x~+l, { Xn+t - Xn)/2) ;::: E:/4 , for each n E 1N, 

which implies that ((:z:n+l - Xn)/2: n E lN) is not limited in X. 

Proposition {1.1.7) and Examples (1.1.8) point out that there exist Banach 

spaces containing limited sets, which are not relatively compact. 

1.1.7 Proposition: If X enjoys the Grothendieck and the Dunford-Pettis 

properties, then every conditionally u(X,X')-compact set is limited. Thus, by 

(1.1.5), the limited sets are just the conditionally u(X, X')-compact sets. 

Proof of (1.1.7) ': 

By {1.1.6), it is enough to show that every u{X,X')-zero sequence in X is limited. 

But this follows from the assumption that every u(X', X)-zero sequence converges 

in u(X' ,X") and that X has the Dunford-Pettis property. 

1,1.8 Examples: For every infinite compact space K, C(K) contains condi

tionally weakly compact sets which are not relatively norm compact. Moreover, 

it contains weakly conditionally compact subsets which are not relatively weakly 

compact. Since every C(K)-space enjoys the Dunford-Pettis property, it follows 

from (1.1.7) that a Grothendieck C(K)-space does not have the Gelfand Phillips 

property, and that, moreover, it has limited sets which are not relatively weakly 

compact. 

An example for such a space is loo(r), where r is an infinite set. In the 

literature one can find two other examples of infinite dimensional C(K)-spaces 

wich enjoy the Grothendieck property and which, moreover, do not contain a copy 

of l 00 : 
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R. Haydon (33) constructed one without assuming any further set theoretical 

axiom. By assuming the continuum hypothesis, M. Talagrand (56] found another 

one which does not even admit a quotient isomorphic to £00 (the results cited in 

chapter 2 show that such an example cannot be constructed without additional 

set theoretical hypotheses). 

From Proposition (1.1.7) and Examples (1.1.8), we deduce the following ana

log of the Krein-Smulian Theorem. 

1.1.9 Corollary: The absolutely convex hull of a conditionally weakly compact 

subset of X is conditionally weakly compact also. 

Proof of (1.1.9) : 

Let r be a set such that there exists an isomorphic embedding E from X into 

i 00(f) (for example r := B1(X')). For A c X the following implications hold: 

A is conditionally u(X,X')-compact 

<:::> E(A) is conditionally weakly compact in ioo(f) 

<===> E(A) is limited in l 00(f) ((1.1.5), (1.1.7)) 
<:::> aco(E(A)) = E(aco(A)) is limited in i 00(f) ((1.1.3)) 
<:::> E(aco(A)) is conditionally weakly compact in i 00(f) ((1.1.5), (1.1.7)) 

<:::> aco(A) is conditionally u(X,X')-compact. 

<> 

Finally we want to present a necessary condition for limitedness in a Banach 

space X which uses other norms defined on dense subs paces of X. It will be a: 
useful tool to investigate limited sets in tensor products. 

1.1.10 Proposition: Let V c X be a dense subspace of X and let W · lli be a 

norrn on V which is finer then 11·11· We denote the completition ofV corresponding 

toW· m by .X. 
Then every in X ( = (X,II·II)) limited set A is "almo~t bounded correJponding 

to w. W", by this we mean that for each e > 0 there is am. W-bounded _A(e) c v 
such that 

Proof of (1.1.10) : 

We have to show the following: 

Let A C X be 11·11-bounded, (xn: n E IN) C A and e > 0, such.that . 

(1) Tn := inf{WYW I y E v n (xn + B£(X, 11·11))} -1 00. 
n-oo 
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then A is not limited in (X, 11·11). 

For n E IN define 

- IHI 
A,.:= (r,./2) · Bt(X, II · m) and B,. := x,. + B~n(X, 11·11). 

We first show that A,. n B,. = 0 for each n E IN: 

Let y E A,., then there is a y E (r,./2) · B1 (X, I · I) with II y- y II< t/4, a.rtd a 

y E v with IY- iii < min(t/4, r,./2). Thus, mum ~ liil + l!i- iii < r,., and we 

conclude from (1) that II y- x,. II> e and finally 

llxn- yll;:::llxn- !ill-ll!i- iill-llii- vii> e- 2e/4 = e/2, 

which implies the assertion. 

Since A,. and B,. are convex and 11·11-closed, and since, A,. is absolutely convex, 

we find, by the separation theorem, for each n E IN an x~ E X', with II x~ II= 1, 

and an a,. ;::: 0 such that 

(2) (x~, y) ~ a,. ~ (x~, x), whenever y E A,. and x E B,.. 

For n E IN we choosey,. E B~j2(X, 11·11) with (x~, y,.);::: e/4 and we conclude . 

(3) (x~,x,.) = (x~,x,.- y,.) + (x~,y,.) 
;::: a,.+ e/4;::: e/4. 

(x,.- Yn E B,. and a,. ;:::.OJ. 

Thus, we are finished, if we have proven that ( x~: n E IN) is a weak* -zero sequence 

in (X', m · 1). 
To this end, we first observe that by (2) sup,.EN Ia,. I~ SUPneN,zEA l(x~, x)i < oo, 

and secondly that for each v E V it follows from (1) and (2): 

Sine!! Vis dense in X and (x~:n EIN) is bounded this implies the assertion. 
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1.2 Gelfand-Phillips spaces 

Proposition (1.2.2) develops some topological conditions on the compact space 

(B1 (X'), a( X', X)) which imply that X has the Gelfand-Phillips property, similar 

considerations were done by L. Drewnowski in (13]. 

Then some classes of Banach spaces are investigated which correspond to these 

conditions, and so we get a first inventory of Gelfand-Phillips spaces. Besides the 

easy fact that every subspace of a Gelfand-Phillips space enjoys this property also, 

and that the complemented sum of two Gelfand-Phillips spaces is again Gelfand

Phillips (Proposition (1.2.2) (a)::}(b) and (d)'*( a.)), we do not consider hereditary 

properties of the Gelfand-Phillips property (see chapter 4). 

1.2.1 Proposition: The following are equivalent: 

a) X is Gelfand-Phillips. 

b) Every subspace of X is Gelfand-Phillips. 

c)- Every separable subspace Z of X is contained in a subspace Y C X which 

has t?e Gelfand-Phillips property and is complemented in X. 

d). X is the complemented sum of two Gelfand-Phillips spaces. 

e) For every Banach spaceY, the limited operators from Y to X are compact. 

f) Every limited operator from £1 to X is compact. 

Proof of (1.2.1) : 

(a)::}(b): follows from (1.1.3)(c) 

(b)::}(c): obvious 

(c)::}(a): By {1.1.1) it is enough to show that a non compact sequence (x,.:n E IN) 

in X is not limited, whenever X satisfies (c). But by (c) there exists a comple

mented subspace Y of X enjoying the Gelfand-Phillips property and containing 

(xn: n E IN). Since (xn: n E IN) is not limited in Y, it follows from {1.1.3)(c) that 

it cannot be limited in X, since it is the preimag~ of the projection from X onto 

Y .Of a non limited set. 

(a)'*( d): X =X E9 {0} 

.(d);;>(a): (1.1.3)(c) 

· obvious 

Let (xn: n E IN) be limited (in particular bounded) in X and assume 

satisfies (f); we have to show that (xn: n E IN) is relatively compact. The 
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n 

T: el -+X' y = (Yn) H L YnXn 
nEN 

is bounded and linear and T(BI(ei)) C aco(xn: n E IN) is limited in X. Since 

every limited operator T: e1 -+ X is compact, and since (xn:n ElN) C T(B1(e1)), 

(xn:n ElN) is relatively compact. 

1.2.2 Proposition: The following implications hold: 

(a)=> (bt) <===:> (~) => (c1) .¢:==> (c2) <===:> (c3) =>(d) 

a) B1(X') is u(X' ,X)-sequentially compact, 

<> 

b1) B1(X') contains a u(X',X)-sequentially pre-compact subset C which norms 

X, i.e. llxll= SUPz'EC l(x',x)l for each x EX. 
~) There exists a compact K containing a sequentially pre-compact and dense 

subset such that X can be isometrically embedded in C(K). 
CJ) There exists an equivalent norm m.m on X such that (X, m.m) satisfies (bl). 

c2) There exists an equivalent norm 1.1 on X such that (X, M.l) satisfies (bz). 

c3) There exists an r > 0 and a sequentially u(X',X) pre-compact subset C of 

BJ(X'), such that. II Xu::; r sup.,'EC l(x' ,x)j. 
d) X has the Gelfand-Phillips property. 

(The implication (c1) =>(d) is also observed in {13, Theorem 2.2].) 

Proof of (1.2.2) : 

(a)=>(bi): obvious 

(bi)::>(b2): Let C C B1(X') be as in (hi) and set K := c"<X',x>. Then 

K, furnished with u(X',X) n K, has the desired properties and the operator 

E: X -+ C(K), x ...... (K 3 x' ...... (x', x) ), is an isometric embedding. 

(b2)=>(b1): Let J( be a compact space which contains a dense sequentially pre

compact subset K and admits an isometric embedding E : X.-+ C(I(); then the 

set C := E'( { 8e I~ E K}) satisfies the conditions of (b1 ). 

(hi)=>( c!): obvious 

(c!) <===:> (cz): as in ((b!) <===:> (b2)) 

(ci) <===:> (c3): obvious 

(c3)::>(d): By (1.1.6), it is enough to show that a given normed u(X,X')-zero 

sequence (xn:n ElN) is not limited in X. Suppose that r > 0 and C C B1(X') are 

as in (c3). Then there exists for each n E lN an x~ E C with l(x~,xn)l > r/2. By 
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· . (i:3), we may assume that (x~: n E IN) converges in u(X', X) to an x~ E X' and, 

. since (xn:n EIN) converges in u(X,X') to 0, we may assume that j(x~,x,.)l < r/4 

for n E IN; thus we have 

limsupl(x~ -x~,xn)l2: r/4, 
n-oo 

which implies the assertion . 

. 1.2.3 Notation: Condition (a) from Proposition (1.2.2) will be denoted by 

(w•-sc) ("w•-sequentially compact"), (hi) by (w•-spcn) ("w•-sequentially pre

compact and norming subset"), and (c1 ) by (w•-spcnc) ("w•-sequentially precom

pact up to a constant norming subset"). These will be considered as properties of 

the Banach space X. 

1.2.4 Examples: The following Banach spaces·are (w•-sc): 

a) By a result of D. Amir and J. Lindenstrauss all subspaces of weakly generated 

spaces have the property (w•-sc)(9, p.228, Theorem). For eaxample: 

- separable Banach spaces, 

- reflexive Banach spaces, 

- c.(f), r any set, (note that (e\0):/'Ei-} is relatively u(c.(f),f1(f))-compact), 

- C(K), if K is an Eberlein compact (1, p.37, Theorem 2), 

- Lt (p )-spaces, for a-finite measures p. 

b) If X is a Ba.nach space whose dual X' does not contain ft, we deduce from 

Rosenthal's ft theorem that B1{X1) must be conditionally ·weakly compact 

and thus, by the theorem of Alaoglu-Bourbaki, sequentially weak•-compact. 

Examples for this situation (not satisfying (a)) are the non separable versions 

of the James and James-tree spaces as introduced in (16) and (5) respectively. 

1.2.5 Examples: The following spaces are (w•-spcn)but in general not 

(w•-sc): 

a) C(K)-spaces, where K contains a dense sequential pre-compact subset as for 

example C({O, 1)f) (the set {(6..,:/'Ef) c {0, 1} llh E r 16-, = 1}1 < oo} is a 

sequentially pre-compact dense subset of {0, 1}r ). 

b) Spaces X which can be isometrically embedded in dual spaces Y' whose pre

dual does not contain f 1 • 



32 

c) Banach lattices not containing Co, for example AL-spaces (by [51, p.l14, The

orem 8.5), AL-spaces are representable as L,(p)-spacess, where Jl is a positive 

measure). 

Proof of (1.2.5) : 
Proof of (a): Proposition (1.1.2)((bl) <==> (b2)) 

Proof of (b): Let E : X -+ Y' be an isometric embedding and it ¢. Y. By 

Rosenthal's it theorem we deduce that Bt (Y) is a u(Y", Y')-sequentially pre

compact subset of B1(Y") and by Goldstine's theorem it is w• dense in B,(Y"). 

Thus, C := E'(B1(Y)) satisfies the conditions of (hi). 

Proof of (c): For a Banach lattice (X,$;), we use the notations of chapter 1 in 

[41). The proof will use several basic results about Banach lattices and a theorem 

of [42). 

If X has no copy of Co, it follows from [41, p.6, Theorem l.a.5.) that X is u

complete (every increasing and bounded sequence in X has a supremum in X). 

Thus, the operator P., given by 

00 00 

P., :X-+ X, y t--t V (nx A y+)- V (nx A y-) 
n=l n=l 

is well defined for every x E X, x ?: O, and is by the remarks in [41, p.12f), a 

continuous projection of norm 1 onto the closed subspace generated by the lattice

interval [0, x). 

From [42, Theorem 2 (•(d)=> •(e))) it follows that for each x?: 0 of X, the set 

[0, x) is conditionally weakly compact. Since Co is not in X, X must be sequentially 

complete; thus, by the theorem of Eherlein-Smulian, [0, x) must be weakly compact 

for every non negative x E X. Thus, the image of every P., is weakly compactly 

generated and is (w•-sc)by (1.2.4)(a). 

To finish the proof, we show that C := U.,;::o P~(B1 (X')) is u(X', X)-sequentially 

pre-compact and X -norming. 

Since x = Pl:el(x) for each x EX, we can deduce for an x-norming x' E B1(X') that 

(x,P(.,
1
(x')) = (Pizl(x),x') =llxll; by this we have shown that Cis X-norming. 

Let (x~:n ElN) C C be arbitrary. By definition of C, there exists for each n E IN 

a non negative XnEX such that P~ .. (x~),; x~ and we set 

~ Xn 

x:= ~2"llxnll' 
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For any non negative z E X and any n E IN we have: 

P~n o P~(z) = V (mxn II V (lx II z)) 
mEN lEN 

V (mxnAlxAz) 
mEN,lEN 

= V (mxn A z) = P~n(z) 
mEN 

(note that (mxn) A (2nm llxn II x) = mxn)· 

It follows that for any z E X 

which means that (x~: n E IN) lies in P~(B1 (X')) and has a a(P;(X), P~(X)) 

converging subsequence. Since 

(x~,z) = (P;(x~),z) = (x~,P~(z)) for n E IN and z EX, 

this subsequence converges also in a( X, X'), which finishes the proof. 

1.2,6 Example: The Schur spaces are of course also Gelfand-Phillips spaces 

(there, relatively compactness and conditionally weakly compactness are the same). 

We do not know if in general they enjoy one of the stronger properties introduced 

in (1.2.2). 

1.2.7 Remark: The examples in (1.2.5)(a) show that the implication "(a)=>(b)" 

in (1.2.2) is not reversible. Examples that "(b)=>(c)" and "(c)=>(d)" arc strict, 

will be given in section (5.3) (Theorem (5.3.3)). 

We showed in (1.2.2) that C(K)-spaces, whe1·e ]( is a compact space con

taining a sequentially pre-compact subset, enjoy the Gelfand-Phillips property. In 

(5.3) (Theorem (5.3.4)) we will show that the converse is not true. Under the 

continuum hypothesis, we can even construct an infinite compact space ]( such 

that C(K) enjoys the Gelfand-Phillips property and such that every convergent 

sequence of]( is eventually stationary (Theorem (5.4.7) in (5.4)). 
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1.3 Characterization of non limited sets by biorthogonal sequences, 

complemented Co-subspaces 

Let A c X be bounded but not X -limited. By definition, there exists a 

sequence (xn:n EIN) C A and au(X',X)-zero sequence such that (x~,xn) = 1 

for all n E IN. Lemma (1.3.1) shows that (xn: n E IN) and {x~: n E IN) can be 

chosen to be biorthogonal. Using this fact, one can deduce some results concerning 

complemented copies of Co. 

1.3.1 Lemma: Let A C X be bounded but not limited. 

Then there exists a sequence (xn:n EIN) in A and a u(X',X)-zero sequence, 

such that: 

{ 
1 ifn = m 

(x~,xm)= 0 ifnot 

Proof of (1.3.1) : 

for all m, n E lN. 

Since A is not limited in X, there exists a sequence (xn: n .E: IN) in A and a 

u(X',X)-zero sequence with 

{1) (z~,xn) = 1 for n E lN. 

Since A is bounded, we can assume that an := limm--.oo(xn,z~) exists for each 

n E lN (otherwise we pass to a subsequence). By taking another subsequence we 

can assume that one of the following three cases is satisfied: 

case 1: an = 0 for n E IN; 

case 2: an # 0 for n E IN and limn--.00 an = 0; 

case 3: There exists an e > 0 such that lanl ~ e for n E lN. 

In the first case we take y~ = z~ for n E IN. 

In the second case.we may assume that 

If we now set 

the sequence (y~:n E IN) is a u(X' ,X)-zero sequence also. We·still have for every 

n E IN, (z~,xn} = rn/rn = 1. Moreover, we deduce that, for each n E IN, 
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In the third case1 (1/an:n EIN) is bounded and, since (z~:n eiN) is a weak•-zero 

sequence, we can assume that for each n E IN 

If we choose 

y~ ::::. (1/rn)(z~- (a,.fan+I)z~+ 1 ), 

the sequence (y~: n E IN) is a a(X1
, X)-zero sequence also. For each n E IN we get, 

as in the second case, (z~, Xn) = r,.fr,. = 1 and 

lim (y~, Xm) = lim ((1/r,.)(z~- (a,.fan+l)z~+l), Xm) = 0. 
m~oo m-+oo 

So in all three cases we have, for each n E IN, 

lim (y:,.,x,.) = lim (y~,xm) = 0. 
m-+oo m-.oo 

Thus, by taking subsequence, we can assume that 

L l(y~,xm)l ~ ~ 
mEN\{n} 

holds for each n E IN. This implies that the image of (x,.:n E IN) under T: X -> c~, 

x ,__. ( (x, y~) : n E IN), is equivalent to ( e~0l: n E IN), as can be seen by the following 

equations: 

II L a;T(x;) II = sup l(yj, L a;T(x;))l 
iEN JEN iEN 

{ 
~ supjEIII (lail + L:i~j l(y:, x;)a;j) 
~ sup;elll (la;l- L:;~; i(y;, x;)a;l) 

{ 
~ (1 + !)supjelllla;l 
~ (1- !)sup;eN la;l 

for every sequence (a,.:n EIN) C ffi. such that l{n E IN fa,. f; O}l < oo. 

By the separable injectivity of Co (9, p.71, Theorem 4], we can extend the isomor

phismS: span(T(x,.) : n E IN)-> co, which assigns T(x,.) the value e!~J if n E IN, 

to a linear bounded operator S : Co -> C0 • We deduce that So T(x,.) = e~o) for 

n E IN, which means that the components (x:,: n E IN) of SoT have the desired 

properties. 

0 

With Lemma (1.3.1) we can characterize the property that a given sequence 

(x,.: n E IN) C X, which is equivalent to the Co-basis, is limited in X. 
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1.3.2 Theorem: Let (xn:n EIN) C X be equivalent to (el,O>:n EIN). 

Then the following are equivalent: 

a.) { Xn In E IN} is limited in X. 
b) For every N E 'P oo(IN), -sp-an--,-('{ x-n'l'n-E-=->NCO'}") is not complemented in X. 

Proof of (1.3.2) : 

(a) =>(b): If (xn: n E IN) is limited in X, then every bounded linear operator 

T: X -+Co maps {xn In E IN} to a relatively compact set (Proposition (l.l.l)(a) {::=} 

(c)). Thus, for noNE 'Poo{IN) there is a projection of X onto span{ {xn In EN}) . 

..,(a) => -,(b): By taking a subsequence of (xn: n E IN) and by using (1.3.1), we 

can assume that there exists a a(X',X)-zero sequence (x~: n E IN) such that 

(x~,xm) = c5(n,m) for n,m E IN. This means that the operator T : X -+ Co, 

x ,_. ((x~, x) : n E IN), maps each Xn to el,O>. Since (xn: n E IN) is equivalent to 

( el,O>: n E IN) and thus, T restricted to span( { Xn In E N}) is an isomorphism, T is 

a projection, which finishes the proof. 

0 

With Theorem (1.3.2) we get the following variants of the separable injectivity 

of Co (compare [9, p.7l, Theorem 4]): 

1.3.3 Corollary: · 

a.) If X is a Gelfand-Phillips space, then every sequence (xn: n E IN) C X which 

is equivalent to (xn:n· E IN) contains an infinite subsequence (xn: nEN) such 

· tha.t span(xn: n E IN) is complemented in X. 

b) If every limited set of X is relatively weakly compact, then every copy of c0 

in X contains a subspace still isomorphic to Co which is complemented in X. 

(Sufficient conditions that every limited set in X is relatively compact will be 

formulated in chapter 2.) 

Proof of (1.3.3) : 

Proof of (a): Theorem (1.3.2). 

Proof of (b): Let ( Xn: n E IN) C X be equivalent to the c~-basis and set, for n E IN, 

Yn := E?=l x;. Then (yn: n E IN) is bounded but not relatively weakly compact; 

thus, by the assumption it is not limited in X. Using Lemma (1.3.1) we find a 

a( X' ,X)-zero sequence (y~: n E IN) and an increasing sequence (kn: n E IN) in IN 

such that 

(, ) {1 ifn=m 
Yn>Ykm = 0 ifnot for all m,n E IN. 
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It follows that for each n E IN (setting: ko ;:::: 0 and yo ;:::: 0): 
kn 

1 :::: (y~, Ykn - Ykn-1) :::: (y~, 2: x;) • 
i=o.l;n-1+1 

Thus, the sequence o::::,::"n-1+1 Xi : n E IN) is not limited and is equivalent to 
(e~>:n EIN) and we deduce from (1.3.2) the assertion. 

0 

1.3.4 Remark: Let us consider the following properties of a Banach space X: 

i) Every copy of Co is complemented in X (by (10, p.71, Theorem 4], this is true 

if X is separable). 

ii) Every sequence (xn:n EIN) which is equivalent to (e~0>:n EIN) contains a sub

sequence such that the space generated by this subsequence is complemented 

in X. 
iii) Every copy of c0 contains a subspace isomorphic to Co which is complemented 

in X. 
Of course (i) =>(ii) and (ii) =>(iii) are true. 

a) In (0.5.6)(c), we· constructed a compact and sequentially compact space K 

such that C(K) contained a copy of Co which was not complemented in C(K). 

By (1.2.2), C(K) is a Gelfand-Phillips space and thus enjoys property (ii). 

Hence the implication (i) =>(ii) is not reversible. 

In section (5.1) we shall construct a C(K)-space which contains a limited 

sequence which is equivalent to ( e~0>: n E IN) and which is conditionally weakly 

compact generated. This implies, as will be shown .in (2.3.3), that all limited 

sets in C(K) are relatively weakly compact; we deduce, using (1.3.3)(b), that 

(iii) =>(ii) does not hold. 

b) Corollary {1.3.3) leads one to ask whether the Gelfand-Phillips property is 

characterized by property (ii). The answer would be yes if one could show that 

Banach spaces not enjoying the Gelfand-Phillips property contain a limited 

sequence which is equivalent to ( e~o): n E IN). In chapter 3 it will be shown 

that this is true for C(K)-spaces. But, in general, it seems to be unknown if 

Banach spaces without the Gelfand-Phillips property contain any copy of Co, 

a question which is solved for lattices in (1.2.5)(c). 

At the end of this section we want to cite two known results which can be 

proven with Theorem (1.3.2) . Corollary (1.3.5) descl"ibes the Grothendieck prop

erty by limitedness ((a) =>(c)) and leads to the characterization of Grothendieck 
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spaces, as given in [48, p.18., Satz 3.2]. Corollary (1.3.6) was first proven in [6] for 

the space C(K,X)( = C(K)®X) and has been generalized for any injective tensor 

products by E. Saab [50]. 

1.3.5 Corollary: The following properties (a), (b), and (c) are equivalent: 

a) X is a Grothendieck space. 

b) i) Every T: X -+Co which is not weakly compact fixes a copy of Co, i.e. there 

exists a copy of c0 on which T acts as an isomorphism. 

ii) X does not contain a complemented copy of Co. 

c) i) As in (b). 

ii) Every sequence in X which is equivalent to ( e~0): n E IN) is limited in X. 

Proof of (1.3.5) : 

(a) =?(b): A Grothendieck space X does not admit any operator T : X -+ Co 

which is not weakly compact. 

(a)(ii) =?(b)(ii) Theorem (1.3.2) 

(c) =?(a) LetT: X -+Co be linear and bounded. By (c)(ii), T cannot fix any 

copy of c0 ; thus, by (c)(i), it must be weakly compact. 

<> 

1.3,6 Corollary: Suppose that X and Y are of infinite dimension and that X 

contains a copy of c0 • Then X®Y contains an isomorphic copy of Co which is 

complemented in X®Y. 

Proof of (1.3.6) : As in [6], we use the theorem of Josefson and Nissenzweig 

(compare Corollary (2.4.6)). 

Let (xn: n E IN) C X be equivalent to (e~0): n E IN). By the Theorem of Josefson 

and Nissenzweig, there exists a normed u(Y',Y)-zero sequence (y~:n EIN) in Y. 

For each n E IN, choose Yn E B2(Y) such that (y~,yn) = 1. 

By (1.3.2), it is enough to show that (xn ® Yn : N E IN) is equivalent to 

(e~0>:n EIN) and is not limited in X®Y. 

H we choose C > c > 0 such that 
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[lly; 112:: 1) 
n n 

:::; sup II'Ea;(y',y;)xdi=II'Ea;y;0x;ll 
~'EBt(Y') i=l i=l 

:::; C sup ~ax Ia; (y', y; )I 
~1 EBt(Y1 ) t~.l: 

_ ::;2CT!fla;l 

lilY; II::; 2} 

which implies the first W!llertion. 
·If we choose for each n E IN an x~ E B1(X') which norms Xn then the sequence 

x~0y~ is weak*-convergent to 0 in (X®Y)' (note that (x~0y~: nEIN) is bounded 

and that (x~ 0 y~, x 0 y) converges to zero for each x E X and y E Y). Moreover, 

we have for n E IN 

which verifies the second assertion and finishes the proof. 
0 
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2 A result about dual spaces which contain bounded se
quences without any weak• .. convergent convex blocks 

In this chapter we want to prove the following result and use it to answer a 

question posed by R. Haydon in [34, p.ll, Remarks): 

If the dual of a Banach space X contains a bounded sequence ( x~: n E IN) 

for which no convex block converges in u(X',X), then X' contains an 

isometric copy of L1( {0, l}wl ). 

In section (2.1) we will formulate the theorem and the necessary definitions and 

then cite some results related to this topic. The proof will be given in (2.2). 

In the last part of this chapter we will show, following a proof of J. Bourgain 

and J. Diestel (4), that for spaces containing limited sets which are not relatively 

weakly compact the assumption of the main theorem holds. We will also deduce 

a generalization of a result in [4J ( cf. corollary (2.3.3)) which says that, in Banach 

spaces not containing a copy of f1, all limited sets are relatively weakly compact. 

2.1 Formulation of the main theorem and review of related results 

For a set r, let ~r be the product measure ®..,.ed(6o + 61) on the set {0, l}r 

furnished with the product a-algebra ®..,.er P( { 0, 1 }). As usual, we denote the 

spaces L1(~r) by L1( {0, l}r) and Loo(~r) by Loo( {0, l}f). Since ~ is finite, 

Loo({O,l}r) can be viewed as a subspace of LJ({O,l}r). To avoid ambiguities, 

we denote the usual norm on L1( {0, l}r) by 11·11 and the norm on Loo( {0, l}r) by 
I 

IH· 
00 

2,1.1 Defhiition: 

a) Let (xn: n E IN) C X be bounded. A sequence CE~;:t~ -I a;x; : n E IN) 

is called a convex block (respectively an absolutely convex block basis) of 

(xn:n EIN) if (kn:n EIN) is increasing in IN, (an:n EIN) C JRci (respectively 

(an:n EIN) C IR), and I::;:t~-J a;= 1 (resp'ectively I::.::t~-lla;j =I) for 

each n E IN. 

b) We say that the Banach space X satisfies 

(CBH) (convex block hypothesis) if X' contains a bounded sequence (x~: n E IN) 

which has no u(X',X)-convergent o:;onvex block; 

(ACBH) (absolutely convex block hypothesis) if X' contains a bounded sequence 

(x~: n E IN) which has no u(X' ,X)-convergent absolutely convex block 

basis. 
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We remark that the definition of (ACBH) in {2.1.1) is equivalent to the condi

tion, considered by J. Hagler and W.B. Johnson (26) and by R. Haydon [34), that 

X' contains an infinite dimensional subspace Y on which u(X', X)-convergence 

of sequences implle.s norm convergence. This equivalence will be shown in the 

following proposition. 

2.1.2 Proposition: The following are equivalent; 

a) X has property (ACBH). 

b) X' contains an infinite dimensional subspace Yin which u(X' ,X)-convergence 

of sequences iutplies norm-convergence. 

Proof of (2.1.2) : 

(a.) =}{b): Let {x~:n E IN) be a. sequence in X' without a. w•-convergent absolutely 

convex block basis. In particular, (x~: n E IN) has no u(X',X")-Ca.uchy subse

quence and thus we can assume, by Rosenthal's £1 the~rem, that (x~: n E IN) is 

equivalent to {e~1>:n EIN). 

We are finished if we can show that a given sequence 

00 

( t. IN}_("' (n) 1 • IN} y,..nE - L.....ai X;.nE , 
i=l 

with E:1 la~")l :S 1 if n E IN, is not u(X' ,X)-convergent if there exists an e > 0 

such that II y~ - v:..ll;:: e for all n, m E IN with n =j:. m. 
Suppose that such a sequence is w• -convergent. By taking a subsequence, we may 

th ·t - ·- I" (ro) • t .. h . IN s' . I ·- I I assume a a, .- lmn-oo a; ex1s s tOr ea.c 1 E . ettmg z,. .- Yn - Yn+ 1,. 

we find an increasing sequence ( m,.: n E IN) and a sequence ( z~: n E IN) C X', 

with z~ = E~~t! -l b;xi for n E IN, (k,.) increasing in IN, and (b;) C ffi, such that 

lim,._oo II .z~ - z~ ... II= o. 
Since II y~ - Y~+t II;:: e for n E IN, we deduce that lim inf,._oo II z~ II;:: e and by this 

As a consequence, there exists an no E IN such that 

kn+t-1 kn+t-1 
(( L b;x:>/ L jb;l}: no $ n E IN) 

i=kn i=kn 

absolutely convex block basis of (x~:n EIN) which converges in u(X',X) to 

contradicts the assumption. 
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(b) =?(a): Let Y c X' be as in (b). Since Y is of infinite dimension, we find 

a bounded sequence in Y without any norm-convergent,. and thus, without any 

u(X',X)-convergent subsequence. By Rosenthal's li theorem, it must contain a 

subsequence (x~:n E1N) which is equivalent to (ei,I>:n E1N). Since no absolutely 

convex block basis of (ei,I>:n E1N) is norm-convergent, we deduce (a). 

0 

Now we can formulate the main theorem of this chapter: 

2.1.3 Theorem: If X has property (CBH), then X' contains an isometric 

copy ofLI ({ 0, 1} "'' ). 

In the sequel we need the following ordinal: 

2.1.4 Definition: (compare (34, p.2) and (35, p.3)) 

The ordinal Wp is the smallest of all a E Ord such that: 

There exists a family (Mp:/3 <a) C P 00(1N) with 

a) I n Mpl = 00 for each FE P,(a), and 
{JEF 

b) There is noME P00(1N) with MCMp for every fJ <a. 

2.1.5 Remark: 

a) Wp is an initial ordinal, i.e. wP = min{a E Ord llal ~ lwpl}; and thus, it could 
be considered as a cardinal. 

b) For every countable ordinal a there is no family (Mp:/3 <a) satisfying (a) and 

{b) of (2.1.4). Indeed, assuming that (Mp:/3 <a) C P00(1N) satisfies (a), we 

can choose an increasing sequence (Fn: n E 1N) C Pt(a) with UneN Fn =a, 

and we can choose for each n E 1N mn E n{JEFn Mp such that (mn: n E 1N) 

increases. As M := { mn In E JN} is almost contained in n{JEF Mp, provided 

that FE Pt(a), we conclude that (Mp:fJ <a) does not satisfy (b). 

On the other hand, if U is a non-principal ultrafilter on 1N (i.e. U C P00(1N) 

is a maximal filter) and ( M 0 : a <we) a well-ordering of U (every ultrafilter on 

1N has the cardinality of the continuum), then (M0 :a <we) satisfies (a) and 

(b) of Definition (2.1.4). 

We conclude that WI $ Wp $ We. 

c) In (35, p.3) it is remarked that under Martin's axiom we have wp = we. 

Thus, under the assumption that Martin's axiom holds but the continuum 

hypothesis does not, WI < Wp =We· 

The following proposition collects some known results which are related to 
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the topic of this chapter. 

2.1.6 Proposition: For a Banach space X we consider the following properties: 

(E1 ) X has a quotient isomorphic to f.oo. 

(~) X has a non-reflexive Grothendieck space as a quotient. 

(Ea) X has the property (ACBH). 

(E,) X has the property (CBH). 

And for w E Ord we consider: 

(E5 )(w) X contains an isomorphic copy off.,(w). 

(E6)(w) X 1 contains an isomorphic copy ofL1({0, l}w). 

(E-r )(w) There exists a bounded and linear S: X -+ L00 ( {0, l}w), a~ > 0, and a 

bounded family ( a: 0 : a <w ), such tl1at 

IIS(x,)- S(x.a)ll2: ~whenever a,{J E (O,w( with a :f. f3 
I 

Then the following relationships between these properties hold: 

a) {34, p.2, Theorem 1}: (Ea) implies (E6)(w,).· 
b) i) {35, p.6, Corollary 3 C): If X is a C(K)-space then (E,) implies (E6)(wp) 

(in {35} it has been shown that if (E,) is satisfied for a C(K)-space, then 

there exists a positive measure JJ e M(K) such that L1(JJ) is isometrically 

isomorph to L1({0,l}wP) ). 

ii) {35, p.6, Tlworem 3 D): Under the (set theoretical) assumption that wp > 
w,, the property (E4 ) implies (Es)(w,). 

c) {43, p.1083, Theorem 4. 7}: For any w e Ord (E5 ){w) implies (E6)(w). 

d) .From {3, p.BO, Theorem 1.2) we easily deduce (see the proof below) tl1at if 

w > WJ, then (E,)(w) implies (Es)(w) . 

.From (a)-( d) it is easy to deduce (e),(£) and (g). 

e) Without any further set theoretical assumption, 

(E,) ~ (Es)(wc) => (E1) => (Ea) => (EG)(w,), 
(E3 ) =>(E4 ), BIId (Eu)(w) => (Er )(w) for any w E Ord. · 

f) Under the assumption that w1 < w,, we deduce moreover 

(E4 ) => (Es)(w,) ~ (E6)(w,) ~ (E-r)(w,). 

g) If we assume w, < w, =We, then 

(E,) ~ (~) ~ (Ea) ~ (E,) ~ (Es)(wc) ~ 

(&)(we) ~ (E}r )(we)· 
h) Tl1e Grotl1endieck C(K), constructed by Talagrand under the continuum 

hypothesis {56, p.189, Theoreme 4}, does not satisfy (E1) but it does satisfy 
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(~) and thus (Ea),(E.),(&)(wc) and (E, )(we)• 

Proof of (2.1.6)(d), (e), (f) and (g) : 
Proof of (d): (3, p.80, Theorem 1.2] states the following: 

(1) Let w > WJ and suppose (J~:o: <w) is a family in Loo({O, 1}"') such that there 

exists a l::J. > 0 with: 

II fa- fpll 2: l::J. whenever o:, {3 E (O,w, (with a: :f:. {3. 
I 

Then there exists an I C w with III = lwl such that (fa : o: E I) is equivalent 

to (e~0 : a E /). 
Now let S, (X a : o: < w ), and l::J. be as prescribed in (E7 )( w ). Then the family 

(S(x0 ):o: < w) satisfies the assumption of (1) and we find I C w with III= lwl 

such that (S(xa) : o: E I) is equivalent to the corresponding f1-basis. We de

duce from the lifting-property of e1(I) (40, p.107, Proposition 2.£.7. and following 

remarks], that (xa: o: E I) is also equivalent- to (e~): o: E /). 

Proof of (e): It remains to prove (E1) ¢:::} (Es)(wc), (Ez) ::}(Ea), and (E6)(w) 

::}(E7 )(w) for ariy wE Ord ((EI) ::}(Ez) and (E3) ::}(E4 ) are obvious). 

(EI)'*(Es)(wc): Let Q :X -+ f 00 be a quotient mapping. Since foo contains a 

copy of eJ(Wc) (9, p.211, Exercise (1) (i)J and since eJ(Wc) is projective (40, p.107, 

Proposition 2.£.7. and remarks] X contains a copy of f1(wc) as well. 

(Es)(wc) ::}(EJ): Let (x 0 :o: <we) C X be equivalent to (e~>:o: <we) and choose 

an algebraic basis B of foo in B1(f00 ) (span(B) ::; foo)• Since.IBI = !fool = lwei, 
we can well-order B by (b0 :o: <we)· From the property of an f1-basis, we deduce 

that the mapping 

Q: span(xa: o: <We)-+ f 00 , L TaXa t-tL raba whenever FE P,(we), 
aEF aEF 

is linear, bounded; since span(B) = eoo, it is also surjective and can be extended 

to a linear and bounded, and still surjective Q : X -+ eoo by the injectivity of eoo. 
By the open mapping theorem, the spaces X/Ker(Q) and eoo ~e isomorphic. 

(Ez) ::}(E3): Let Z be a quotient of X which is Grothendieck and not reflexive. 

B1(Z') cannot be weakly compact and according to the theorem of Eberlein and 

Smulian, B1 ( Z') contains a sequence ( z~: n E IN) without any a( Z', Z")-convergent 

subsequence. Thus, by the Grothendieck property, it has no a(Z', Z)-convergent 

subsequences and, by Rosenthal's f1 theorem, we can assume that it is equivalent 
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to (e~l):n EIN). Thus, no absolutely convex block basis of (z~:n EIN) is norm

convergent, hence, by the theorem of Schur, also not a(Z', Z")-convergent, and 

finally, by the Grothendieck property of Z, not even a( Z', Z)-convergent. Since 

Z' can be a(Z',Z)-a(X',X)-embedded in X', we deduce (E3 ). 

(E6)(w) => (E7)(w) forw E Ord: 

Let E : L1( {0, 1}"') -+ X' be an isomorphic embedding. For a < w we define 

y01 := X{P<>"'1) -x{;.,=o}, where p01 : {0, 1}"' -+ {0, 1} i~ the a-coordinate projection 
·for a < w, and consider y01 as an element of L1( {0, 1}"') as well as an element of 

Loo( {0, 1}"') (in both spaces it is of norm 1). For I C w we denote the a-algebra on 

{0, 1}"', generated by (p .. :aei), by E1 and note that E1 and Ej are independent 

if I, i C w are disjoint. 

If the cardinality of w is not equal to w1 we deduce from [43, p.l084, Theorem 4.9) 

that there exists an isomorphic embedding T: i 1(w)-+ X. Thus, the operator 

S:it(w)-+Loo({0,1}..:.), ({a:a<w)>-> L{aYa 

"'<"' 

is extendable to a linear and bounded operatorS: X -+ Loo({O,l}"'), by the 

injectivity of L00 ( {0, 1}"'). We observe that 

if 0::; f3 <a 

and deduce the assertion. 

If w = w.1, we set S := E'lx (note that E' : X" -+ L00 ( {0, 1}"')) and, in order to 

show the assertion, we choose by transfinite induction X a E X, for each a < w, 

such that 

IIS(x .. )-S(xp)ll2:t::.:=-
2
1 

inf IIE(yA)II forf3<a. 
1 A<"' 

Assuming that (x/l: f3 < a) has been chosen for a < w we note that there is a 

-y < w such that for each f3 < a, S(x!l) is measurable with respect to E,. (note 

that f3 is countable and that each f E L00 ( {0, 1 }"') is measurable with respect 

to EA where A < w is sufficiently large). Then we choose X a E Bt (X) satisfying 

(E(y,. ), x01 ) 2: t::. (which is possible by the definition oft::.). Since E,. and Ehl are 

independent we deduce for each f3 < a that 

II S(x .. )- S(xp)ll 2: (S(x .. ), y,.) - (S(xp), y,.) = (S(xa ), y,.) = {xa, E(y,. )) ? ~. 
1 



This implies the assertion. 

Proof of (f): (b)(ii), (c), (e), and (d). 
Proof of (g): (e) and (f), for w =We· 
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0 

If we combine the result cited in Proposition (2.1.6)(b )(ii) with that of The

orem (2.1.3), we get the following generalization of (2.1.6)(a). 

2.1.7 Corollary: If X satisfies property (CBH), then X' contains an isometric 

copy ofLI{{O,l}"'P). (Under the assumption "wp:::: WI" take (2.1.3), and under 

the assumption "wp > wi ",use (2.1.6)(e)(ii) and (2.1.6)(e)) 

2.1.8 nemark: The proof of (2.1.6)(b)(ii) depends in an essential way on the 

equivalence "{E1 )(wp) <=> (E5 )(wp)", which is not true without any additional set
theoretical assumption. The proof of (2.1.3) uses the countability of all a <WI. 

Thus, neither proof can be dispensed with. 
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2.2 Proof of Theorem (2.1.3) 

The following lemma is due to H. P. Rosenthal [49], who used it to show that 

if X satisfies (CBH), then X contains it: 

2.2.1 Lemma: (cited from {35, p.4, Lemma 3A]) · 

Let X satisfy ( CBH). Then there exists a bounded sequence ( x~: n E IN) in X' and 

c E ffi. such that 

(a) sup osc({x~,x)) = 1, 
zEBt(X) 

where osc(rn) := limsupn-oo rn -liminfn-oo rn for a bounded (rn:n e IN) C IR, 
(b) for every convex block (y~:n eiN) of(x~:n EIN) and every IJ < ~ thel·e exists 

an x e B1(X) such that 

limsup(y~,x) > c+IJ and lim inf(y~, x) < c -I]. 
n-oo n-oo 

Proof of(2.2.1) :(Since the original paper of H. P. Rosenthal was not available, 

we include a proof.) 
For a bounded sequence (y~: n E IN) C X', let CB(y!,) be the set of all convex 

blocks of (y~: n E IN) and set 

6(y~) := sup osc{y~, x) and r:(y~) :.= inf 6(z;.). 
>:EBt(X) (>~)ECD(y~) 

We remark that 6(y~) = 0 if and only if (y~: n e IN) is w*-Cauchy and th1,1s 

convergent. Since for each (z~:n eiN) E CB(y~) we have 

limsup{y~,x) ~ limsup{z~,x) and 1iminf{y~,x) ~ liminf{z:.,x) for x EX, 
n-oo n-oo n-oo n-oo 

and since CB(z~) C CB(y;,), whenever (z~:n EIN) is a convex block of (y;,:n eiN) 

we conclude that for every bounded (y~: n E IN) C X', 

(1) 6(y~) ~ 6(z~) ~ r:(z~) ~ r:(y~) whenever (z~:n EIN) e CB(y:,) .. 

In the first step we want to show the existence of a bounded sequence ( x~: n e IN) 

in X' which satisfies 

(2) 1 = 6(x;,) = r:(x~) . 
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For this, let (y~: n E IN) C X' be bounded with no u(X', X)-convergent convex 

block. We set (z'~o): n E IN) := (y~: n E IN) and inductively, assuming that 

for a k E IN, (z~l:-1): n E IN) E CB(y~) has. already been chosen, we choose 
z•(l:) E CB(z~l:-l)) such that 

(3) 6(z'~kl):::; e(z~l:- 1 )) + ~· 

Finally, we define y~ := z~n) for each n E IN. Thus, (y~ : n 2 k) is a convex 

block of (z~l:): n E IN) for any k E IN. From the property of (y~: n E IN) we 

deduce that 6 := 6(y~) > 0. Since 6(.) and e(.) do not change if we pass to cofinite 

subsequences, we deduce from (1) and (3) for every k E IN that 

6 = 6(ii~) :::; 6(z'~l:)) :::; e(z~l:- 1 )) + ~ :S e(ii~) + ~ $ 6(ii~) + ~· 

and thus, 6 = 6(ii~) = e(ii~). 

If we define x~ ::::: ii~/6, (2) follows. 

Now we define for (y~;n EIN) E CB(x~) and e > 0 

A(e, y~) := {x E B1(X)I osc( (y~, x)) > 1 - e} 

and 

R(y~) :=in£ sup 1imsup(y~,x) 
· •>O zEA(<,y~) n-oo 

and 

By (2), A(e, y~) is not empty and one has A(e, y~) C A(e, y~) for 0 < l <e. This 

implies that 

(4) R(y~) = liminf sup 1imsup(y~,x) for each (y~:n EIN) E CB(x~). 
c-o zEA(<,y~) n-oo 

Secondly we note that A(e,y~) C A(e,y~), whenever (ii~:n EIN) E CB(y~) and 

we conclude 

(5) R(y~) 2 R(Y~) 2 r(ii~) 2 r(y~), whenever (Y~: n E IN) E CB(y~) 

in the same way as was shown ( 1 ). Now we can proceed in a similar way as in 

step 1 to show that there exists a sequence (x~:n EIN) E CB(x~) such that 

(6) r := r(x~) = R(x~). 
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Defining c := r- !, we deduce (a) of the assertion from (1) and (2), while we get 

(b) as follows: 

Let (y~: n E IN) E CB(x~) and 1J < k be arbitrary. From (5) and (6) we deduce 

that r = R(x~) = IHy~) and by (4) we find an 0 < e e]O,e/2], where e := k -TJ, 

such that 

(7) sup limsup(y~,x)- e/2 $ r $ sup 1imsup(y~,x). 
~eA(i,~~) n-oo ~eA(i,y~) n-oo 

Thus, we find an x e A(e,y~) with 

1imsup(y~,x) >r-(-
2

1
-TJ)=c+TJ. 

n-oo 

On the other hand, we deduce from the definition of A(€, y~) and (7) that 

liminf(y~,x) = limsup(y~,x) -osc((y~,x)) 
n-+oo n-oo 

e ( _) 1 1 <r+-- 1-e <r----+e=c-n 2 - 2 2 ., 

which completes the proof. 

0 

For the sequel, we assume that X has property (CBH) and that we have 

chosen (x~: n E IN) C X' and c E JR. as in Lemma (2.2.1). To handle the space 

L1({0, 1)1'), we need the following notations: For a finite set A, the set of all 

mappings <p : A -+ { 0, 1} will be denoted by 2A; for A' C A and cp' E 2A', the set 

of all extensions of cp' onto the whole of A will be denoted by 2"'' ,A. For any set 

r, the union U{2AIA E P,(r)} is denoted by Sr and for the domain of 'P E Sr we 

write D( <p ). 

R. Haydon (34, p.6, Lemma 3] provided the following characteri~ation for a 

B,~ach spaceY to contain an isometric copy of L1 ( {0, l}r). 
2.2.2 Lemma: Let Y be a Banach space and r a set. Then Y contains ail 

isometric copy of L1 ( {0, 1 }I') if and only ifthere ~xists a family (y"' : <p E Sr) in 

'Y satisfying (a) and (b) as given below; 

Y"'' = 21A'I-IAI L y"' for any A E PJ(f),A' C A and <p
1 E 2A' 

<p E 2"'',A 
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(note, that I2<P',AI == 21AI-IA'I, and hence, that Y<P' is the arithmetic mean of 

(Y<P : cp E 2<P',A )). 

(b) II L a'l'y'l'll= L la'l'!foranyAE'P1(r)and(a<P:cpE2A)clR. 

cp E 2A cp E 2A 

In this case, there exists an isometry T: L1 ( {0, l}r) --.. Y such that T(e'l') = y'l' 

{orcp E Sr, where e'l' E L1({0, l}r) is defined by 

Another sufficient condition, for X' to contain L1 ( {0, 1 }r) can be formulated 

using the following definition. 

2.2.3 .Definition: Let rhea set. A family F = (x(A,B) .: A E P,(r), B C 2A) 

in B1 (X) is said to satisfy (Fr) if the following condition hold: 

(Fr) For every A E P,(r) and n E 1N there exists a family (x'(cp, n}: cp E 2A) C 

X' such that 

{a) x'(cp,n) E co({x:,.lm ~ n}), if cp E 2A, and 

(b) 

( IA'I-IAI "" I ( I I ) { ~ Hl- jAif+l - ~) if cp' E B' 
2 L.... a:(cp,n),a:A,B) -c <-l(l- 1 _!)if 'dB' 

1 A - 2 JA'J+l n 'P l" 
cpE 2'~' • 

whenever A' C A, cp1 E 2A' and B' C 2A'. 

For the sake of brevity, we will denote the set {(A, B) IA E 'P !(r), B C 2A} by Ir, 

the set of all families F =(a:( A, B) : (A, B) E Ir) which satisfy (Fr) by Fr; and 

the values ~(1- JAj+1 -~)and ~(1- tAj+l) by 6(A,n) and 6(A) respectively 
for A E P,(r) and n E lN. 

With this definition we are in a position to state the following result. 

2.2.4 Lemma: Let r be an infinite set. H Fr f= 0, then there exists an 
isometric copy ofL1({0, l}r) in X'. 
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Proof of (2.2.4) : 
Let F = (x(A, B) : (A, B) E Ir) C B1 (Xi} satisfy property (Fr ). For each <p E Sr 
and each n E IN' choose x1(<p,n) E B1(X') as prescribed in (Fr) and define for 

each t/J E Sr and each A E Pj(r) 

(1) y'(t/J,A) := 2(0(1/>)nAHAI x'(<p, IAI + 1) , 

The net (y'(tjJ,A): t/J E Sr)AeP1(r) has an accumulation point (y'(t/J): t/J E Sr) 

in the product K := fl'~'eSr co({x~: n E IN'}{, endowed with the product of 
---;.,...-,---==-;,-,.,w• 

the weak•-topology on co( {x~ : n E IN'}) , {the elements of P,(r) are ordered by 

inclusion). 
From (1) and (Fr )(a) we have 

{2) y'(t/J) E n co{{x:,.: m 2:: n}t• for each t/J E Sr, 
nEN 

Since for A,A',A E P,(r), with A' C A C A, and t/J' E 2A' we get from (1) 

2lA'HAl L y'(t/J,A) = 2lA'HAl L 2lAl-lAl L x'(t/J, IAI + 1) 

t/J E 2.p',A t/J E 2.p',A <p E 2'~'•A 

we deduce that 

(3) 

= 2lA'HAl :£ x'(<p, IAI + 1) 

<p E 21/>',A 

= y'(t/J'' A), 

y'(t/J') = 21A'l-IAI L y'(t/J) 

t/J E 2.p',A 

whenever A' C A E 1' J(r) and if;' E 2A'. 

From (Fr )(b) we conclude for A, A E Poo(r), with A C A, for t/J E 2A and B C 2A 

(y'(t/J,A),x(A,B)) -c=21AHAI( L x1(.p,IAI+1),x(A,B)) -c 

<p E 21/>,A 

{ 
;:::: t(1 - (Ai+l - (A~+l) if tP E B 

I ( I I ) . • d s; -2 1 - IAI+J - iAi+i If 1/J "' B. 



52 

Since y'(t/J) is a w•-accumulation-point of the net 

(y'(t/J,A): A E 'P,(r), with D(t/J) c ..4) 

for every t/J E Sr, it follows that 

(4) 
I {?: ~(A) if t/J E B 

(y(t/J),x(A,B))-c ~-~(A) ift/Jf/B 

whenever A E 'P ,{r), t/J E 2A and B C 2A. 

We now choose a fixed 1 E r. Since r is infinite, it suffices to show that the family 

((y'(tjJ1)- y1(tjJ0 )): t/J E Sr\{-rJ), satsifies (a) and (b) of Lemma {2.2.2), where 

tjJ 8 : D(t/J) U {'Y} -+ {0, 1}, is given by t/J9 Io(.p) = t/J and tjJ9(1) = 9 if 9 E {0, 1}. 

and t/J E Sf\hl· 
Condition {a) follows from (3). To show (b), let A E 'P,(r \ {'Y}) and 

(aop : <p E 2A) C lR. From (2) and the choice of (x~: n E IN"), it follows (compare 

(2.2.1)) that for.any x E B1(X) and <p E 2A 

{x,y'(cp1)-y1(cp0
)) ~osc{x,x~) ~ 1 , 

which implies that 

·II L aop(y'(cp1)-y'(cp0 ))11 ~ L laopl· 

tp E 2A <p E 2A 

To show "?:" let t: > 0. Without loss of generality, assume 2~(A) ?: 1 - t:. 

Otherwise replace A by an A E 'PJ{r \ h}) with A C A and 2~{A)?: 1- t: and 

note that by (3) we have 

and 

L 21AI-IA1a(.;.IA)(Y'(cpl) _ y'(cpo)) = 
cp E 2A 

L 2lAI-IAlla<.;.l~>l 
cp E 2A 

Now take x := x(A U b }, B), where 

L aop(y'(cpl)- y'(•l)) 

<p E 2A 
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By (4) we have 

II L acp(y'(!f'l)-y'(lf'o))ll?: L acp(x,y'(!f'l)-y(!f'o)) 

If' E 2A If' E 2A 

?: L acpsign(acp)2t.(A) 

If' E 2A 

?: (1- c) L iacpl· 

lf'E 2A 

The assertion follows since c ?: 0 was arbitrary. 

By (2.2.4), it is enough to show that F"'1 =f 0. As we will see from Lemma 

(2.2.5), it is sufficient to show t~at for every a E {l,wo) each FE F[1,ar can be 

extended to an Fo E F[o,a(. 

2.2.5 Lemma: Suppose tl1at for every a E (1,wo], each family F = 

(x(A, B) : (A, B) E Ir1,ar) C B1(X) satisfying (Fp,ar) can be extended to an 

Fo = (x(A, B) :(A, B) E I[o,,[) whid1 sa.tsines (F[o,a()· 
Then Fw

1 
is not empty; in particular, L1 ( {0, 1}"'1 ) can be embedded in X'. 

Proof of (2.2.5) : 
In order to show that there exists an FE F 011 , we define an Fp E Fp by transfinite 

induction for every (:J E (O,wd such that Fpii,a = F,a whenever P < (:J. 

For (:J = 0, we remark that Io = {(0, {0} ), (0, 0)} and choose x = x(0, {0} )=x(0, 0) 

in B1(X) with limsup,._
00

{x, x~) > c and lim infn-oo{x, x~,) < -c (this is possible 

by Lemma (2.2.1)). Since 6:(0, n) =-~for n E IN, (Fs) follows trivially. 

If (:J = j3 + 1, with j3 < WI and with F,a E F,a having been chosen, one can usc the 

· assu!Uption to get· an extension Fp of F,a in Fp by reordering (:J into (in : n < a) 

an a :S Wo and where io ::;: jj. 
(:J is a limit ordinal and if we assume that (F,a : j3 < (:J) has already been chosen, 

observe that Ip = U.B<fJ I ,a. 
Fpl is an extension of Fp1 for 0 < f:J1 < f:J2 < (:J, we get a family 

Fp::;: (x(A,B): (A,B),.E Ip) 

. FpiJ. ::;: F,a whenever 0 < j3 < fl. Since every A E PJ(fi) is already 
p 

PJ(P), where j3 < fJ is sufficiently la1·ge, Fp satisfies (Fp). 
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In order to show the assumption of Lemma (2.2.5), one needs the following 

Lemmas (2.2.6) and (2.2. 7). Lemma (2.2.6) can be shown in a similar way as 

(34, p.3, Lemma 2], where (ACBH) is assumed, while Lemma (2.2.7) involves the 

classical Ramsey theorem as presented in (44, Theorem 1.1]. 

2.2.6 Lemma: Let A~,A2 , ••• Ak C X' be sets c~aining convex blocks of -(x~:n ElN) and let 6 > 0. 

Then there exists At C At, A2 C A2, ... , Ak C Ak, still containing convex blocks 

of(x~:n ElN), and for every B C {1, ... ,k} there exists x(B) E Bt(X) with 

I { ~ (\ - 6) if i E B 
(x,x(B))-c 5-(f-6) ifi¢B 

wheneveri E {1, ... ,k}, x' E A; and B C {l, ... ,k}. 

Proof of (2.2.6} : 

By assumption we can choose for every i 5 k a convex block (y~i)) of (x~: n E lN) 

·in A;: By passing to subsequences if necessary, we can assume that (y~: n E JN), 
where y~ := f I;~=t y~i) for n E 1N, is a convex block of (y~:n E 1N) also. 

Using Lemma (2.2.1}, we find x E Bt(X) and infinite, disjoint Nt,N2 E 1N with 

(1) (y~,x) ~c+~- :k ifnENtland (y~,x) 5c-i+ ~ ifnEN2. 

From the properties of(x~:n ElN) (compare Lemma (2.2.1)), we deduce for eaclt 

i5kthat 

limsup (y~i>,x) 
n-oo,nEN1 

= ( limsup (y~i>,x)- liminf (y~,x)) + liminf (y~,x) 
n-oo,neN1 n-oo,nEN2 n-+oo,nEN2 

1 0 
<1+c--+-
- 2 4k 

1 0 
= c+ 2 + 4k · 

By passing to a cofinite subset of Nt, we may assume that 

(2) (') 1 0 (y, ' x) < c + - + -
n ' - 2 2k 

Similary, we may assume that 

{3) ( 
l(i) ) 1 0 

Y x >e---n•- 2 2k 

' l 
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We deduce from (1) and (2) that for each i $ k and n E N1 

(y~il,x) = k(y~,x)- L: (y~jl,x) 
j~k,j~i 

1 6 1 6 
~ k( c + 2 - 4k) - ( k - 1 )( c + 2 + 2k) 

1 
>c+ 2-6. 

Similary1 we deduce from (1) and (3): 

(y~i) 
1
x) < c- ~ + 6 fori$ k and n e N2. 

Now let B C {1
1 

••• 1 k }. If we define for each i E {11 ••• 1 k} 

A' ·- { {y~illnE N1} if i E B 
;·- {y~illnEN2} ifi¢B 

and x(B) := X
1 

then A~, ... , A~ still contain convex blocks of (x~: n E IN). More

over, fori$ k andy' E A:, 
I { ~ (! - 6) if i E B 

(4) (y,x(B))-c $-(~-6) ifi¢B 

Repeating this process for every B E { B I> ••• , B2k} = P( { 1, ... , k}) we get sets 

A; :::> All) :::> ••• :::> A~2t) for every i $ k and elements x(BJ), x(B2), ... , x(B2t) E 

B1 (X) such that for every f. E {1, ... , 2k}, i $ k, and y' E A~t), ( 4) holds for 

B := Bt. Taking A; := Al2
t) = nl~2k All) for i E {1, ... , k }, we note that the 

assertion holds for the chosen x(BJ), ... , x(B2t ). 

0 

2.2.7 Lemma: Let (Jm : m E IN) be a sequence of finite sets; for every 

m E IN and j E Jm let L(m,j) again be a finite set. For every m E IN, j E J,., and 

f. E L(m,il• let Jt~.j) : !No + m--+ JR. 
Also, assume that 

L Jt!~,j)(k) ~ 0 formE INo,j E Jm, and k E !No+ m. 

lEL(m,j) 

TlJen there exists a subsequence (km) of IN, and for eaclJ m E IN and j E J,., a 

bijection 

such that 
IL(m,j)l 

b(m,j): {1,2, ... , IL(m,j)l}--+ L(m,j), 

L: Jt!:,Jtl(t)(k,..
4

) ~ 0, whenever m $m1 < m2 < ... < miL(m,j)l· 
t=l 
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Proof of (2.2.7) : 
First let be f(t) : IN -+ lR, for£ E {1, ... , k }, k E IN, be such that E:=d(t>(n) ~ 0 

ifn E IN. 

We show that, for given infinite set N C IN, there exists an infinite M C N and a 

bijection b: {1, ... , k} -+ {1, ... , k} such that 

" (1) L fb(l)(mt) ~ 0 whenever m1 < ... < mk lie in M. 
l=l 

The classical Ramsey theorem (compare (44, Theorem 1.1 and following remarks]) 

states that for any infinite N C IN and any 

A C (N)A: := {(nt.··. ,nk) E &" ln1 < ... < nk} 

there exists an infinite M C N such that 

either (M)k C A or A C (N]k \ [M)k· 

Let II= {7rlt····7rk!} be the set of all permutations on {1,2, ... ,k}. Setting 

M(o) := N and using Ramsey's theorem, we can choose successively for each 

i E {1 •... ,k!} an infinite M(i) C N with M(i) C M(i-J) such that the set 

k 

A"i := {(nit ... , nk) E [M(i-l)]k I L f"';(t>(nt) ~ 0} 
l=J 

either contains (M(i)]k or does not meet it. Now we have to show that there exists 

at least one i :<:; k! with [M<il]k C A,.;· This can be seen as follows: 

Assuming that no A .. i contains [MCi>]k, we conclude that A .. n (M(k!)]k = 0 for 

every 1r E II. This means that for any m 1 < m2 < ... < mk in M(k!) and any 

permutation 1r E II, 1::=1 r<t>(mt) < 0. But this would imply; that for any 

mt < m2··· < mk of M(k!), 

k 

o > L: L: r<t><mt) 
.-en t=l 

k 

= L: L: r<t>(mt) 
t=i.-EU 

k k 

= L L 1{1r E III1r(t') =ill· JCi>(mt) 
l=l j=l 

k " = (k- t)! z: z: ,(j)(mt>, 
l=l j=l 
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which contradicts the assumption. Thus, we have verified the assertion stated at 

the beginning of the proof. 

Applying the same reasoning, for a fixed m E IN and for an infinite N C INo + m, 

IJml times, we get an infinite Mm C Nand, for every j E Jm, a bijection b(m,j): 

{1, ... , IL(m,j)l} -+ L(m,j)• such that 

L(m,j) 

(2) ~ fb(m~j)(t)(n ) > 0 
L..J (m,J) t -
t=l 

whenever j E Jm and n1 < ... < niL(m,i)l are in Mm. 
It can be assumed that (Mm: m E IN) decreases. For an increasing sequence 

(km:m EIN), with km E Mm if mE IN, the assertion is then satisfied. 

Now we can state and show the last step of the proof of Theorem (2.1.3.). 

2.2.8 Lemma: Suppose a E [l,wo) and that F = (x(A, B) :(A, B) E I[l,<>[) 

satisfies condition (F[l,a[)· 

Then there exists an extension Fo ::::: (x(A, B) : (A, B) E I[o,a[) ofF, which 

satisfies (.1'(o,af)· 

Proof of (2.2.8) : 

By induction, we will choose for every (J E [0, a) n wo a family 

(x(A,B): A C (J,with 0 E A and, if (J > 0, (J -1 E A; B C 2A) 

such that the following condition (1)((3) is satisfied: ''; 

(1)((3) For each 'Y E [(J, a) nwo and n E IN there exists a family (z'(cp, n): cp E 21 ) 

in X' such that 

a) z'(cp, n) E co( {x:,.: m?: n}) if cp E 2", and 

b)(21AHrl L z'(cp,n),x(A,B)}-c{~--~~~:~~ :~~~~ 
cp E 2"''' 

whenever A E P((J) U P((1, 1[), 1/J E 2A and B C 2A . 

U {A C (J' I 0 E A and, if 0 < (J', (J' - 1 E A} = {A C (J I 0 E A}, 
0~/J'~fJ 

. value x( A, B) is defined for each A E P J([l, a[) U P((J) and each B C 2A in 

induction step (J.) 
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Having done this, we get an extension (x(A,B) : A E PJ(Ot),B C 2A) ofF 
satisfying (F .. ), which can be seen as follows: For an arbitrary A E P

1

(0t) and an 

n E IN, one chooses /J E (0, Ot] n w0 with A C /Janda family (z'(tp, n): tp E 2fl) as 
in (1)(/1). Then one observes that (x'(tp, n): tp E 2A), can be defined by 

x'(tp,n)::::21AI-IfJI L z'(<P,n) fortpe2A; 

<P E 2"'·11 

this family satisfies (a) of (Fo) because of (1)(/J)(a) and from (1)(/J)(b) we deduce 
(:F .. )(b) by the following equations: 

(21A'I-IAI L x'(tp,n),x(A',B'))- c 

tp E 2"'',A 

::: (21A'I-IAI L 2IAI-1111 L z'(<P,n),x(A',B')) -c 

tp E 2"'',A <j; E 2"'·11 

= (21A'I-1111 L z'(<P,n),:~;(A',B')) -c 

<j; E 2"''·11 

{ ?: .1(A',n) iftp' E B' 
.$-.1(A',n) iftp'f/B' 

whenever A' C A; tp 1 E 2A' and B' C 2A'. 
If /J = 0, no x(A,B) has to be defined. To verify (1)(0), we chose for 1 E (O,Ot]nw

0 and n E 1N a family (x'(tp, n): tp E 2fl,·t() C X' as in F[J,o( (taking A:= (I, 1() and 
set, for each tp E 2'1, z'(tp, n) :::: x'('P/jl,,.f• n). It follows, that (z'(tp, n) : tp E 2~') 
satisfies (a) and (b) of (1)(0). Indeed, (1)(0)(a) follows from (F[

1

,or)(a), and 
(l)(O)(b) follows from (F[1,or)(b) which can be shown in the following way: 

(21AI-hl L z'(tp,n),x(A,B))- c 

tp E 2"'·~' 

= (21AI-Ifl."Y!I L x 1(tp,n),x(A,B))- c 
tp E 2!/J,(l,,.f 

{ ?: .1(A,n) ift/JEB 
.$ -.1(A, n) if t/J f/ B 

whenever A E P((I, 1(), t/J E 2A and B c 2A. 
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Suppose now that for {J > 0, x(A,B) has been chosen for each A c {J -1 with 

0 E A and each B C 2A. 

For n E 1N we set ')'(n) := max{')' $ a : hi $ n} (thereby concluding that 

')'(1) = 1,')'(2) = 2, ... and if a < wo, then a = 1'(1al) = ')'(Ia + 11) ... ), for 

A E PI( a) we set t(A) :=max( A)+ 1 (so we have A c t(A) C a for an A E P1(a)) 

and, for 1/J E s .. , t(,P) := l(D(,P)). 
Choosing for every n E 1N, (z'(cp,n): cp E 2..,(n)u,8) as in (1)({1 -1), and setting for 

each 1/J E s .. and n E 1N with ')'(n) 2: l(,P), 

y'(,P,n) := 21D(V>)I-h(n)u,81 z'(cp,n) 

we get a family (y'(,P, n) : 1/J E S .. , ')'(n) 2: l(tfJ)) with properties (2),(3) and (4) 
as stated and verified below. 

By (1)(,8- 1)(a)), 

(2) y'(cp,n) E co({x~: m 2: n}) if cp E s .. and 1'(n) 2: l(t/J). 

From the definition of fi' ( ,P, n) we have 

( 3) 2IA'HAI L ii'(,P,n) 

1/J E 2.p',A 

= 21A'HAI L 21D(V>)I-h(n)U,81 L z'(cp, n) 

1/J E 2\II',A 'f' E 2.P,"f(n)up 

z'(cp',n) 

=y'(,P',n), 

whenever A E 'PJ(a),A' C A,,P' E 2A' and ')'(n) 2: i(A). 

Finally (1 )({J - 1 )(b) implies 

(4) (Y'(,P,n),x(A,B)) -c 

_ (2IAI-h(n)u,8l ~ ~'( ) (A B))_ { 2: b.(A,n) if 1/J E B 
- L z <p,n,x ' c <-b.(An) if,Ptf.B 

'P E 2.P,"f(n)up - ' 

whenever A E P/([1,a))U'P(,B -1), 1/J E 2A and ')'(n) 2: t(A). 
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Define now for m E lN 

for (A, B, 1/J) E Jm 

and for cp E L(m,A,B,t/1) and k ~ m: 

"' ·- { ziAI-IAuPI( (ji'(cp, k), x(A, B)) - c- A( A, k)) if 1/J E B 
f(m,A,B,t/!)(k) .- ziAHAuPI( -(ji'(cp, k),x(A,B)) + c- A( A, k)) if 1/J (/.B. 

We conclude from (3) and (4), that the assumption of Lemma (2.2.7) is satisfied. 

Indeed, we have 

L: f(m,A,B,t/!)(k) 
'P E L(m,A,B,t/1) 

= (21AI-IAUPI L ±(Y'(cp,k),x(A,B))) =F c- A(A,k) 
'PE2V>,AU(J 

=±(y'(I/J,k),x(A,B))=Fc-.6(A,k) ~ 0 

whenever mE lN, k ~ m and (A,B,I/J) E Jm. 
So we can find a subsequence (kn : n E lN) of lN such that the family 

(y'(cp,n): cp E S .. , )'(n) ~ l(cp)), where y'(cp,n) := y'(cp,kn) ifcp E S .. and 

'Y(n) ~ l(cp), still satisfies (2),(3) and (4), and such that, moreover, the following 

property holds: 

(5) For every n E lN, A E 'P([1, 'Y(n)[) U 'P((/1- 1) n 'Y(n)), B c 2A, and 1/J E 2A, 

there exists a bijection b(A, B, 1/J, n) : { 1, ... 21AUPI-IAI} -:+ 2t/J,AUP such that 

21AUI!I-IAI 

(21Al-IAufJJ L y'(b(A,B,IjJ,n)(i),n;),x(A,B)) -c 
i=l 

= { Z::~~~U/11-IAI jb(A,B,t/!,n)(i)(kn;) +A( A, kn) 

- "'21AUI!I-IAI Jb(A,B,tjJ,n)(i)(k .) - A(A k ) 
~-1 ~ ' n 

{ 
~ .6( A, n) if ,P E B 
~-A(A,n) ifi/J(/.B 

ifljJ E B 

if 1/J (/. B 
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Now we apply (2.2.6) to (A'I' : cp E 2il), where A'l' := {y'(cp,n)i-y(n) ~ .8} for 

cp E 2P, and to li = 2<1Pl+l) to find for every cp E 211 an N(cp) E P 00(IN0 + 1.81) and 
for every B C 2P an x(f3,B) E B1(X) such that 

(6) I { ~ A(.B) if cp E B 
(y (cp, n), x(.B, B)) - c ::; -A(.B) if cp ¢ B 

whenever B C 211, cp E 2P and n E N(cp). 
For an arbitrary A C fJ with 0, ({J- 1) E A and B c 2A we set: 

(7) x(A, B) := x({J, U 2'M). 
.PEB 

Now we have to verify (1)({J). Toward this end let n E IN and 1' E [{J, a] n Wo be 

arbitr~y. 

We may assume that -y( n) ~ 7, otherwise we replace n by a sufficiently large 

ii E IN. We choose f. E IN such that 

(8) f.~ 12 · n · 221PI. sup(llx'·ll +1). 
jEJol J 

Next we choose for each i E {1, ... f.} and cp E 2P an n(cp, i) with 

(9)(a) n(cp,i) ~ 2n and n(cp,i) E N(cp), 

(b) max({n(cp,i -1)lcp E 2il}) < min({n(cp,i)lcp E 2il}), if 1 < i :Sf.. 

Finally, we define for each cp E 21': 

(10) 
l 

z'(cp,n) := ~ LY'(cp,n(cplp,i)). 
i=l 

Dy (9)(a) and (2), the fan~ily (z'(cp,n) : cp E 21') satisfies (1)(.8)(a). To show 

(1)({J)(b), let A E P((1, -y[) U P({J), B C 2A, and .,P E 211 , it remains to show 

(11) (21AI-I"YI L z;(cp,n),x(A,B))-c{~-~~1:~~ ;:~~; 
cp E 2"'·"Y 

To do this, we consider two cases: 

Case 1: 0 E A and ({J -1) E A (thus A C fJ and x(A,B) was defined in the 

present induction step). 
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For this case we remark first that, by (10) and (3), 

21AI-bl L z'(cp,n) 

Moreover, 

thus, 

<pE 2.p,.., 
t 

= ! 2:_)1Af-bl L y'(<p, n('PifJ, i)) 
i . ·'· •=I '{>€ 2"'•"~ 

( 

=! L21AI-IPI L 21111-bl L y'(<p",n(cp',i)) 
i . 1 ... " , •= cp' E 2"'',... <p11 E 2<P ,.., 

t 
=! L21Af-IPI L y'(cp',n(<p',i)). 

i. " •=I <p' E 2>/>,,... 

(21Af-IPI L y'(<p',n(cp',i)),x(A,B))- c 

cp' E 2>/>,P 

= 21AI-IPI L (y'(cp',n(cp',i)),x(A, U 2-i>))- c 

<p1 E 2.p,p ¢EB 

[by (7)] 

{ 
~ Hl - IPi+l) if"' E B 
$-~(1- 111j+ 1 ) ift/>1/.B 

{ 
~ ~(A,n) if 1/J E B 
$-~(A,n) ift/>(/.B, 

which implies (11). 

Case 2: A E P({J -l)UP([l,')'[) (thus, x(A, B) was chosen in a previous induction 

step or was given by the assumption). 

First we want to introduce the following notations: 

For'{> E S., and A' E P,(a) we set:<{;:= 'PID(<P)np, A':= A' n{J, 
b := b(A,B,t/>,2n) (compare (5) and remark that A E P,([1,')'[) U 'PJ(fJ- 1) C 

'PJ([1, "Y(2n)[) U PJ(fJ- 1)), and 

, 1 
y := i + 1 - 2fi-IAI 

t+t-21111-IAI 2IPHAI 

L 2IAI-Ifil L y'(b(j), n(b(j), i- 1 + j)). 
i=l i=l 
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(Note, that b(j) E 2puA if j $ 21PI-IAI = 21Aup(-IAI and therefore b(j) E 2P.) 

To finish the proof we will show first that 

II21AI-hl L z'(rp,n)-y'll 

is sufficiently small and secondly that y' satisfies the statement in (ll) for 2n 

instead of n. We first do the following calculation: 

21AI-hl L z'(rp,n) 

rp E 2.P>Y 

t 
=! L2IAI-I"YI L y'(rp,n(rplp,i)) 

f. 
· 1=1 ';? E 2tPo"Y 

[by(lO)] 
t =! L21AI-1Aujl( L 2(Aujl(-hl L y'(rp",n(~',i)) 

f. 
t=l rp' E 2.p,Aujl rp" E 2'P' o"Y 

l 
=! L21Al-IAujl( L y'(rp',n(~',i)) 

1.. 
a=l rp' E 2.p,Aujl 

[by (3)] 

t 2I.BHAI 

= ~ L2lAI-IPl L y'(b(j),n(b(j),i) 
i=l j=l 

[the image of b is 2.p,AuP] 

t+t-21.81-iAI 2I.BI-IAI 

= ~2IAI-IPI [ ~ t; y1(b(j), n(b(j), i- 1 + j)) 

2I.BI-IAI 21.81-IAI 

+ L: L: y'(b(j), n(b(j), i)) 
i=l j=i+l 

t i-(t+t-21.81-iAI) 

+ L . ?: y'(b(j),n(b(j),i))] 
i=H2-21.81-IAI J=l 

[for a proof see below] 

I.+ 1 - 21Jli-IAI I E2 + E3 
I. y+-~.-

[note the definition of y1
; E2 and E3 are defined below] 
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(the second to the last equation can be seen in the following way: 

Setting a(i,j) = y'(b(j), n(b(j), i) for i :::; i and j :::; 2IPhAI, we have 

t 21.81-JAI 

2: 2: a{i,j) 
i=l i=l 

= a(l, 1) + a(l, 2} +.,. + a(l, 21.81-IAI) ... 
+ a(2, 1) + a(2, 2} +; .. + a(2, zi.BI-IAI) 

+ a(i,l}+ a(i,2) + ... +a(£,21.81-iAI) 

::::: a(1, 1) + a(2, 2) + ... + a(21PHAI, 21.81-IAI) 

+ a(2, 1) + a(3, 2) + ... + a(l + ziPI-IAI, ziPI-IAI) 

+ a(i + i- 21.81-A, 1) + ... + a(£,21.81-IAI) 

+ a(l, 2) + a(l, 3) + ... + a(l, 2IPHAI) 

+ a(2, 3} + ... + a(2, 21.81-IAI) 

+ a(i + 2- ziPI-,'\ 1} 

+ a(i + 3- ziPI-.4, 1) + a(i + 3- 2IPI-A,2) 

+ a(i, 1) + a(i, 2) + 

from which we conclude the assertion.] 

It follows that 

(12) II y'-21AI-hl L z'(<p,n)ll 

'f' E ztb•r 

+ a(i,ziPI-A -1) 

2l..ii-IPI l + 1 - 2IPI-IAI 
:::; -i-11~2 + ~311 +(1- i ) IIY'II 

:::::: ~2 

=: ~3 
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1 21/ll 
!5 -2 · 2211ll sup II x'·ll +- sup II x'·ll 

f. jEN J f. jEN 1 

(note that y'(rp,n),y' E co({xj liE JN}) and that ~2 and ~3 
have less than 2llll2llll summands] 

!53· 221/ll sup II x'·ll /f. 
jEN 

1 

!5l/(4n). 

((8)] 

From (9)(b) we deduce that 

2n $ n(b(l),i-1 + 1) < n(b(2),i -1 +2) ... < n(b(21AU/li-IAI),i -1 -t21AU/li-IAI), 

whenever i E { 1, ... , f + 1 - 21AuPHAI} 

and it follows from (5) for each i E { 1, ... , f + l- 21AUPI-IAI} that 

ziPI-IAI 

(21AHPI I:· y'(b(j),n(b(j),i-1+j)),;z:(A,B)}-c 
i=l 

{
!5 A(A,2n) ift/JEB 
~ -A( A, 2n) if t/J 1/ B. 

Since y' is a convex combination of 

we have 

ziPI-IAI 

( 2IAI-IPI I: y'(b(j), n(b(j), i- 1 + j)) i $ e + 1- 2IPHAI), 
i=l 

( ' ( B)} {~ A(A,2n) ift/JEB 
y,xA, -c $-A(A,2n) ift/Jf/B 

So we deduce (ll) from (12) and the fact that ll;z:(A,B)II$ 1, which finishes the 

proof. 
0 
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2.3 Corollaries 

First we want to deduce two properties of a Banach space which satisfies 

(CBH). Both are derived from the fact that a Banach space having {CBH) admits 

a linea.r and bounded operator S : X -> Loo( {0, l}"'r ), a family (x,.: a <w,.), and 

a D. > 0 such that 

II S(xa)- S(xp)ll ~D. for a, f) E {O,w,.[, with a.:f f) 
I 

(Proposition (2.1.15) (E6 )(w,.) ~(&, )(w,)). The first property shows that such a 

Banach space "nearly contains" et(w,) (but only nearly, as shown by the example 

cited in (2.1.5){i)) and the second says that such a space cannot be generated by 

a conditionally weakly compact set. 

Then we show, following a proof of J. Bourgain and J. Diestel[4, p.55, Propo

sition 7], that Banach spaces admitting limited sets which are not relatively weakly 

compact enjoy property (CBH). 

2.3.1 Corollary: Let X satisfy (CBH). Then: 

a) There exists a family (x,.: a <wp) C X and a 8 > 0 with tlle followiiJg 

properties: 

For every infinite I C w,. and every familiy (y, : a E I) C X for which 

II X a -Yo II< 8 for a E I, there exists an infinte f C I such that {Yo : a E f) 
is equivalent to ( el1

) : i E 1}. 
b) X is not generated by a weakly conditionally compact set. 

Proof of (2.3.1) : 
Proof of (a): 

By Proposition (2.1.6)(b )(ii) and (g) (in the case w, > wl) and by Theorem (2.1.3) 

and (2.1.6)(f)({E6 )(w,.) ~(E7 )(w,)) (in the case w,. = w!), we get a bounded 

operatorS: X-> L00({0, l}"'P), a bounded family (xa:a <wp) C X and a 6 > 0 

as in (E1 )(w,.). We want to verify the assertion for 8 :== D./(3(11 S II +1)}. To this 

end, let IE 'Poo(w,.) and (Yo :a E I) C X, such that II Yor- x, II< 8, whenever 

a E I; and denote the inclusion from L00({0, l}"'P) into L1({0,l},..P) by T. From 

(ET)(w,.).and the fact that II Til= 1, we have 

liTo S(y .. )- To S(yp)ll ~~~ S(xor)- S(xp)ll- 2811 SIIIITII~ -
3
1

6 ~ 6. 
I I 

Consequently, the set To S( { :r0 I a E I}) is not relatively compact in L1 ( { 0, 1 J "'P ), 

thus not limited in L1({0, 1}"'') (Examples (1.2.4)(a)). We deduce thanhe preim

age of this set corresponding to T cannot be limited in L00( {0, 1 }"'P ). Since 

·- ..... 

···,~ 
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( {0, l}"'P) is a Grothendieck space and enjoys the Dunford-Pet tis property we 

deduce from (1.1.7) and the Rosenthal's it theorem that {S(:ta) I a E I} contains 

a sequence (S(:t.,.n): n e lN), which is equivalent to (e~1 >:n e lN). Since e1 is 

projective, (:tan) is equivalent to (e~1 >:n ElN) as well. 

Proof of (b): Suppose that X is generated by a conditionally a(X,X')-compact 

set C. For every a we find ka E lN, r(a,1), ... ,r(a,k,.) E lR and 

y(a, 1), ... , y(a, k.,.) E C such that for every a < {1, 

k" 

ll:ta- L:r(a,i)y(a,i)ll< 6, 
i=l 

where {:ta) and 6 are as in (a). 

Since w, is uncountable, we find an infinite subset I of Wp such that: 

k := sup{ka I a E I}< oo and r :=sup max{lr(a, i)ll i:::; k.,.} < oo. 
aEI 

But this implies that the family (E~~~ r(a, i)y(a, i) :a E I) is conditionally weakly 

compact, which cannot be true by (a). 

0 

2.3.2 Proposition: If X contains limited sets which are not relatively weakly 

compact, then X enjoys tl1e property (CBH). 

Proof of (2.3.2) :(We follow the first part of the proof in [4, p.55, Proposi_tion 

7]) 
Let A C X be limited but not relatively a(X,X')-compact. By the theorem of 

Eberlein,Smulian, and James (36, p.103;.Theorem 1}, we find a bounded sequence 

(xn:n ElN) C A and (x~:n ElN) C X' such that 

(1) ( , )-{1 ifn:::;m 
xn,xm - 0 ifn > m. 

We want to show that (x~: n E lN) has no w•-convergent convex block. 

,. 

Let (y~: n E lN) be a convex block of (x~:n E lN). Thus, there exists an increasing 

sequence (kn: n E lN) C lN and a sequence of non-negative numbers {a; : i E lN) 
such that: 

(2) and 
kn+l-1 

L: a; = 1 if n E lN. 
i-=kn 
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From {1) and {2) we have for each n E lN 

kn+l-1 kn+2-1 

(xk,.+1-h Y~- Y~+i) = 2:: a;(Xkn+t-1> xi) - . L a;(Xk,.+1-l>xi) 
i=kn i:Okn+l 

kn+J-1 

= L a;=L 
i=kn 

Since { Xkn+t -1 In E lN} is limited in X, the sequence (y~ - y~+l : n E lN) does 

not .converge in O'(X', X) to 0, therefore (y~: n E JN) is not O'(X', X)-convergent. 

The following Corollary collects the conditions which imply that in a given 

Banach space all limited sets are relatively weakly compact. They are all weaker 

then the property that X contains a copy of l 1, thus we have generalized the result 

of J. Dourgain and J. Diestel. 

2.3.3 Corollary: The following conditions imply that the limited. sets of X are 

relatively weakly compact: 

a) X' does not contain an copy ofLI({O,l}"'P). 
b) No family (xa:a <wp) C X exists such that every infinite subfamily contains 

a el·basis. 

c) X is conditionally weakly compactly generated. 

d) Under the set theoretical assumption that Wp > w1, X does not contain a 

copy of el(wp)· 

2,3.4 Corollary: 

a) A non-separable Banach space X cannot be generated by an X -limited set. 

b) (Theorem of Josefson.and Nissenzweig) In the dua.I of an infinite dimensional 

Banach space X there exist normed sequenceS which converges in O'(X',X) 

to zero. 

Proof of (2.3.4) 1 

Proof of (a): Suppose X =span( A) where A is limited in X. Since A must be 

conditionally weakly compact (1.1.5), all limited sets of X are relatively weakly 

compact by (2.3.3)( c), which implies that X is weakly compactly generated. Thus, 

X is a Gelfand-Phillips space and must be generated by the relatively compact set 

A, which means that X is separable. 

Proof of (b): If there does not exist a normed O'(X', X)·zero sequence in X', D1 (X) 

is limited in X. Following the arguments in (a),B1(X) must be compact, which 

implies that X is finite dimensional. 0 
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2.3.5 Remark: 
a) The Grothendieck C(K)- space constructed by M. Talagrand under the contin

uum hypothesis (compare (2.1.5)(h)) is a space I}ot containing £1(wt) {Propo

sition (2.1.5)((E!) <===> (E6)(wc))). By (1.1.7) and (1.1.8) it contains limited 

sets which are not relatively weakly compact. Thus, without any further set 
axioms, we cannot deduce from the fact that X has limited subsets which are 

not. relatively weakly compact, that X contains a copy of i 1 (wl}. 

b) In (5.2) we shall construct a Banach space not containing f 1 and not satisfying 

the Gelfand-Phillips property. Thus, the result of J. Bourgain and J. Diestel 
(that £1 rt. X ==> all limited subsets of X are relatively weakly compact} 

cannot be sharpened in the following sense: from i 1 rt. X we cannot deduce 

that all limited sets are already relatively (norm-) compact. 
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3 Limited sets in C(K)-spaces 

An easy argument shows that in order to characterize limited. sets in any 

Banach space X, it would be sufficient to investigate limited sets in C(K)-spaces; 

namely, we have for an A C X, 

AisX-Iimited <=> AislimitedinC(B1(X')), 

where B1(X') is endowed with r!(X',X)nB1(X') and X is embedded in C(B1(X')) 

in the canonical way. 

(" => " : obvious 

"., => .,, : If (x~:n E .IN) is a u(X' ,X)-zero sequence, then (6.,~ -60 : n E IN) is 

w•-zero in M(B1(X')).) 

Thus, the investigation of limited sets is of special interest. 

In section (3.1), we show how to construct, from a limited but not relatively 

compact subset in a C(K)-space, a normed and limited sequence Un! n E .IN) C 

C(K) of functions with pairwise disjoint supports. Since, in particular, such a 

sequence is equivalent to (e~o): n E IN), we deduce that {1.3.3)(a) is reversible 

for C(K)·spaces and so we can characterize the Gelfand-Phillips property of a 

C(K)-space by the property that every sequence (xn: n E IN) which is equivalent 

to (e~0): n E .IN) contains a subsequence (xn: nEN) for which span(xn : n E .IN) is 

complemented in C(K). 

In the other sections, we formulate sufficient conditions for limitedness, which 

will be applied in chapter 5 to construct spaces without the Gelfand-Phillips prop

erty. 

In the sequel, K is always a compact space. 
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3.1 The existence of limited and normed sequences in C(K) with pair-

wise disjoint supports if C(K) is not Gelfa11d-Phillips 

Theorem (3.1.3) shows how to construct, from a limited and not relatively 

compact set A C C(K), a limited normed sequence(!,.: n E lN) whose elements 

have pairwise disjoint supports. We begin with two lemmas which contain the 

substance of the proof of (3.1.3). 
3.1.1 Lemma: Let A be limited in C(K) and let k E lN. 

Then for every g E C((-c,cj&), where c :== sup/EA 11!11, the set 

Ag :==.{g(ft(-),h(·),: .. ,./k(·)) I hI {2, ... I ikE A} 

is also limited in C(K). 

Proof of (3.1.1) : 

By induction, we first show that for each i E lN0 and each i'i := (n1 , ... , nk) E IN~ 

with E~=1 n; = e, the set 

is limited in C(K). 

Fore== 0 the assertiotl is trivial (A(o, ... ,O) = {1}). 
Supposing that the assertion has been proven for i - 1, e ;?. 1, we have to 

show that for n = (nl!n2, ... ,nk) E lN~ with L~=ln; == e, a sequence 

(f(~1,m) • /(~~m) ... f(~~m) : m E lN) C A;r (i.e. f(j,rn) E A for j $ k and m E IN), 
and a w•-zero sequence (J.L,.:n E IN) in M(K) it follows that 

(1) 

Since i;?, 1, we can assume w.l.o.g. that n 1 2:: 1. Since (h.J.L,.:n EIN) is a w•-zero 

sequence for each h E C( 1(), we deduce from the assumption that the assertion 

has been proven for e - 1 that 

(h (f"l -1 1"2 f"k ) ) ( trlt-1 fR2 t"k h ) 0 
• (1,m) '1(2,m)' · •· (k,rn) ·I-'m == 1(1,m) 'J(2,m) • • • l(k,m)' ·1-'rn m-:::;:., 

for each h E C(K). 

Thus, ((!(~1.~~ • ~~~rn) ••• f(~~rn)).J.Lm : m E lN) is a a(C(K), M(K))-zero sequence · 

also and we deduce (1) from the C(K)-limitedness of (i(l,m) : m E IN) since·. 

(tnt tn~ t"k } ( t (j"t-1 tn~ t"k ) ) 0 
(l,m) '1(2,m) •' 'l(k,m)>jl.n == J(l,m)> (l,m) · 1(2,m) • · • J(k,m) •I-'m ,~ • 
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This finishes the proof of the induction step. 

We conciude that the set G := {g E C((-c, c]k) I A9 is C(K) -limited} contains 

all polynomials. In particular it follows from the theorem of Stone and Weierstra6 

that it is dense in C((""7c, c]k), so we can deduce the 11$Sertion from Proposition 

{1.1.4). 

3.1.2 Lemma: Let Un: n E IN') be a normed, non negative, weakly to zero 

converging sequence in C(K). 

The~ theie exist k E IN'o, g E C([O, l]k+1 ), with 0 :5 g :5 1, N E 'Poo(IN'), and 

m1, mz,.,. , mk E IN' such that the sequence 

is normed arid its elements have pairwise disjoint supports. 

Proof of (3.1.2) : 

For the sequel, we choose a fixed hE C([O, 1]) with 

(1) 

For f E C(K) and e > 0 we set 

We will say that a sequence <in: n E IN') C C( K) satisfies (2) if 

(2) there exists anNE 'P.,o(JN') such that (A< 114l(jn): n EN) is pairwise disjoint. 

If a sequence Un: n E IN') C C(K) does not satisfy (2), it follows that 

(3) there exists annE IN' for which the set 

is of infinite cardinality. 

This can be seen in the following way; 

Assume that for each n E lN the set {mE IN',m ~ nl A(1/4l(jn) n A (II•> im f:. 0} 
is finite. Then we can choose for eachn E IN' an m(n) E IN' such that 

whenever m ~ m(n). 
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Setting n1 := 1 and, inductively, nH1 := m(n~;), the sets A< 114>(J,..), k e IN, are 

pairwise disjoint, and thus, (3) is fulfilled. 

By induction, we choose now for every k E !No an N~; E 'Poo(IN), a 9(1:) in 

C((O, 1)1:+1) with II 9(1:) II= 1 and 0 ::; gM ::; 1, and an m~; e, !No such that 

one of the following two cases occur: 

Either k ;?: 1 and the sequence (g<c-1)(/,.(· ), fm._ 1 (·), .. • fm, (·)) : n e N~:- 1 ) has 

property (2), in which case 

(4)(k) N~; := N~:-1, m~: := m~:-1 and 
g(l;)({.,e2, ... ,ee+d ;::;; g<c-l)(6 ,'6, ... , {~:)if {.,6, ... ,ek+l e (0, 1), 

or, this is not true and we have 

(5){k) m~; = min(N~;) > m~:-1 and N~; C N~:- 1 if k;?: 1, and· 

(6){k) the sequence (9~1:>: n eN~:), with 

is a normed weak-zero sequence and for each n EN~: we have 

I; 

{ (1;) > .!.} n{f > .!.} {! > .!.} 9n - 4 c m; - 4 n n - 4 . 
i;;l 

If k = 0, we set No := IN,· m0 :::; 0 and take for g<0> the identity on (0, 1). 
Then (5)(0) is an empty condition while (6)(0) follows from the assumption on 
(f,.:n EIN).·· 

We suppose now that fork e IN, (Nt: e < k), (mt: e < k), and (gt: e < k) have 

been chosen. 

In the case that the sequence (g~k-l) : n E N~;_J) (where g~k-l) is defined in 

(6)(k -1)) has property (2), we choose N~;, g~;, and mk as prescribed in (4)(k). 

If it does not satisfy (2), the sequence (g~k-l) : n e N~:-1> n > m~:-d does not 

satisfy it either and we conclude from the.observation at the beginning of the proof 

that it satisfies (3). Thus, there exists m,. > m~:- 1 such that the set 

is infinite. Hence, if we take 
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(5)(k) is satisfied. 

For (1,6 ... ~k+1 E [0, 1], we set 

u<A:>c6. 6 ... e"+1) == h(u<k-l)<6, 6 ... e"+d · u<"'"'1>(e2, e3 ... ek+t)). 

Then g<k) E 0([0,1]"+1) and, by (1) and the fact that g<k-1) was assumed to be 

of norm 1, we deduce that g<"> takes its values in [0, 1] and i~ of norm 1. 

By the choice of N,, there exists for each n EN,~: an wE K with u!!; 1>(w)?: 3/4 

and g~.l:-t)(w)?: 3/4. From (1) we deduce that 

g~">(w) = h(g(k-l)(fn, fmk-1 • • • · • fm1) 'g<k-J)(fm,~: .fmk-1 •" • .fm1 ))(w) 

= h(g~.l:-t)(w). u!!.~:-O(w)) =I, 

which implies that II g~k) II= 1 for each n E N,. FUrthermore, (g~") : n / E N,~:) is 

weak-zero convergent since (g~.I:-J) :n EN,) has this property and his. continuous 

and vanishes in 0. 

It remains to show the inclusion in (6)(k). 

First we remark that, for an w E /( and an n E Nk with g!,">(w) ?: 1/4, it 
follows from the fact that g~k\w) = h(g~k-l)(w)u!:; 1 >(w)) and from (1) that 

g~"- 1 )(w)?: 1/4 and u!!;1>(w))?: 1/4. Thus we deduce from (6)(k -1) that 

{g<.t:> > !1 c {u<~<-1)) > !} n {u<k-1)) > !} 
n - 4 '"k - 4 n - 4 

.1:-1 1 1 ,_1 1 . 1 

c n Um1 ?: 41 n Um.~:?: 4l n num;?: 4l n {f~?: 4l 
i=l i=l 

.1: 1 I 
= num;?: 4}n{/n?: 4}, 

i=1 

which verifies the last assertion and finishes the induction step. 

We now want to show that there is a k E lN for which (g~.l:) : n E IN) satisfies 

condition (2). 

Assuming that this is not true, we deduce that for all k E lN, ( 5 )( k) and ( 6)( k) 

are satisfied; in particular, the set n~=J Urn; ?: t} is non empty for every k E lN, 

and thus, by compactness of K, 
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But this is a contradiction to the assumption that (/n: n E IN) is weakly zero 

convergent .. 

Thus, we can choose a: k E IN, such that (g~k): n E Nt) satisfies (2)and we find 

N E 'Poo(Nk) for which the elements of (A(1 /4 l(g~k)): n EN) are pairwise disjoint. 

Choosing now hE C((O, 1)) with 

0::;; h::;; 1, iil(o,7/8} = 0, and hha/9,1) = l, 
we deduce that g := h o g(k), m1, m 2, .•. , mk and N satisfy the desired conditions 

(note that 

..,.---~K • K 
{gn > 0} = {hog(k)(!n.fmt'"',/m1 ) > 0} 

C {gt*>(j J f. ) > ~}- A0/4l(gtkl) n1 rnA;' • • ·, m1 - 4 - n 

whenever n E N). 

3.1.3 Theorem: Let A C C(K) be limited but not relatively compact. 

Then there exists a sequence (/n:n E IN) Caco(A), finitely many h1, h2 , ••• , hk 

in aco(A), and agE C((-c, c]Hl ), where c := sup/EA II /II, sud! that the sequence 

(g,.: n E IN), with 

is normed, non negative, is stjlJ limited in C(K), and has pairwise disjoint supports. 

Proof of (3.1.3) : 

Since A is limited in C(K), thus weakly conditionally compact by (1.1.5), but not 

relatively compact, we find a a(C(K), M(K))~~ero,sequence <in:n E IN)·c aco(A) 

with 

r:= inf llfnii>O. 
nEN 

Defining for each n E IN, /n := ~ min(lfn(·)l,r), the sequence (fn:n EIN) satisfies 

the assumptions of (3.1.2)and we deduce the existence of k E IN0 , g E C([0,1Jk+1 ), 

m,, m2, ... , ffiL· E IN, and N E 1' oo(IN) such that the sequence (9(/n ,l,.t, ... .JI) : 
n E N) is nonned and such that its element have pairwise disjoint supports. 
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Takhignow 

g(6,6, ... ,~k+J) := g( l(min(I~JI, r},min(l~21. r), ... ,min(l~kl, r))) r . . . 

whenever ~h···•~k+J E [sup 11/11,-sup 11/IIJ, 

hj := imJ for 1 :5 j :5 k ,and 

I; := j,.J for j E IN , 

/EA /EA 

where (ni : j E IN) is strictly increasing and contains just the elements of 

· N \ {m1, ... , mk}, we deduce the assertion from (3.1.1). 

3.1.4 Corollary: The following are equivalent: 

a) · C(K) enjoys the Gelfand-Pbillips property. 

¢ 

b) Each (/,.: n E IN) C C(K), which is equivalent to (e~): n E IN), contains a 

subsequence whose closed span is complemented in C(K). 

c) Each (/,.: n E IN) C C(K), consisting of non negative elements of norm 1 

with pairwise disjoint supports, contains a subsequence whose closed span is 

complemimted in C(K). 

Proof of {3.1.4) : 

(a) =>(b): (1.3.3) (a) 

(b) =>(c): obvious 

-.(a) =>-.(c): {3.1.3) and (1.3.2) 

¢ 
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3.2 Decompositions of sequences of measures. Auxiliary results to in· 

vestigate limited sets in C(K). 

Starting from the fact that a u(C(K), M(K))-zero sequence (f .. : n E IN) is not 

limited if and only if there exfsts a u( C( K), M( K) )-converging (not necessru·ily to 

zero) sequence (~ .. : n E IN) such that 

(+) limsup(f .. ,~ .. ) > 0, 
n-oo 

we will investigate, which additional properties can be required from a weak• -zet·o 

sequence (~,.: n E IN) C M( K) which satisfies ( +) for a given u( C( K), M{l<) )-zero 

sequence (f ,.: n E IN) which i~ not limited ill C( K). . 

Closely following a part of a proof of (9, p.94, Theorem], we will first show 

that (~,.: n E IN) can be chosen to have pairwise disjoint supports {Lemma (3.2.1) 

and Corollary {3.2.2)). 

Secondly, we show ((3.2.3) and (3.2.4)) that for a given sequence (Fn! n E IN) of 

closed subsets of K which is "u"disjoint" (compare condition (3.2.3.1) in (3.2.3)), 

we find N E 'P00(1N) and a a(C(K),M(K))-converging sequence {~n: n EN) 
satisfying ( +) and with supports having p'airwise disjoint neighborhoods 0,. for 

which On n Un'eN,n';tn Fn = 0 (n E N). 
The necessary Lemma (3.2.3) will be formulated in the vector-valued setting 

(by considering M(K,X) instead of M(K)), because we will need it in this form 

in chapter 4. 

3.2.1 Lemma: Let (U, ~. ~) be a finite meas~re space and let (!,.: n E IN) be 

bounded in L1 (~). 

Then tJJere is a subsequence (nk: k E IN) of IN and for each k E IN, 9k and hk 

in L1 (~) such that 

a) (hk:k EIN) converges weakly, 

b) {gk =/; 0} n {Yk' =/; 0} = 0 ~-almost everywhere for each k, k' E IN, 

with k =/; k', and 

c) f,.k = 9k + hk ~-almost everywhere for each k E IN. 

Proof of {3.2.1) : 

W.l.o.g. we can assume that Un: n E IN) is not relatively weakly compact; oth

erwise we find, according to the theorem of Eberlein and .Smulian, a subsequence 

(f,.k: k EIN) which converges weakly and we can take hk := f,.. and 9< := 0 for 

each k E IN. 
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For r > 0 .and f E Lt(Jl) we define 

TJ( r,!) := sup r 1/ldJl ' 
EEE,p(E)5;;r jE 

and for a bounded A C L1 (Jl) 

TJ(r,A):=supTJ(r,f)= sup f 1//dJl. 
/EA EE'£,p(E)5;;r,fEA j E 

By the theorem of Dunford and Pettis (compare (9, p.93, Theorem]), a bounded 
A C L1(Jl) is relatively weakly compact if and only if 

Thus, we have 

(1) 

lim TJ(r, A) = 0. 
r'\,0 

77• :=lim TJ(r, Un /n E 1N}) > 0 
r'\,0 

(note that the limit exist, since TJ(r,A) is decreasing for decreasing r). 

We find therefore a strictly incre~sing (mt: k E JN) C lN, a· decreasing sequence 
{rt:k ElN) C n:t+, and (Et:k ElN) C .E such that 

(2) 

(3) 

We want to show that the sequence (Xfi\Ek/m(k) : k E JN) is relatively weakly compact. 

Assuming that this is not the case, we find again an increasing (kt: e E JN) C lN, a 
decreasing sequence (i't: e E 1N) c Ht, and (Et: e E 1N) c .E such that 

(4) 
Jl(Et) = i'k ----. 0 and 

k-oo 

(5) 

where ij• := limr'\,o TJ(r, {Xfi\Ek IkE JN}) > 0. 



79 

From the definition of q(.,.) a.nd from (2), (3), (4), and (5), we' deduce for each 

t E IN that 

1'/(i't + rt(t), {!,.j n E IN}) ;:;: ( · lfm(k(t))ldfl 
fs,u!>t(t) 

= [ lfm(k(t))ldfl + { !Xn\Et(t/m(k(t))ldfl 
}Et(t) jEt 

~ q• - 2-k(t),.,· + ~· - 2-t,r . 
Since ,.,. = limt-oo 71(rt(l) + rt, Un In "' IN}) and since q• was aSSUmed to be 

strictly positive, we ~ave a contradiction. 

By the theorem of Eberlein a.nd .Smulia.n, we find a subsequence ( kt: t E lN) of lN 

such that 

(6) ht ::::: XO\Et(t) /m(k(l)) is weakly convergent. 

For l E IN we set 

(7) 

Since (2) implies th11t fl( {19tl > 0}) ~ p(Et(t)) = rt(t)-+ 0, there is a subsequcllce 
t-oo 

(l(j) : j E lN) of IN with 

(8) 

If we define 

9; := XAj§t;, where A;:= !19twl > 0} \ U Wit(;') I> 0} fot' j E IN, 
j'>j 

then the gj's have pairwise disjoint supports and the sequence (h;:j E IN), where 

(9) h; := ht(j) + Xn\A; 9t(j) for j E lN, 

converges weakly acc01·ding to (6) and (8). Thus (a) and (b) of the assertion are 

satisfied; (c) follows for n; := m(k(l(j))), j E IN, from (7) and (9). 

0 
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3.2.2 Co~:ollary: . 
a) Let (vn: n E IN) C M(K) be bounded. Then there is a subsequence 

( nk: k E. IN) of IN and, for each k E IN, v~l) and v~2) in M( K) such that 

i) (vi1>: k E IN) converges weakly in M(K), 

ii) supp(vl2
)) n supp(vl~)) = 0 fork, k' E IN with k f; k', and 

iii) Vn• = vl1
) + vl2

) for each k E IN. 

b) Let A C C(K) be conditionally weakly compact but not limited. Then the1·e 

exists a sequence (/n:n E IN) C A and a normedc1(M(K), C(I<))-zero sequence 

(ISn: n E IN) whose elements have pairwise disjoint support such that 

Proof of (3.2.2) : 

Proof of (a): Let IS ;=o L:netl 2-nlvnl· Then for every n E IN, Vn is IS-continuous 

and has a density /n E LJ(IS)· Since Un: n E IN) is bounded, we find by (3.2.1) 

a subsequence ( nk: k E IN) of IN and, for each k E: IN, 9k, hk E L1 (Jl) satisfying 

(a),(b), and (c) of (3.2.1). Since IS is regular, there are compact and pairwise 

disjoint CkC {lgkl > 0}, fork E IN, with 

Taking for each k E IN 

and 

we deduce (i), (ii), and (iii). 

Proof of (b): If A is conditionally c7(C(J<),M(K))-compact .but not limited, we 

find by Lemma (1.3.1) a c7(M(J(), C(K)).:~ero sequence (iln: n E IN) and a weak 

Cauchy sequence (jn: n E IN) C A such that {ilnJm) = C(n,;..) for n, m E IN. By 

(a), there is a subsequence (nk: k E IN) of IN and, for each k E IN, vl1
) and vl2

) 

in M(K) satisfying (i), (ii), and (iii) of (a). From the Dunford-Pettis property of 

C(K) we have 
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Since (vW- ~~~~~~ : k E lN) is a weak*-zero sequence also, there is an no E lN 
such that the sequences (JJj:j E lN) and (/j:j E lN) with, 

( 
(2) (2) ) 

~'2(j+no) - 112(j+no)-l -
/Jj := (2) (2) and /i := /n3(Hno), for j E lN, 

11 112(j+no) - 112(i+no)-lll 

satisfies the desired conditions. 

0 

3.2.3 Lemma: Let (JJn: n E lN) be a bounded sequence in M(K, X) whose 

elements have pairwise disjoint supports and Jet (F,. : n E lN) be a sequence of 

closed and pairwise disjoint subsets of K wi.th the following property: 

(3.2.3.1) For any two disjoint N1, Nz E 'Poo(lN), there are N1 E 'Poo(N!) and 

N2 E 'Poo(N2) such tlJat 

U Fnn U F,. =0. 
nEN1 nEN2 

Let e > 0. 

Then there exists a subsequence (nk: k E lN) of lN, two sequences {fk: k E JN) 
and (hk: k E JN) in C(K), both non negative and normed, such that the following 

properties JJOld: 

(3.2.3.2) For each k E lN there is a neighborhood Ok of supp((gk ·h1 · ... ·hk-J).JJ,.k) , 
with 

i) Ok n 0~;• = 0 fork, k' E lN with k f. k', and 

ii) Ok n Uk'EI'I\{k} F,.k = 0 for each k E lN. 

(3.2.3.3) IIJJn•- (gk · h1 • ... · hk-d·JJn~; II$ e. 
(3.2.3.4) limt-ooo supk;?;l+J II (hi · ... · ht) · (1 - 9k · ht+l ·. ·. · hk-1 ).JJ,., II= 0. 

Proof of (3.2.3) ;(The proof uses ideas from the proof of the Lemma of Rosenthal 

(9, p.82, Rosenthal's Lemma) and the proof of a result of Pe!czy1'iski (45, p.643, 

Lemma 1)) 
W.l.o.g we may assume that II JJn II$ 1 for n E lN. First we choose a sequence 

(m~;: k E lN) C lN with 

00 1 
(1) 2:- $e. 

k=l m~; 

Then we choose inductively, for each k E lN, g~;, h~; E C(K) with 119• 11=11 h~; II= 1, 

0$ g~; $ 1 and 0$ hk :$ 1, an open U~; C K, a strictly increasing (n~k);j ElN) in 

lN, and an n~; E lN0 such that the following properties are satisfied: 
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(2)(k) (ny>: j E IN) C (ny-I): j > 2mk) and nk E (n~A:-1) :J ~ j ~ 
k >I, 

(3)(k) u;; n u;;; = 0 whenever I~ k' <: k and u;; n Uti<A: Fn., = 0, 
(4)(k) {ht >O}n(if;UFn,~)=0, 

(5)(k) {ut>OJnUieNFn\•>=0, 

(6)(k) supp((ht · h2 ... h~:-d.J.tn•) CUt, 
1 

(7)(k) II h1 · h2 ... ht-1(I:.... h~:).p <•> II~ 1/m~:, and 
nj 

(8)(k) II h1 · h2 ... ht-I (I - UI:)·J.tn
1

IIS Ifm~:. 

Fork= I We set njt> := j if j E IN, hi := I, UI := 0 ul := 0, and nl := 0, where 

J.lo := 0 and F
0 

:= 0, and we deduce easily that the desired conditions are satisfied.· 

We assume now that fork> I and for all r.E {I, ... ,k -I}, (n}r):j EIN), hr, Ur, 
and nr have been chosen. 

We define 

(9) 
Ao := U Ur U Fnr 

r<l: 

and for each i E {1,2, ... 2m~:} 

(10) 

From ( 4 )( r ), r < k, we deduce for each i E { 1, 2, ... 2m I:} that 

A; C n {hr > 0} C n(Ur U Fn.)c = ( U 'U;UFn.)c =A~ 
r<l: r<k r<l: 

Since, by assumption, the supports of the elements of {J.tn(A:-1) II $ 2m~o} are 
pairwise disjoint, we may apply the normality of K to find, fhr each 0 $ i $ 2m~o, 
an open G; C K such that 

(11) A; c G; and G; n Gi = 0 for i,j E {0, 1, ... , 2m~o} with i :/: j. 

Since the elements of {Fn\k-1) II $ i $2m~:} are closed and pairwise disjoint also, 
we find open V; C K, 1 $ i $ 2m~o, such that 

(I2) 
F <•-11 C V; and V; n Vj = 0 for i,j E {1, 2, ... , 2m~:} with i :/: j. ni 
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. E': {l, 2, ... , 2m~o} we set 

Jl (k-1) is of norm not greater than one, we deduce from (11) and (12) that ... ' 

J ' ' 

2mk 2mk 

2 ~ lll .. (k-1) I( U V;) + IP n<k-1) I( U 'G'i) 
J i=l i i=l 

2mli 

~ L llln\k-l)I(Vi uG;) 
i:1 I 

·for each j E 1N. Thus, for each j E 1N, at least one of the above summands must not 

be greater than 1/mJ, and it follows that there exists an io E { 1, 2, ... , 2mk} for 

which M;0 is infinite. Now we decompose M;0 into mk pairwise disjoint and infinite 

sets, denoted by M~1>, ... M;~mk), and we deduce from (3.2.3.1) and the normality 

of K that there exist . .M~l E 'Pco{M~)) and open W; C K, for 1 :::; j:::; mk, such 

that 

(14) U F <k-IJ c W; and W; n W; = 0 
nt 

tEM~i) 
•o 

for i,j. E {1,2, ... ,mk} with if j. 

Since Jl (k-1) is of norm not greater .than one, there is a j 0 E {1, 2, ... , mk} such 
nto 

that 

{15) 

N (k-1) ·d (k) (k) r · · 1N I (b · JN) 1N • ow we take nk := n;
0 

an n; := nt(j)• .or J E , w tere <;:J E C 1s 

increasing and consists of the elements of M~0 >. With this choice, (2)(k) follows. 

Since A;0 is closed and since G;0 is open and contains A;0 , there is an open U k C K 

with 

(16) 

Using {10) and the definition of nk, we deduce (6)(k), while {11), (9), and (16) 

imply condition (3)(k). 
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Now we choose an ht and a gk, both in C(K) and satisfying (17) and (18) as listed 

below: 

(17) 0 ~ hk ~ 1, hkla(: nv.c = 1, and hk vanishes on a neighborhood of Ut U Fn~ 
•o •o 

(note that Fn~ = F <~-t> c V;0 by (12), and that Uk c G;0 by (16)) 
"io 

(18) 0 ~ gk ~ 1, gklw~ = 1, and gk vanishes on a neighborhood of 
10 

F := Ute.W!• F,.<t~-t> 
•o 

(note that Wi~ and Fare disjoint by (14)). 

With this choice, we deduce (4)(k) from (17) and (5)(k) from (18). 

Moreover, we deduce for each j E IN that 

1lh1 · hz ... hk-1(1- hk)·J.I (kl II~ lh, · h2 ... ht+J.I (k)l({ht f 1}) 
"i "J 

~ IP (kJI(G;o U llio) 
"i 

[by (17)] 

~ 1/mt 

[n~k) E {n~k-l) I e E M;o} and (13)], 

which verifies (7)(k). Also, 

II h1 ' h2 .. • ht~l (1 - g~:).J.In~ II ~ lht ' h2 .. • hl:-l•J.Ink l({g~; f 1}) 

~ lflnk I(Wjo) 

[by (18)] 

~ 1/m~: 

[n1: = n~:-l) and (15)), 

which verifies (8)(k) and finishes the induction step. 

To prove the assertion, we choose 0~: := U~: \ Ujetl Fn\kl and n~;, h~;, and g~; as in 

the induction, 
1 

From (6)(k) and (5)(k), we deduce that 0~; is a neighborhood of the support ofe: 

(g~:hth2 ... h~:-d.J.Ink' (3.2.3.2)(i) follows from (3)(k) and, since from (2)(k) it ·' 

follows that (nk' :k'>k) C (n}k):jEIN), we deduce (3.2.3.2)(ii) from (3)(k) and 

the above definition of 0~: as follows: 
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for each k E IN. 

Finally, we deduce (3.2.3.3) and (3.2.3.4) respectively from the following inequali

ties: 

and 

II fln 0 -(g~;h1h2 • • • hk-1 ).fin~; II 
:::;11 (1 - g~; )h1 h2 ... ht+fln~; II + II fln1 - ( h1 h2 ... h~;-d.f!n~; II 

k-1 
:::; -

1 + 2:: II (1- hj)h1h2 ... hj+fln, II 
m~; i==l 

(by (8)(k)J 

1 k-1 1 
:::;-+2::-<c 

m~; i=l mi 

(by (7)(j) and (2)(j), and (1)] 

ll(hl ' .. •' hl) · (1-g~; · ht+l · · .. 'ht-d·fln0 II 

:::;11 (h1 · ... · ht-d · (1- g~;).f!n, II 
+ ll(hl '• .. • ht)' (1- hl+l · · ·. 'h~;-d.fln 0 II 
1 k-1 

:::; - + 2:: II (1- hj)h1h2 ... hi-d·~-'"• II 
m~; i=l+l 

(by (8)(k)J 

1 k-1. 1 00 1 
:::;-+L::-:::;2::- ---+0 

m~; jo:.l-l ffij i==l-l ffij t-oo 

(by (7)(j) and (2)(j), and (1)]. 

This completes the proof. 

0 

3.2.4 . Proposition: Let (f!k: k E IN) C M(I{,X') be normed, c > 0, and let 

·. (h~;: k E IN), (gk: k E IN) C C(K), satisfy (3.2.3.3) and (3.2.3.4) of Lemma (3.2.3) 

n~; :=o: k and X' instead of X). 

define ilk :::::: (h1 h2 ... gk}.f!k for k E IN. 

Then 

· if (J-1~;: k E IN) is a a(M(K, X'), C(K, X))-zero sequence, then {itk: k E IN) bas 

the same p1·operty, and 
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b) for a sequence (/n:n ElN) C Bt(C(K,X)) it follows that 

Proof of (3.2.4) : 

In order to prove (a), let IE Bt(C(K)), x E Bt(X), and 8 > 0 be arbitrary. 

By (3.2.3.4), we choose an f. E JN, with 

and ko 2: f.+ 1 with 

Consequently, 

l(xf, f!.t)l ~ l(xfht .. ht, p.t)l+ II (ht · .. · ht) · (1 - g#; · ht+t · ... · h.t-1 ).p,t II~ 8, 

which implies the assertion since C(K, X) is generated by { xf I x E X, I E C(K)}. 

The assertion (b) follows directly from (3.2.3.3). 

0 

Combining Corollary (3.2.2)(b), Lemma (3.2.3) and Proposition (3.2.4), we have 

3.2.5 Corollary: Let (fn:n ElN) C C(K) be conditionally weakly compact but 

not limited and let (Fn: n E JN) be a sequence of pairwise disjoint closed subsets 

of J( which satisfies (3.2.3.1) of Lemma (3.2.3). 

Then there is a subsequence (n.t: k E JN) of 1N and a CT(C(K), M(K))-zero 

sequence (p,t: k E IN) such that 

a) infkeN(fnk>flk) > 0, and 
b) for each k E JN, the support of Ilk has a neighborhood Ok with 

i) O.t n O.t• = 0 for k,k' E 1N with k :f: k', and 

ii) O.t n Uk'EN\(k} Fnk = 0 for each k E JN. 
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3.3 Sufficient conditions for limitedness in C(K) 

In section (3.1) it was shown, that a. limited and normed sequenceof non 

negative functions of C(K) with pairwise disjoint supports can be cons.tructed from 

a. given limited but not relatively compact subset of C(K). By this, we reduced 

the limitedness of subsets in C(K) to the limitedness of normed sequences of non 

negative elements of C(K) with pairwise disjoint support. For such sequences, we 

now want to find sufficient conditions for C(K)-limitedness using only topological 

properties of K. This will be done in Theorem (3.3.1)1 which uses essentially the 

results in section (3.2). Proposition (3.3.2) formulates an easy special case of the 

rather technical conditions in (3.3.1). 

3.3.1 Theorem: Let Un: n E IN) C C(K) be normed and consi11ting of non 

negative elements with pairwise disjoint supports. 

This sequence is limited in C(K) if the following is true: 

For any 6 > 0, there exists an l = t(6) E IN and a sequence (FA6>: n E IN) of 

pairwise disjoint closed subsets of K such that the following conditions (3.3.1.1) . 

and (3.3.1.2) are satisfied: 

(3.3.1.1) i){/n 2 6} C: FA6> for n E IN, 

iiJ For any two disjoint N1,N2 E Poo(lN), there are N1 E 'P00(NJ) and 

N2 E 'P00(N2) such that 

U FA
6
> n U FA6> = 0. 

nENt nEN2 

(3.3.1.2) Let N E 'Poo(lN), p1, P2 E (6, 1] with P1 < P2 1 and let (An: nEN) be a 

sequence of pairwise disjoint closed subsets of K satisfying the following 

property (i): 

iJ For each n E N I there is a neighborhood On of An, with On no ... = 0 
for n, n' E N with n :f: n'' and with On n Un'EN\{n) F~~) ::::: 0 for each 
nEN. 

Then there exists, for each n E N, an open O~i) C K, i E { 1, ... , £}, with 
iiJ An n {/ n :::; PI} c u:=l o~i), for n E N., and . . 

iii) for each sequence (Bn: nEN) C {1,2, ... ,i}, there exists an M E 

Poo(N) such that 

u Un ~ P2} nAn n u Un $ pt} nAnn O~n = 0. 
nEM nEM 
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Proof of (3.3.1).: 
. . 

Let {fn:n EIN) C C(K) satisfy the assumption. To show that Un:n EIN) is limited 

in C(K), we consider anNE 'Po.,(IN) and a normed sequence (fln:riEN) c M(K) 
with pairwise disjoint supports satisfying 

(1) 

We have to show that (pn: neN) d.oes not converge w• to zero. 

(By assumption, (/n: n E IN) is weakly zero convergent and, from (3.2.2), we deduce 

that for any non limited but weakly conditionally compact sequence <in: n E IN) 

there.exists anN .E 'P00(1N) and a weak•-zero sequence (fln:neN) C M(K) having 

pairwise disjoint supports and satisfying (1).) 

We set e := r/2 and, for each n EN, Fn := F~l/m), where mE IN is chosen to be 

greater than 24/r. 

Now the assumptions of Lemma (3.2.3) are sati~fied and we· find a subsequence 

N1 = (nk: k e IN) of N and, for each k e IN, 9k and hk in C(K) for which 

(3.2.3.2),(3.2.3.3), and (3.2.3.4) of Lemma (3.2.3) are satisfied. 

By Proposition (3.2.4)(a), it is enough to show that (vn: n E N1), with 

is not weak• -.zero convergent. 

From (3.2;3.2) of (3.2.3) it follows that, for An := supp(vn)1 n E N1, open neigh

borhoods On can be chosen such that (i) of (3.3.1.2) is satisfied (with 6 = 1/m). 

Moreover, from Proposition (3.2.4)(b) we have 

(2) (vn, fn) ;::: r /2 for each n E NJ. 

We now want to show the following, which is central for the rest of the proof: 

(3) Let P2 >PI ;::: 1/m, 6 > 0, and M E 'P;,{NJ). Then there is agE C(K) and 

an ME 'PQO(M) with 
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In order to ,show (3) for given 1/m $PI < P2 and M E 'Poo(Nl), we choose 

recursively, for each k E lNo, an Mt E 'Poo(M) and a g(l•) E C(K) with 

(4)(k) M~; c Mt-1 ifk > 0, and 
(5)(~) 0$ g<*> $ 1, g<"liA .. n{/n~P2 } = 1, and llg<*>.vni{Jn:$Pd II$ (

1

1
1 

)"for each 

n .EM~;, where e := £(1/m) is as in (3.3.11). 

(note that ( !:jl )" -+ 0 and set 0° :=- 1 ). 
k-oo 

Fork= 0 we define g<0> := 1 and M(o) := M.and deduce (5)(0), since Uvn \ISIII'n II 

for n EM. 
Assuming that g<~<-l) E C(K) and M(k-l) E 'P00(M) have been chosen for k > 0, 

let N := M(k-1) and, for n E N, An := supp(g(k-l>,vn)· Then (An : n E N) 
satisfies (i) of (3.3.1,2) (note that An C An) and we deduce from (3.3.1.2) the 

existence of open 0~), fori$ i, n EN, satisfying (ii) and (iii) of (3.3.1.2). 

For n EN we choose Bn E {1, ... i} such that 

lu<k-ll.vnl({/n $ p!} n 0:") = fe~~t} li"-
0

.vnl({/n $ p!} no:)· 

Thus by (3.3.1.2)(ii), 

(6) lu(k-l).vnl({/n $pi}\ o~9nl) 
= 19(1;-I).Vnl({/n $pi}) -lg(k-1),1/nl({/n $pi} n O~Bnl) 

l 

slu(k-ll.vnl({/n $ p!})- ~ L:lu<k-ll,vnl({/n $pi} no~')) 
f=l 

slu<"-l).vnl({fn $ p!})- ~lg(k-ll,vni(Un $ p!}) 

. = e ~ 1 1u(k-l) .vnl( {In $pi}). 

Using (3.3.1.2); we find an M~; E 'Poo(N) such that 

U Un ~tzl nAnn U {/n s pi} nAn no·~ .. = 0. 
nEMk nEMk 



90 

Therefore, £rom the normality of K, we deduce the existence o{g(k) E C(K) with 

0 < -(k) < 1 -(k)l 1 d -(k)l 0 
- g - ' g .A,.n{/,.~P2} = ' an g A,.n{/n$Pt}no~6nl '"' 

for each n E Mk. 
Now taking g(l<) := g<k-l)g(k) and observing that by (5)(k- 1) we have 

we deduce that 

The last condition o£ (5)(k) follows from the following inequalities 

llg<kl.vnl{f,.$pt} II =llu<">g<k-l).vnl{f,.:;;pd II 
s lg<k-t>.vnl( Un s Pd n {u<.t> =I o} nAn) 
S IY(k-l).vnl( Un S PI}\ 0~8")) 

e- 1 (l:-1) I 
S -e- 119 .vnl{ln$Pd I 

[by(6)] 

e -1 l: 
S (-e-) , for n E NA: 

[by(5)(k- 1)], 

which finishes the induction step and the proof of (3). 

Applying (3) successively for each j E {1,2, ... ,m -1} to p\j) := j/m, p~j) := 

(j + 1)/m, and 6 := 1/m, we find N1 :::> M(l) :::> M<2l ... M(m-1) =: N2 and 

9i E C(K) as in (3). Therefore we have 

(7) 

for each n E N2. 
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•···.·Defin,ing g := "£"/~1 (1/m)g;, we deduce ior each n € N2 that 

l(vn,9- fn)l 
m-1 1 = \<}: -(vn,g;))- (vn.fn)\ 
i=l m 
m-1 1 ~ \<L -(vn,9jX{In<!:U+1)/m}))- (vn,fn)\ 
j=1 m 

m-1 1 +I}: -;(vn,9jX{j/m</n<U+1)/m})l 

j=1 
m-1 1 

+I}: -;(vn,9jX{/n!WmJ)\ 
j=1 

m-1 1 1 m -1 
~ \<}: -(v,.,X(/n<!:U+1)/m}))- (vn,/n)\ + -\lvnll +----mr-

~1m m 

[by (7) and since An = supp(vn)} 

= \(}: ~(lin, X{(j+2)/m>/n<!:(H1)/m}))- (lin, /n)\ 
m-1 . 

j"'1 
1 m-1 

+-llvnll+-"2 m m 

== ~(~ 1 ~dvn) 
1"'1 {(j+2)/m> /n <!:U+1)/m} 

-(~ 1 f,.dv,.)- 1 fndvn\ 

J=1 {(j+2)/m>/n<!:U+I)Jm} {/n<2/m} 

1 m-1 
+-; ll 11nll +----mr-

~~ 1 ~~-fn\dvn 
j=1 {(j+2)/m>/n<!:U+1)/m} 

2 1 m-1 
+ -llvnll +-llvnll +--;;-m · m m• 
m-1 2 -1 ~}: -lvl({(i + 2)/m > fn ~ (j + 1)/m}) + (3/m) Uvnll +~ 

. ;=
1

m m 

<~ <!:. 
- m -4 
[llvn II~ 1 and 1/m ~ r /24}. 



92 

This implies, together with (2), that 

Thus, (lin : n E N) does not converge to 0 in u(M(K), C(K)), which finishes the 

proof. 

3,3.2 Proposition: Let Un: n E IN) C C(K) be a normed sequence of non 

negative functions with pairwise disjoint supports. 

Suppose that that Un: n E IN) is ".Jub.Jequentially complete" ( c.£.{33]), i.e. 

(3.3.2.1) for all N E 'Poo(IN) there exists an Me 'Poo(N) such that Um:rri EM) 
has a supremum JM in C(K). 
(fm ::::; !M for all m E M and for each g E C(K) with fm ::::; g for every 

mE Mit follows that fM $g.) 

Then conditions (3.3.1.2) and (3.3.1.1), with l := 1 and F~6) := Un ;::: 6} for 

6 > 0 and n e IN, are satisfied; in particular, it follows that (in: n E IN) is limited 

in C(K). 

Proof of (3.3.2) 1 

For an M e 'Poo(IN) for which the supremum IM of Um: m eM) exists in C(K), 
it follows, for ~ach p > 0, that UneMUn;::: p} CUM;::: p}. Thus, 

(1) U Un;::: p} C {/M ;::: p} C {/M > p- 6} for all6 > 0. 
nEM 

Verification of (3.3.1.1): 

For two disjoint N1, N2 e 'Poo(IN), we choose N1 e 'Poo(NJ) and fil2 e 'Poo(N2) 
such that the suprema /&

1 
and /&

2 
exist in C(K). 

Let 6 > 0 be arbitrary. 

For any n e fil2 and e e Un ;::: 6}, we choose a g e C(K), with 0 ::::; g $ 1, 

g(e) = 0, and 9l(ln:>6/2} = 1. Since the supports of In, n E IN, are pairwise 

disjoint, it follows that g ;::: In for each n e N1. Thus, g ;::: I &
1

, so that, in 

particular, f &
1 

( 0 = 0. 

Since n E &2 and e e Un ;::: 6} were assumed to be arbitrary, we deduce that 

U&, > 6/2} n U Un 2: 6} = 0 
nEN2 
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and, since {!f1
1 

> 6/2} is open, that 

{!fit > 6/2} n u {/n ~ 6} = 0. 

Then we deduce {3.3.1.1) from {1). 

Verification of {3.3.1.2) with f.= 1: 

Let PI• P2 be in (5,1) with PI< pz, let.N E 1'00(IN), and let (An:nEN) be a 
sequence of closed and pairwise disjoint subsets of K which satisfies (3.3.1.2)(i). 

To verify (3.3.1.2)(ii) and (iii), let 0~1) := On for n E N, where On is as in 

( 3.3.1.2 )(i ). 
Choosing M E 1'00(N) such that !M exists in C(K), it follows from (3.3.1.2)(i) 

that for each n e M 

On c ( u Un• ~ Pd) c c ( u Un• ~ Pd) c c n {/,.• < Pd. 
n1EM\{n} n1€M\{n} · n1€M\{n} 

Consequently, 

{2) 0,. n {!,. < PI+ Pz} C n {/,.• < PI+ Pl} for n EM. 
2 2 

n1EM' 

For n E M and ~ E On n {!,. < (PI + pz)/2}, we can choose g E C(K) with 

(PI+ pz)/2 :5 g :5 1, g({) =(PI+ P2)/2, and 9lofu{/n<(Pt+P2)/2}C = 1. By (2) 
it follows that fm :::; g for any m E M. Thus, fM :::; g, so that, in particular, 

!M({) :5 (PI + P2)/2. Since n E M and an { E 0,. n {/n < (PI + P2)/2} were 

assumed to' be arbitrary, we have shown that 

U Onn {/n <PI ;P2} CUM:::; PI ;pz}. 
nEM. 

This implies that 

U 0,. n {!,.:::; pl} n U On n {! .. ~ pz} 
nEM nEM 

------------~--
c u Onn{fn<Pl+Pz}n{JM>PI+Pz} 

nEM 2· 2 

(by (1)) 

C {f M :5 PI ; P2 } n {f M > PI ; P2 } = 0 

[by (3)), 

which implies (3.3.1.2)(iii); (3.3.1.2)(ii) follows from the choice of 0~1 ). 
<> 
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4 Lifting results 

In this chapter, we want to discuss problems of the following type: 

Supposing that we know the limited· sets of certain subspaces of X, we want to 

characterize the limited sets of the whole space. 

In the first section we utilize for this a net (T; : i E I) C L(X, X) which 

approximates the identity on X and deduce an analogue of the well known result 

that a set C C X is relatively compact if and only if (T;: i E I) converges uniformly 

on C and T;( C) is relatively compa~t for each i E I. Situations in which this leads 
to a sactisfactory characterization of limitedness are presented in section ( 4.2). 

In the last three sections we will discuss limited sets in tensor products and, 

in particular, in injective tensor products. We will see that the known .equivalence 

A C X®Y is rei. compact <==* A(Bt(X')) and A(Bt(Y')) are rei. compact 

cannot in general be transferred to limitedness and leads only to a necessary con

dition for limitedness in X®Y. Thus, we will formulate other necessary conditions 

for a set A C X®Y to be limited for which we show that they are also sufficient 

if X andY are Grothendieck C(K)-spaces. 
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4.1 Characterization of limitedness by nets of operators which approx

imate the identity 

Proposition (4.1.3) recalls a well known result (15, p.259, Lemma 4] which 

characterizes relatively compact sets in Banach spaces by a directed family of 

operators (T;: i E I) C L(X,X) which approximates the identity on X. Exam· 

ple (4.1.3) shows that this characterization cannot be transferred to limited sets. 

However, Theorem ( 4.1.6) formulates additional conditions on {T;: i e I) which 

make an analogous characterization of limitedness possible. 

4.1.1 Definition: Let I be a set with a directed order denoted by "$"; i.e. 

"$" is a partial order on I under which each finite P C I has an upper bound. 

We will call a bounded family (T;:i ei) c L(X,X) 
a) an appro~imation of the identity on X if, fe>r each~ E X, the net (T(x) : i E I) 

converges to x, i.e. if 

Vx e X,t > 03i::;:; i(x, t) e I : liT;(;~:)- x II$ t for any j e I with j 2: i. 
. . . . 

b) a .sequentially complete appro~imation ofthe identity on X, if.(a)is Siltisp~g.,~ 
and if, moreover, for every increasing sequence (in: n E.IN) in.·.Ji il.p~,i~Y,~fYi~~~ 
x EX, (T;n(x): n e JN) converges. . .;~ 

4.1.2 Proposit~Let (T;: i e I) c L(X,X) 'be bou~ded,·{i;·~)~Jl;Ji}ected,i~i 
and DC X with span( D) ::;:; X. . . <;I 
•) g;;:) ~ ~)E~~x ":~:: ~ofx ~":}:;';~~~:~ti&'\-1 

T;n ( x) converges for each x e D and each mcreas1ng (an: n e IN} CJ\ ·. ··- .... , .. ~ 
.· . ·.-. ~·.':- · .-;·: ·,.,. ''.· _:,_~ .. ·.'t".-~ ";r·::~ -~·.,<.j' ··~::iJt·.~ 

b) H (T;:i e I) satisfies (b) of (4.1.1)1 then for each increasing' ::;:; (in'fn ElN) irf i 
I, the map Tr: X~ x ~--+ limn-oo T;~(x) is linear and bounded. - ' '-:·"''<' 

Proof of (4.1.2) 1 obvious. 

0 

4.1.3 Proposition: (c.£. {15, p.259, Lemma 4}) 

Let (T;:i EI) C L(X,X) be an appro:rdmation of the identity on X. 
Then for a bounded K C X, the following conditions (a) and (b) are equivalent: 

a) K is relatively compact. 

b) i) T;(K) is relatively compact for each i E I, and 
ii) T;-Idx uniformly on K, where Idx denotes the identity on X. 

iE/ 
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. It is easy to see that the implication (b) ==>(a) is still true if we replace in 

(a) and in (b)(i) "relatively compact" with "limited in X". In fact, if for A C X 
T;(A) is X -limited for each i E I and if (b)(ii) holds, then it f<;>llows that for each 

e > 0 there is an i(e) E I with A C B.(X) + T;(c)(A); this implies by (1.1.4) that 
A is limited in X. The following example shows th!lt (b) ==>(a) is not true for 
limitedness. 

4.1.4 Example: Let-~ E (JN \ 1N and X := {! E C((JN) IJ(e) = 0}. The 
. v . 

neighborhood basis U of~. consisting of all c.lopen subsets of {jN containing~. (i.e. . -tfl . . . . . . .;_;{fl . . . 
the system U = { N IN E 'P 00(1N), ~EN } ), will be ordered by: U ;?; V : <===> 
Uc V, U, VeU. 
The family (Tv : V E U) defined by 

T: X-+X, fHXtfl\Vf, forVEU, 

is an approximation of the identity on X. 

Secondly, we remark that the sequence (X{n} : n E JN) is limited in X, because 

(X{n) : n E JN) is limited in C((JN) and E(X{nj) = X{n) for n E IN, where the 

operator E : C((JN)-+ X is defined by f H f- /(~) · Xtfl· 

But (b )(ii) is not satisfied since 

sup IITv(X{nj)- X{n} II= sup IIX{n)XVII= 1 whenever V E U. 
nEN nEN 

() 

. . 

The following Lemma represents .the essential part of the proof of Theorem 

( 4.1.6), which characterizes limitedness by sequentially complete approximations 

of the identity. Since we will need its result in section (4.2) also, we formulate it 

. independently. 
4.1.5 Lemma: Let A C X be bounded and (T; : i E I) a sequentially 

complete approximation o{ the identity. For an increasing I = (in: n E JN) C I, Jet 

T1 E L(X,X) be as in (4.1.2)(b). 

I££or each increasing I= (in:n ElN) C I, T;n converges uniformly on A, then 

(T;: i E I) converges uni£ormly on A to the identity. 

Proof of ( 4;1.5) 1 

Without loss of generality we assume A f. 0. 

By induction we choose, for each k E IN, an Xi E A and ik,j~ E I such that the 
following conditions are satisfied: 
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(l}(k) i•::; i~;, 
(2)(k) il;-1 ::; i• if k > 1, 
(3)(k) II T;(:tm)- Xm II$ i whenever j ::=: j~; and m < k, and 

(4)(k) II T;.(x~;)- X .I: n::=: l sup;~h .. zEA u T;(x)- :t II· 
For k = 1 we choose Xt E A and it E I with 

IIT;1(xt)- xdl::=: ~ sup IIT;(x)- xll 
, iEI,>=EA 

and set it:= iti we deduce (1)(1) and (4)(1) while (2)(1) and {3){1) are empty. 

If im, im 1 and Xm are choosen for all m < k, where k > 1, we find by Definition 

(4.1.1)(a) j~; ::=: i 11 _ 1 in I which satisfies (3)(k). Then we choose i~; ::=:i• in I and 

x~; E A satisfying (4)(k), which finishes th~ induction step. 

For 'i := (i~;:k EIN} we deduce from (3)(k) and (l)(k) that 

Tr(xn) = lim T;~ (xn) = Xn for each n E IN . 
.1:-oo 

Since, by assumption, (T;• : k E IN) converges uniformly on A to Tr, we find for 

an arbitrary e > 0 ann= n(e) E IN with 

Thus, by (4}(k}, 

which implies the assertion. 

4.1.6 Theorem: Let (T;: i E I) be a sequentially complete approximation of 

the identity on X, 

Then the following are equivalent for a bounded A C X: 

a) A is limited, respectively relatively compact, in X. 

b) i) T;(A) is limited, respectively relatively compact, in T;(X), for eacll i E I, 
and 

ii) T;,.--+ Tr uniformly on A for each increasing 'l = (in:n EIN) E I. 
n-oo 

c) i) as in (b), and 

ii) T;iE/Idx uniformly on A. 



98 

Proof of (4.1.6) : 
(a) =?(b)(i): (1.1.3)(c), respectively {4.1.3), 

(a) =?(b )(ii): (1.1.2) 

(b)(ii)=?(c)(ii): (4.1.5) 

(c) =?(a) : (1.1.4), respectively (4.1.3) 

From (4.1.6) we deduce 

4.1. 7 Corollary: Let (T;: i E J) be a ~equentially complete approximation o£ the 

identity on X. 

Then X is a Gelfand-Phillips space i£ and only i£TJX) is a Gelfand-Phillips 

space, for each i e I. 
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4.2 Applications of Theorem ( 4.1.6) to several situations 

Using Theorem (4.1.6)1 we can characterize tbe limited sets of several Banach 

spaces by the limited sets of certain subspaces. 

Thus we can characterize the limited sets of 

- L,(Jl, X), where 1 ~ p < oo and (0, E,Jl) is a measure space, by the limited sets 

of X (Corollary (4.2.2)), 
Q . . 

- Y ®X by the limited sets of X, where a is a tensor norm andY is a Banach space 

which admits a sequentially complete approximation of the identity (T;: i E I) 
with dim(T;X) < oo for each i E I (Proposition {4.2.3)), 

- C(lljeJKj), where Kj is compact for each j in a set J, by the limited sets of 

all C(lljeiKj), with j e P1(J) (Proposition (4.2.6)), 

- spaces having a transfinite Schauder decomposition (X0 : a < q), where 71 E 

Ord, by the limited sets of all X a {Proposition {4.2.6)). 

Moreover, we deduce the corresponding hereditary results of the Gelfand

PbJ'llips property. 

4.2.1 Proposition: Let {0, E, Jl) be a positive measure space, 1 ~ p < oo and 
n be the set of all finite E-partitions of 0, ordered by fineness. 

For 'II' E ll we define: 

E": L,(Jl,X) -t L,(Jl,X) 1 f t-t L XB j fdJl/Jl(B) (where~:= 0) 
Bew,,.(B)<oo 8 

(note that in the case Jl(O) < oo, E" is just the conditional eXpect~tion corre

sponding to 'II'). 

Then (E,. : 'II' E ll) is a sequentially complete approximation of the identity 

on L,(Jl,X). 

Proof of (4.2.1) : 

For A E E,let TA: L,(Jl,X) -t L,(Jl!A,X) and SA: L,(Jl!A,X) -t L,(Jl,X) be 
the restriction and the embedding respectively and observe that· the norm of both 

operators is not greater than 1. 

In the case Jl{O) < 6o, we deduce that (E,. :'II' Ell) is bounded from [10, p.l22, 

Lemma 3]. In the general case, we remark that 

E,. = SA(w)OEwnA(w)OTJl(11')! where A('ll') := U{AIA E 'II', Jl(A) < oo} ,for 'II' En 

and deduce that ( E,. : 'II' E ll) is bounded. 
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Since {xxB IB E I::; p(I::) < oo} generates L,(~J,X), we deduce condition (a) of 

(4.1.1) from (4.1.2). 

Condition {b) follows from the martingale convergence theorem (10, p.l25, Theo

rem 1] in the finite and, thus, in the u-finite case. In general, we observe that for 

an increasing {lrn:n elN) cIT the act 

A:= U{AI3n E 1N: A E 7Tn and p(A) < oo} 

is u-finite. Thus, condition (b) follows also in the general case, noting that 

4.2.2 Corollary: (Limited sets in L,(~J,X)) 

Let (!l, E, p) be a positive measure space and 1 :5 p < oo. Then the following 

conditions iu:e equivalent for a bounded A C L,(p, X): 

a) A is limited, respectively relatively compact, in Lp(IJ,X). 

b)i) For each BE E, with 1-1(B) < oo, the set {f8 fd1-1lf E A} is limited, 
respectively relatively compact, in X, and 

ii) for each increasing ( 1T n! n E 1N) C IT, E"n converges uniformly on A. 

c) i) as in (b), and 

ii) (E.,. : 1T E IT) converges uniformly on A to the identity on L,{/-1, X) .. 

In particular, it follows that the elements of limited sets ofL,(p, X) are measurable 

with respect to the same countable generated u-algebra and have a common u

flnite support. Moreover, L,(/-I,X) is a Gelfand-Phillips space if X is a Gelfand

Phillips space. 

Proof of ( 4.2.2) : Theorem (4.1.6) and Proposition (4.2.1) 

(ndte that the image of E" is a finite complemented sum of copies of X' and thus, 

in this case, (b)(i) of (4.2.2) is equivalent to (b)(i) of (4.1.6)). 

<> 

In the case p = 1, Lp(IJ, X) can be represented as the projective tensor product 

of L1 (I-I) and X (10, p.228, Example 10] and L1 (I-I) admits a sequentially complete 

approximation of the identity whose elements have finite dimensional range (this 

follows from (4.2.1) taking X := ffi.). This situation can be. generalized in the 

following way: 
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4.2.3 Proposition: (Limited sets in some tensor products) 

Let 11·11 be a norm on Y ®X enjoying the properties (T1), (T2), and (T3) 

"' (compare (0.3)( d)) and suppose that Y. admits a sequentially complete approxi-
. mation of the identity on Y, (P;: i E I) with each P; having ffnite-dimensional 

range. . 
"' Then the family (P; ® Idx : i E I) is a sequentially complete approximatioll 

of the identity on Y ®X. Thus, Theorem ( 4.1.6) is applicable to T; := P; ® Idx, 
"' i E I, andY ®X is a Gelfand-Phillips space ifY is a Gelfand-Phillips space. 

Proof of (4.2.3) ·: 
"' . From (T3 ) we deduce that (P;®ldx; i.E I) is bounded, while (4.l.l)(a) and (b) 

follow from Proposition ( 4.1.2) and the fact that D := {y ® xI y E Y, x E X} 
"' generates Y ®X. 

0 

4.2.4 Example: If ( 0, E, iJ) is a measure space, an example which satisfies the 

conditions of (4.2.3) is the space K(JJ,X) of all JJ·Continuous X-valued measures 
on E with relatively compact range, endowed with the semi variation. This space 

is isometrically isomorphic to L~(JJ)®X JlO, p.223, Example 4)). 

4.2.5 Proposition: (Limited sets in C(ll;e;K;)) 

Let (/(; : j E J) be a family of non-empty compact spaces and let the product 

llJeJKj be endowed with the product topology. 

We define 1 := 'P,(J) and order it by inclusion. 

For each j e J, we choose a fixed Sj e K; and define for each E E I 

h t(E) ·- {tj ifj E E 
w ere i ·- s; ifnot 

Then TE(C(ll;e;K;)) = C(ll;eEK;) for each E E I and the family (TE: E E I) 

is a sequentially complete approximation of the identity. 

Thus, Theorem (4.1.6) is applicable and C(ll;e;K;) is a Gelfand-Phillips 

space if, for each E E P,(J), C(fiieEK;) is a Gelfand-Pl1illips space, This is 
equivalent to the the condition that C(K;) is a Gelfand-Phillips space for each 

j e J,which will be shOWll in Proposition (4.4.3). 



102 

Proof of( 4.2.5) 1 

The familiy (TE : E E I) is bounded and C(lljeJKj) is generated by 

D := UEe1 C(IT;EEKi)· 

Finally, we want to apply Theorem (4.1.6) to transfinite Schauder decompo

sitions. 

4.2.6 Proposition: Let (X>. : 1 ::; A < t?) be a transfinite SChauder decomposi

tion of X (compare {54, p.622, Definition 19.2 and p.623, Definition 19.3}; in partic

ular, X>. is a closed subspace of X {54, p.624, Theorem 19.1}). Let (v>.: 1 ::; A< t9) 
be the family of the coordinate projections, i.e. the projections onto X,. which 

assign to every z EX the unique V>.(z) suCh that z = El$>.<o1 v>,(z) (for the. 

definition ofZ:19<"' compare {54, p.580]). 

Then the following conditions (a.),(b), and (c) are equivalent for a bounded 

ACX: 

a.) A is limited, respectively relatively compact, in X. 

b) i) V>.(A) is limited, repectively relatively compact, in X>. for eaCh 1 ::; A < t9, 
and 

ii) for increasing (An: n E IN) C [1, t9[, Eo<>.n Va converges uniformly on A. 
c) i) as in (b), and 

ii) for eaCh A E [1, t9(, Eo<P V 0 ---. Eo<>. V0 uniformly on A. 
P/'>. . 

In particular, X is a Gelfand-Phillips space if, for each 1 ::; A < t?, X>. is a 

Gelfand-Phillips space (for example, if X has a transfinite Schauder basis, i.e. if 

dim(X>.) = 1, A< t?). 

Proof of ( 4.2.6) : 

For 1 :5 A < t9 we set 

U>. :X -+X, .z ,_. 2::: V0 • 

o<>. 

By [54, p.625, Theorem 19.2], U>. is a continuous projection onto the space x<>.) := 

span(Ua<>.Xa) and the function Sz: [O,t9] ~ ,\ ,_. U>.(z) EX is continuous for 

each z E X. This implies that, for each 1 S A < t9, (ualx<Al : a < A) is a 
sequentially complete approximation of the identity on x<>->. 

We now show the desired implications: 

(a) =>(b): Theorem (4.1.6) 

(b)(ii) =>(c)(ii): If A is a successor, the assertion is trivial; if not, we deduce it 
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from Le~ma(4.1.5). 
(c) ~(a): By transfinite induction we show that for each A${), u,x(A) is limited 
in x<~>. . . 
Assuming that for a given A Ua(A) is Jimi~ed in x<a> whenever a< A; we deduce 

frolll (c)(i), i~ the case that .Xis a successor, that UA(A) is limited in X(A), In the 

case that A is a limit ordinal, we deduce it from Theorem (4.1.6) (c) =*(a) applied 
. to X:= X(.\) and (ua: a< .X). 

0 

4.2.9 Remark: 
a) Independently it was proven in [141 p.4, Theorem 3.1] that L,(JJ, X), where 

1 =::; p < oo, inherits the Gelfand-Phillips property from X. 
b) The result that K(JJ, X) has the Gelfand-Phillips property if B1 (X') is weak• 

sequentially compact was shown in {17, Theorem 1}; the generalization for any 

Gelfand-Phillips space X {ollowsfrom {13, p.407; Theorem 3.1.]. 

c) The statement that C(II;eJKj) is a Gelfand-Phillips space if C(K;) is a 

Gelfand-Phillips space for each j E J was first shown in {14, p.S, Theorem 4.2]. 
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4.3 A combinatorial result for Lg.,{Jl, X) 

This section serves to prepare the next one, where we want to investigate 

limited sets in injective tensor products, in particular in C(K,X). We will show 

the following result: 

Let (/n: n eiN) be a sequence in Lg.,(Jl, X), where (0, E, Jl) is a positive 

measure space. Then (at least) one of the following two cases happens: 

Case 1: 

There exists a subsequence Un~: k EIN) admitting, for every e > 0, a 
countable E·partition 1T0 of n such that the essential oscillation of every 

fnk on every B E lT• is not greater than e. 
Case 2: 

There exists a subsequence Unk: k E IN), an e > 0, and a tree of sets 

(A(k,j) : k E INo,j E {1, ... , 2k}) C E whose elements have strictly 

positive measure, such that the essential oscillation of Ink on A(k,j) is 

not greater than e /4 and the essential distance between A( k, 2i - 1) and 

A(k,2i) under Ink is at lea8t e whenever k,i,j E IN and 1 :5 i :5 2k-l 
and 1 $j :5 2k, 

Since this result leads in the scalar case to Rosenthal's l1 theorem we could call it 

a vector-valued Rosenthal result. 

In the sequel, (0, E, Jl) always denotes a measure space. 

4.3.1 Definition: 

a) We denote by II the set of all countable E·partitions of n, where a countable 

1T c E is called a countable E-partition of n if the elements of 1T are almost 

(always corresponding to Jl) pairwise disjoint and if their union is almost n. 
For A E Ewe set 1TIA := {BnAIB E lT} ih E II and II(A) := {lTIA llT E IT}. 

b) For two bounded subsets A,B C X, let D(A) be the diameter of A, i.e. 

D(A) := sup II x- y II, with D(0) := 0, 
z,yEA 

and d(A, B) the distance between A and B, i.e. 

d(A,B):= inf llx-yll withd(0,·)=d(·,0):=oo. 
zEA,yEB . 

If J : n ..... X is bounded, ·measurable, and has separable image, and if A, B E 

E, we define the e33ential oJcillation off on A by 

essosc(f,A) := !nf D(f(A)) 
AEA 
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and the euential di3tance betwee.n A and B under f by: 

ess dist(f, A, B) := · sup d(f(A)/(B)). , 
A:A,.ih:B . 

where "infA:A" and"supA:A,B:B";mean, that the infimum and the supre
muiii are taken over all A and B E E with 

p((A u A)\ (An A)) =,p((B u B)\ (B n B)) = o. 

For two almost equal, measurable, and bo~nded /, j : n -t X with separable 

image, there is a:n 0 E E, 0 s 0, for which f(w) = i{w) whenever w E 0. 
Thus, 

essosc(f,A) = inf D(f(A)) = _ i1_1f. D(f(A)) 
A:A . A=A,AcOnA 

_ il_lf _ D{i(A)) = essosc{j, A) 
A:A,ACOnA 

for each A E E. Similary 

ess dist(f, A, B) = ess dist{j, A, B), whenever A, B E E . 

Thus, essdist( ·,A) and essosc( ·,A, B) are well defined on L:;.,(p,X). 
In the case that we consider L:;.,(EK,X) (which is by the observation in 

(0.3)(b) representable as an L:;.,(p,X)-space) we write osc instead cif essosc 

and dist instead of ess dist. 

c) Let A E E, 1r E ll(A), and e > 0. An f .E L:;.,(p,X) is said to be {7r,e)
compatible on A if, for each B E 1r, 

ess osc(f, B) ~ e: 

F C L:;.,(p, X) is called {1r, e)-compatible on A if every f E F has this property. 

A sequence(!,.: n ElN) C L:;.,(p,X)' is called totally &-incompatible on A if, 

. for every 1r E ll(A), no subsequence is (e:, 1r)-compatible, i.e. if 

V1r E ll(A),N E Poo(lN),3B E 1r,n EN such that essosc(/n,B) >e. 

Now we are in the position to state the main result of this section. 
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f. 
4.3.2 Theorem! Let Un:n eiN) c L;,{t,X). 
Then at least one of the following two cases happens: 

Case 1: There exists an increasing (n~:: k e IN) C IN such that (/11•: ke IN) has the 
. I . '·· . .tJ 

followmg property: r ,. . i • ' 

For all! > 0 there is a 'II'" E II for which (/,;-;. )is~)..eompatfble. 

Case 2: There exist an ! > 0, an increasing (n~:: k E IN) C IN, and a family 

(A(k,j): k e INo,i e {1, ... , 2~}) C E, such that: 

a) For each k E INo and i E {1, ... , 2~}, J'(A(k, i)) > 0, 

A(k + 1,2i -1) U A(k + 1,2i) C A(k,i) and 

A(k + 1, 2i- 1) n A(k + 1, 2i) = 0 almost everywhere 

b) essosc{!11•, A(k, i)) $ !/4 and essdist(/n•; A(k,2j- 1), A(k, 2j)) 2:! 

whenever k e IN,i E {1, ... , 2"} and j E {1, ... ,_2~<-t }. 

The following Lemma. ( 4.3.3) collects some frequently used results, while 

Lemma. ( 4.3.4) represents the centra.! step of the proof of Theorem ( 4.3.2)'. 

4.3.3 Lemma! 
a) Let f E L;,{J', X). 

i) If A1,A2,Bt,B2 E E, At C A2, and 1!1 C B2, then 

essosc(f, AI) S essosc(f, A2) and ess dist(f, A11 Bt) 2: essdist(f, A2, B2). 

ii) If An,Bn e E for n e IN then 

essdist(f, U An, U Bn) = in£ essdist(/,An,Bm)• 
nEN nEN nEN,mEN 

iii) If A,B,C e E and p(C) > 0, then 

essdist(f,,A, B)$ essdist(f, A, C)+ essdist(f, B,C) 
. 

+ ess osc(f, A) + ess osc(f, B) + ess osc(f, C). 

iv) If An e E for n e IN then 

essosc(f, U An)$ 2 sup essoscCf,An) + . sup essdist(/,An,Am). 
nEN nEN neN,mEN 

b) Let A, A e E, F, F c L;,(,,X), and!> 0. 
i) If IFI < oo, then there exists a 'II' e II( A) such that F is (11',!)-compatible 

on A. 
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ii) If, for 'II' e ll(A), F is (1r,t)-compatible on A and if A C A, then F is also 
('~~'Lt>e)-compatible on A. 

iii) I£ F and Fare (1r,e)-, respectively (ir,e)-compatible on A, then F U F is 
(1r Vi, e)-compatible on A, where 1r Vi:= {An A I A E 1r and A E i }. 

iv) If7r E ll(A) and 1r8 E ll(B) for each BEll and i£ F is (1r 8 ,e)-compatible 
on B for each BE '11'1 then F is <Uaew 11" 8 ,e)-compatible on A. 

c) Let An E E for n E IN, and let e > 0. I£ Un: n EIN) C L::C,(~, X) is totally e
incompatible on A:= UneN An, then there exists ann E IN and a subsequence 
of Un: n EIN) which is totally e-incompatible on An. 

Proof. of (4.3.3) : 

Proof of (a): If we replace f by a fixed representative and essosc(f, ., .) and 

essdist(J, .) by D(f(.)) and d(f(.),j(.)) the inequalities to be shown are obvious. 

Next, we remark that for f = l:;eN xa,x;, where B; E E with ~(B;) > 0 for 

i E IN and UeN B; = n; and where (x;) c X is bounded, we have 

essosc(f, A)= D(f(A)) and essdist(J, A, B) = d(f(A), f(B)), 

where A:= U{B; I~(A n B;) > 0} and iJ := U{B; l~t(B n B;) > 0}. 
Finally, we observe that essosc( ·,A) and essdist( ·,A, B) are continuous on 

L~(~, X). In fact, if e > 0 and /, g e L::C,(p, X) with II f - g II.$ e, then we 
find annE E with p(!l \ 0) = 0 and II /(w)- g(w)ll.$ e, for wEn. Thus, 

essosc(/,A) = _ inf _ d(f(A)) .$ e+ _in£_ d{g(A))::::: e +essosc(g,A), 
AsAnO AsAnO 

and by symmetry, .essosc(g, A) .$ e t essosc(/, A). 

For ess dist, we show the continuity in a similar way. 

From these three obf:lervations we deduce (a). 

Proof of (b) : obvious 

Proof of (c) : Let (/n:n eiN) c L::O(~t, X) and (An:n E IN) E E. 
Suppose that the conclusion is false, i.e. that 

(1) Vk E IN,N E 1'00(IN)3M e 1'oo(N),7r e IT(Ak) such that 

.(/m:m EM) is (7r,e)-compatible on Ak, 

we show that the assumption of (c) is not true. 
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For this we may assume that the An's are pairwise disjoint almost everywhere; 

otherwise we pass to An :=An\ ui<n A;. Using (1), we can define by induction 

for each k E JN, an infinite M~; C 1N and if~; E TI(A~;) such.that M~; C Mk-t (with 

Mo := JN) and such that Um:m EM~;) is (if~;;e)-compatible on A~; (we apply in 

the k-th inductionstep (1) toN:= Mk-t and k). 

Then we choose an increasing sequence (m~;) C 1N such that m~; E M~; for k E 

IN and we choose, for each k E IN, a refinement 11"k E TI(A~;) of if~; such that 

{/m11 ... fm.} is (e,7r~;)-compatible on A~;. Thi~ implies that Um~; : k E IN) is 

(7r~;,e)-compatible for each k E IN and, by (b)(iv), (/m~;: k E IN) is (UkeN 7r~;,e)
compatible on A= UkeNA~;, which finishes the proof. 

0 

4.3.4 Lemma: Let A E E and e > 0, and let Un: n e)N) c L~(J.I,X) be 

totally e-incompatible on A. 
Then there exist n E1N, M E 1'00(1N), and At. A2 E En A such tha.t 

a.) ess dist(fn. At, A2) > e/4 (in particular At n A2 = 0 almost everywhere), 

b) (/m: m EM) is totally e-incompa.tible on At as well as on A2. 

Proof of ( 4.3.4) 1 

Let (f.,:n ElN) C L~(p,X) be totally e-incompatible on A. 
We suppose that the assertion of the lemma is not true, i.e. that 

[(/m: m EM) is totally e-incompatible on At => 
3M e 'Poo(M),'If' E TI(A2 ): (/m:m eM) is (1r,e)-compatible on A2] 

Under this assumption, we first choose inductively for each k E INo an m~; E INo, 
an M~; E 'Poo(IN) and B,. E E such that 

(2)(k) m~; E Mk-t. m~; > mk-t. and M~; C Mk-t, if k > 0, 

(3)(k) B~; C B~;-t if k > 0, 

(4)(k) essosc(frn4 ,B~;) :5 e if k > 0, 

(5)(k) (/m:m EM~;) is totally e-incompatible on B~;, and 

(6)(k) there exists a 1r E TI(A \ B~;), such that (/m: m EM~;) is (7r,e)-compatible 

on A \B~;. 

For k = 0, let mo := 0, Mo := 1N, and Bo := A. Then (2)(0),(3)(0), and ( 4)(0) are 

empty conditions, while (5)(0) is just the assumption and (6)(0) is trivial. 
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If we assume that for a k > 0, (mt: 0 :5 e < k), (Mt: 0 :5 i < k), and 

(Bt: 0 :5 i < k) have already been ch9sen, we set 

remarking that such an m1c exists because of {5)(k- 1). 

Since fm~c E L~{~-t,X), we find a 1r E ll(B~c-d for which fm~c is (ir,~/16)

compatible on B~c- 1 • From {4.3.3){c) and {5)(k -1) we deduce that there exists a 

B~c E 1r and an M~c E 'Poo(M~c-d, such that (/m:m EM~c) is totally ~-incompatible 

on B~c. 
Setting 

we deduce (3)(k) and the fact that (/,.: m EM~c) is ~-incompatible on Bs, (since 

ih c B~c). 
From {4.3.3.)(a)(iii) and {iv) we have 

(8) essosc{f,.k,B~c):5 sup essdist(/m01 B,B)+2supessosc{f,.k,B) 
B,BE'ir' BE'ir' 

:52 sup essdist{f,.k, B, B~c) + 5 sup essosc(/mlr, B) 
BE~ BE~ 

:::; ~/2 + 5~/16 < ~ , 

which implies (4)(k). 

Defining A2 := UBeir\ir' B = B~c- 1 \ B~c and applying (4.3.3)(a)(ii), we have 

essdist(f,. .. ,A2 ,i!J~c) = inf essdist(f,..,B,B~c) > ~/4. 
• BEi\ir' • -

Now we are in a position to apply {1) toM:= M~c, n := m~c, A1 := B~c, and A2 as 
defined above; we deduce that we can choose M~c E 'Poo(M~;) and rr E ll(A2) such 

that (/m:m EM~c) is (rr,~)-compatible on A2. 

Since A\ B~c =(A\ BJ:-d u (B~c-1 \B~;) =(A\ B~c-!} U A2, we deduce (6)(k) 
from (6)(k- 1) and the choice of M~c; Property (2)(k) follows from (7) and the 

fact that M~; was chosen to be a subset of M~c_ 1 ; while {5)(k) follows from the fact 

that B~c C B~; and that subsequences of totally incompatible sequences inhel'it this 

property. This finishes the induction step. 
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Now we note that, by (3)(k) and the choice of B0 , 

A = Bo = U (Bt-l \ B~:) U n B~:. 
kEN kEN 

From (6)(k) and (2)(k) we deduce that, 1for each k E IN, there ex:ists a 

11'1: E II(Bt-1 \ B~:) such that (fmi : j E IN) is (11'~:,e)-compatible on B~:-1 \ 
B~:. (3) (k) and (4) (k) imply that Um;: j E IN) is ({njEN Bj},e)-compatible 

on Boo := njEN Bj. From (4.3.3) (b) (iv) we deduce that' Um; : j E IN) is 

(U~:eN 11'1: U {Boo}, e)-compatible on A, which contradicts the assumption of this 
lemma. 

<> 

Proof of Theorem (4.3.2) 

We start th¢ proof by showing that, for a sequence (fn:n EIN) C L~(fi,X) which 

does not satisfy case 1, there exists an e > 0 and a subsequence which is totally 

€- incompatible. 

We prove this by showing that if (/11:ri. EIN) satisfies the property 

(1) VNE'Poo(IN),e >03ME'P00(N),11'EII : (/m:m EM) is ('I!', e)- compatible, 

then case 1 is satisfied. 

For this, we choose inductively for each k E IN an N~: E 'P00(1N) and a 71'1. E II 

such that N1: C N~:-1 (where No ::;::: IN) and such that for each B E 11'1: and each 

mEN~:, essosc(/m,B) $ f (this can be done by applying,·in every induction 

step, (1) toN:= N~:-1 and e :=f). 1 

Then we choose an increasing sequence (n~:) C IN with n~: E N~: for k E IN. To 

show that (f ~~~: k eiN) satisfies the assertion of case 1, let e > 0 be arbitrary and 

choose k0 E IN with e > fo. Since (f "t : f 2: ko) is ( 11't0 , e )-i:ompatible, we find a 

71' E II which is finer than 71'~:0 and for.which '(!"• : k E IN) is (1r,e)~compatible. 

To prove (4.3.2), we ass\une that (f~:Ti EIN) does not satisfy case 1 and we show 

that. it satisfies case 2. 

By ·the above remark, we can assume that there exists an e :> 0 such that 

(fn:n EIN) is .totally €-incompatible. . 

By induction, we choose for each k E INo an nt E INo, an N~; E. Poo(IN), and a 

family (A(n,j): 1 $ j $ 2") C E such that 

(1)(k) n~; E NA:-1! n~: > n1:-1t and N~: C N1:-1 if k > 0, 
(2)(k) A(k, 2i- 1) U A(k, 2i) c A(k, i) and 
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A(k,2i -l)nA(k,2i) = 0 almost everywhere if k > 0 and i E {1, ... , 21 - 1 
}, 

(3)(k) essoscUn11 ,A(k,i)) $ l/16 and essdistUn111 A(k,2j -1),A(k,2j))?: €/4 if 
k >0, i E {1, ... ,21} andj E {1, ... ,2n-l}, and 

(4)(k) for each j E {1, ... , 24}, Urn :me Nt) is totally €-incompatible on A(k,j). 

If k = 0, we put A(O, 1) := n, n0 := 0 and No := lN. Then (1)(0),(2)(0), and 

(3)(0) are empty, while (4)(0) is just the assumption. 

We suppose that for a k > 0, nt-11 Ni:-1 and (A(k -l,j): j $ 21<-1) has been 

chosen. 

First we want to verify the following: 

(6) Let Me 1'00(N~<-d and j e {1, ... , 24- 1 }. be arbitrary. 
Then there exists an increasing sequence (fit : i e lN) C lN and for each 

i e lN an Mt e 'Poo(M) and A(1, i), A(2, 1.) e En A(k- l,j) such that for 

each i E lN: 

a) fit e Mt-1 (Mo := M), M(i) c M(i- 1), 
b) the conditions (a) and (b) of.Lemma (4.3.4) hold for 

n = fit, M := Mt and A1 := A(1, 1.), Al := A(2, i). 

We prove this by applying (4.3.4) successively for e~ch i E lN to the sequence 

Urn: mE Mt-1 1 m > iit-1) and A:= A(k -1,j). 

Applying (6) successively to each j$21<-l, we find sequences (fi(j,i) :e E lN) C lN, 

(A(j, 1,1.) : i e lN), (A(j, 2,1.) : e e lN) c En A(k- 1,j), and decreasing (M:;> : 
i E lNo) e lN, such that 

(7) the condition {6) holds for each j E {1, ... , 24- 1 } 

and, moreover, 

NA:-1 =M~1 ) ;:) (fi(1,i): i E lN) = M~2) ;:) (n(2,i): i E lN) 

= M~3) ••• ;:) (fi(24- 1 -1,1.): i E JN) = M~2H);:) (n(24 - 1 ,e): i E IN). 

Now we are in a position to choose nk E {n(24- 1 , i) I i E lN} with n4 > nk-l 

and we set N4 := {n(24- 1, e) I i e JN}. By (7), we find for each j E {1, ... , 2"-1} 

ani; E lN such that n4 = fi(j, lj)• 
Then we· choose, for each j e {1, 0 •• , 24- 1 }, a 1rj E II(A(j, 1, i;) and a 7rJ E 

II(A(j, 2,1.;) such that fn4 is (11'j,e)-compatible on A(j, i,i;) fori= 1, 2. Applying 

(4.3.2)(c) 2A: tim~s, we deduce from (7) that we can choose A(k,2j -1) E 1r} and 

A(k, 2j) e li'J respectively and Nk e 'Poo(N~<), such that {!111 :mE NJ.) is totally €

incompatible on each A( k, j) with j E { 1, . o o , 2"}. Thus, we deduce ( 4 )( k) and the 
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first part of (3)(k). (l)(k) and (2)(k) follows from this choice also, while the second 

part of (3)( k) follows from (7). Thus, we completed the proof of the induction step. 

The assertion of the theorem follows from {l)(k),{2)(k), {3)(k) and (4)(k) if we 

take t: := €/4 and remark that from (4)(k) it follows that ~t(A(k,i)) > 0 fork E IN 
and i E {1, ... ,2k}. 

() 

4.3.5 Proposition: Let A C L~(P> X), Then the following are equivalent: 

a) Every sequence in A fulfills the conditions of case 1 in Theorem (4.3.2). 

b) Every sequence in A contains a subsequence (/n:n EIN) such that 

for all t: > 0 there exists rr• E II and (x(B, n) :BE rr•, n E IN) C X such that 

llfn- L XBX(B,n)ll$ e for all n E 1N, 
se .. • 

Proof of ( 4.3.5) : : obvious 

() 

4.3.6 Proposition: Let A C L~(p, X) be bounded and such that every 

sequence Un:n EIN} C A satisfies case 1 o£(4.3.2). 

Then for each x' E X', each sequence in A( x') := { {!(-}, x'} If E A} has a 
subsequence that converges p-almost everywhere. 

Proof of ( 4.3.6) 1 

Let Un:n EIN} C A and x' EX'. By assumption and by (4.3.5), we can assume 

that there exists an increasing sequence (rrk: k E IN) C II, rrk = (B(k, m) :mE IN), 
and a bounded family ( x( k, m, n) : n, m, k E IN) C X such that 

{1) 11/n- L XB(k,m)X(k,m,n)ll~ f for each k,n E IN 
mEN 

Since A is bounded, we find by the diagonal method an N E 'Poo(IN), such that 

(2) r(m,k) := lim (x',x(k,m,n)) 
nEN,n-oo 

exists for each m, k E IN. 
By the definition of countable E-partitions and by (1}, we can assume that for each 

wEn and each k E IN there exists a unique m(w, k) E IN with wE B(k, m(w, k)) 

and that II fn(w)- x(k, m(w, k), n) II~ i for each n E N; otherwise we pass to a 

suitable f! E E with ~t(O \ Q) = 0. 

_ .. :\ 

· .. :ti;ij 
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Therefore, we deduce for each w E 0, n, n' E N, and k E IN that 

l(:c',/n(w)- fn•(w))l 

:5ll:c'llllfn(w)- :c(k,m(w,k),n)ll + llx'llllfn•(w)- x(k,m(w,k),n')ll 

+ l(:c', x(k, m(w, k), n) -'x(k, m(w, k), n'))l 

:5 ~ + l(x',x(k,m(w,k),n)- x(k,m(w,k),n'))l, 

which implies the assertion together with (2). 

0 

Finally we want to collect the results as we will need them in the next section, 

and formulate them for the space L~(~, X). 

4.3. 7 Corollary: Let (0, ~) be a measurable space and A C L~(~, X). 

a) At least one of the following cas~s happens: 

case 1: For each Un: n E IN) C A, there is a subsequence cin: n E IN) sucl1 tlJat: 

For each & > 0 there is a countable ~-partition 11"(•) ofO with 

osccin, B) :5' e for n E IN and B E 11"(•) • 

case 2: There is a sequence Un: n E ,IN) C A, an e > 0, and a tree of non-empty 

sets (A(n,j): n E INo,j E {ll .. 2n}) C ~.such that 

osc(fn,A(n,j)) :5 &/4:and dis(fn,A(n,2i....: 1),A(n,2i));::: e 

whenever n E IN, j E {1, .. 2n} and i E {1, .. 2n-l }. 

b) If A is bounded and satisfies th~ above case 1, then for each Un:n E IN) C A 

and each x' EX', ( (x', fn) : n E :IN) has a pointwise converging subsequence. 
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4.4 Limited sets in X®Y and Kw•(X',Y) 

In Proposition (4.4.1) we recall the known result [52, p;22, Propositon 2], 

which characterizes compactness in X®Y and Kw•(X', Y) by compactness in X 
and Y. We will observe that this result may be carried over to limitedness only in 

special cases (Proposition ( 4.4.2) and Examples ( 4.5.5) respectively). In general, it 

only leads to a necessary condition for a set to be limited in X®Y and Kw•(X', Y) 
respectively. We deduce from this observation that X®Y and Kw•(X',Y) inherit 

the Gelfand-Phillips property of X and Y (Corollary (4.4.3)). 

In addition, we will formulate two other necessary conditions for a set to be 

limited in X®Y and Kw•(X', Y). The first one follows from the observations 

in section (4.3) and states that the limited sequences in X®Y and Kw•(X', Y), 
viewed in L~(Ex, Y) and L~{Ey,X) respectively (where Ex and Ev are the the 

a-algebra of the weak• Borel sets of Bt (X') and Bt (Y') respectively), must satisfy 

case 1 of Theorem (4.3.2). Secondly, we will observe that limited sets·ofX®Y 
must be "almost" bounded in 'the projective tensor norm (compare Proposition 

(1.1.10)). 

In the next section we will show that these two conditions are also sufficient 

for limitedness if we suppose that X andY are Grothendieck C(K)-spaces. 

4.4.1 Proposition: For A C.Kw•(X', Y), the following properties (a) and (b) 

are equivalent. 

a) A is relatively compact in Kw•(X', Y). 

b) A(Bt(X')) := {T(x') IT E A,x' E Bt(X')} and 
A(Bt (l'')) := {T'(y')l T E A, y' E Bt (Y')} are relatively compact subsets of 

Y and X respectively. 

Since X®Y is a closed subspace ofl<w•(X', Y) (compare (0.3)(e)), we deduce 

that (a) and (b) are also equivalent for A C X®Y. 

Proof of ( 4.4.1) :(We could prove ( 4.4.1 ), by showing that we are in a special 

situation of [52, p.22, Proposition 2), where the _locally convex case is described; 

but it is just as fast to prove it in a direct way.) 
(a) =>(b): Let (Tn(:z:~) : n E IN) be an arbitrary sequence in A(Bt(X')) (i.e. 

Tn E A and :z:~ E Bt(X')). Since A is assumed to be relatively compact, there is 

an N E Poo(IN) for which (Tn: nEN) converges to a To E Kw•(X', Y). Since To is 

a compact operator, there is an MEP00(N) for which (To(:z:~): n EM) converges 
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to a y0 e Y. This implies that, for 11 e M, 

II Tn{z~)- Yo II ~IITn{z~)~ To{z~)ll + II To{z~)- Yo II 

~IITn- To II+ II To{z~) -:·Yo II -+ 0. 
neM,n~oo 

We deduc:e that A(B1(X')) is relatively compact and it follows that the same is 

true for A(B1(Y')) noting that 

I: Kw•(X',Y)-+Kw•(Y',X), T~--+T', 

is well-defined and an isometric isomorphism, and that (J(A))(B1 (Y')) = 
A(B1(Y')). 

(b) =?(a): We view for this X, Y, and Kw•(X',Y) as subspaces of C(B1(X')), 

C(B1 (Y')),and C(B1 (X')x B1 (Y')) respectively, where B1 (X'), B.1 (Y') and 

B1(X')xBJ(Y1)are endowed with a(X',X), a(YI.,Y), and a(X',X)xa(Y',Y) 
respectively. 

From 

sup IITII= sup IIT(x')ll= sup IIYII, 
TEA : 1EB1(X'),TEA ~EA(B1 (X 1)) 

we deduce that A is bounded and so, by the theorem of Arz~la-Ascoli, it is suf

ficient, to prove the equi-continuity of A in C(B1(X') x B1(Y')). For this let 

(x',y') e B1(X')xB1(Y') and e > 0. 

By (b) we find open sets U C B1(X') and V C B1(Y'), with x' E U, y1 E V and 

If($')- /(x')l ~ e/2 and lg(y').:... g(ti')l ~ e/2 

whenever x',x' E U, y',y' E V, f E A(B1(Y')), and g E A(B 1(X')). 

This implies that, for each hE A and (x',y'),(x',ti') E UxV, 

lh(x',t/')- h(x',ti')l ~ lh(:S',t/').,.. h(x',y')l + lh(x',y')- h(x',y')l ~ e, 

which implies the equi-continuity of A and finishes the proof. 

0 
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4.4.2 Proposition: For A C Kw•(X', Y) or A C X®Y it follows that 

(a) =*(b) =*(c), 

where 

a) A is lip!ited in K.u:~.(X', Y), respectively in X ®Y, 
I·. '..... I· • 

b) A.(B.J.(.X.',)) and A(Bt(Y')) are limited inY and X respectively, and 

c) A(Bt(X')) is limited in Y and A({y'}) = {.T.(y1)'1T E A} is limited in X for 
each y' E Y. ~:.' ~ 

If Y is a Gelfand-Phillips space and has the approximation property, then 

"(c) =*(a)" is also true. 

Proof of (4.4.2) :, 

Proof of (a) =*(b):; .Since X®Y is a cl.osed subspace of Kw•(X', Y), it is enough 

to show the assertion for Kw•(X', Y). \ 
.. ~ 

For an arbitrary sequence (Tn{x\;") : n E lN') in A(Bt(X')) (i.e. Tn E A and 

x~ E B1(X') for n E JN') and ·~~~bitrary u(:r', Y)-zero sequence (y~: n E JN'), we 

have to show that limn-oo{!l~,;r,-,(xn)) = 0. !Since for every T:.E·Ku.•(X', Y) the 
,: adjoint T' maps (y~: n E JN') to a norm-zero s;quence, we dedu~e that' 

(T'(y~),x~) = (T(x~), y~)-+ 0 forTE Kw•(X', Y). 
n-oo 

/Thus, (x~ ® y~ : n E JN') converges in u(Kw•(X', Y)', Kw•(X', Y)) to zero (where 
•· x~ ® y~(T) :::o (T(x~), y~) for eaclt n E JN') and we deduce from the. assumption 

that 

which proves the assertion . 

. 2n the same way we can prove that A(B1(Y')) is limited in X. 

(b) =*(c): obvious, 

(c) =*(a):(Under the additional assumption that Y is a Gelfand-Phillips space 

enjoying. the approximation property, and thus, by (0.3)(e), X®Y = Kw•(X', Y).) 

Let A C Kw•(X', Y) satisfy (c). From the assumptions on Y we deduce that, for 

each E: > 0, there is a finite-dimensional projection 
n(•) 

p<•>: y ...... y, y~-+ Lv(e,i)(y'(e,i),y), 
i=l 

where y(e, 1),, .. , y(e, n(e)) .E Y, y'(e, 1), ... , y'(e, n(e)) E Y', and n(e) E JN', 

such that II p<•>(y) - y 115 e for eaclt y E A(Bt (X')). Thus, 

{1) liP<•> o T- Tll5 e whenever TEA. 
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For each e,> 0, we now want to show that A( e):= {P<•> o TIT E A} is limited in 

Kw•(X', Y). To see this, we remark that, by assumption (c), the set 

A(e,i) := {T'(y'(e,i))IT E A} 

is limited in X, for each i :S n(e). Thus, the set 

A(e,i) := {y(e,i) ®T'(y'(e,i))IT E A} 

is limited in Kw•(X',Y) {it is the image of A(e,i) under the operator 

X :;i :c H y(e,i) ® x e K..;.(X',Y)): Since .for each x' E· X' and T E A we 

have 

n(<) 

p<•> o T(:c') = LY(e, i)(T(x'), y'(e, i)} 
i=l 

~~ ~~ 

= LY(e, i){x', T'(y'(e, i))} = ( LY(e,i) ® T'(y'(e, i)) )Cx'), 
j;} j;l 

we deduce that A( e) C L:~~) A(e, i), andthus, that A( e) is limited in Kw•(X', Y). 

From (2) we deduce finally that A c n.>o B,(Kw•(X', Y)) +A( e). The assertion 

follows from (1.1.4). 

<> 

From Proposition {4.4.1) and the implication "(a) =>(b)" of (4.4.2), we deduce 

that X@Y and Kw•(X', Y) have the Gelfand-Phillips property if X and Y enjoy 

this property. This is a result which is already proven in [18, p.486, Theorem 2.1.) 

for X@Y under additional assumptions: on X and in (13, p.407, Theorem 3.1) and 

(14, p.2, Theorem 2.1.} for general X@Y and Kw•(X', Y) respectively: 

4.4.3 Corollary: If X andY are Gelfand-Phillips spaces, then Kw•(X', Y) and 

X@Y have the Gelfand-Phillips property also. 

Proof of (4.4.3): By (4.4.1) and {4.4.2)({a) =>(b)). 

0 

TO formulate other necessary conditions for limitedness in Kw•(X', Y) and 

X@Y, we need the following Lemma which uses essentially the results of section 
(4.3). 
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4.4.4 Lemma: Let K be compact and let EK be the u-algebra of the Borel 
sets of K. 

Let A C C(K,X) have a common X-limited range A(K) ::: UW 1e E K}. 
Then tl1e following are equivalenti 

a) Every sequence (/n: n E IN) C A enjoys, as a sequence in L~(EK,X), the 

condition of case 1 in Corollary ( 4.3. 7)( a). 

b) For each positive and finite Borel measure on K, T,.(A) is limited in L1(iJ, X), 

where T,.: L~(EK,X)-+ Ll(iJ,X), f H f. 
In particular, we deduce that a set A C C(K,X) which is limited in C(K,X) 

satisfies condition (a). 

Proof of ( 4.4.4) : 

Proof of( a) ::}(b): 

Let iJ be a finite measure on EJ<. It is enough to show that an arbitrary sequence 

(/n: n E IN) C A contains a subsequence whose image under T11 . is limited in 

L1 (~J,X). 
Thus, let (/n: n E IN) CA. By taking a subsequence, we may assume by (a) 

that there is an increasing sequence of countable EJ<·partitions ('11'1:: k E IN), 

'll't; := (B(k,m): mE IN), and afamily (x(n,k,m): n,k,m E IN) C A(K)) such 
that 

(1) 
1 11/n- L XB(k,m)x(n,k,m)ll ~ k' foreachn,keiN. 

meN 1 ~ 

Thus (note that II T11 11= 11-'I(K)), 

where 

(T,.(Jn): n E IN) c U {!~">In E IN} + B,.(I<)/l:(Ll (iJ, X)), 
l:eN 

/~l:) := 2: XB{l:,m)X(n,k,m) for each n,k E IN. 
meN 

By (1.1.4) it is sufficient to show that, for given k E IN, (f~">:n EIN) is limited in 

L1 (iJ, X). In order-to show this; we first remark that for any B E EJ< and n E lN, 

j /~l:)diJ = L !J(B n B(k, m))x{n, k,m) E p(K) · aco(A(K)), 

8 mEN 

which implies, together with the assumption, that {b)(i) of Corollary (4.2.2) is 

satisfied. 
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Secondly, we observe that for any e > 0 and for an mo E IN for which 

L: ~(B(m,k)) < ~(1 +sup llx(m,k)ll), 
m>mo mEN 

it follows that 

for each n E IN and each finite EK·partition 1r which is finer than 

1r• := (B(1,k),B(2,k), ... ,B(m0 ,k), U B(m,k)), 
m>mo 

(where E" is defined as in (4.2.2)). 

This implies that {f .. :n EIN) satisfies (c)(ii) of (4.2.2), from which we deduce the 

assertion . 

..,(a) =? ..,(b): 

Using Corollary (4.3.7)(a), it is enough to show that, for a sequence {f .. :n EIN) C 

A admitting an e > 0 and a tree of sets (A(n,j): n E !No, 1 ~ j ~ 2") such that 

the conditions of case 2 are satisfied, there is a finite Borel measure on K for which 

(T,.(/n): n e IN) is not limited in L1(J1,X). 
For this we set 

2" 

k := n U A(n,j)K and C(n,j) := k n A(n,j)K for n E INo,j :5 2". 
nEtl j=l 

From the property of (A(n,j): n e IN0 , 1 :5 j :52") and the compactness of K we 

deduce that no C(n,j) is empty. 

Since f n is continuous for. each n E IN, we deduce from the assumptions that 

N e -
_sup II fnW- fn<O 11:5 -

4 
and it1f II f,.W- fn(OII~ e 

(,(EC(n,j) (EC(n,2i),(EC(n,2i-l) 
(2) 

whenever n e IN, j :52", and i :5 2"-1• 

Moreover, forme IN and i :5 2"- 1 we have 

C(m -1,i) = k n A(m -1,i) 
2" 

= ( n U A(n,j)) n {A(m,2i)UA(m,·2i -1)) 
nEI'l j=l 

= C(m,2i) U C(m, 2i- 1), 
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and thus (together with the second part of (2)), 

(4) C(m,2i)UC(m,2i-l)=C(m,2i) and C(m,2i)nC(m,2i-1)=0. 

For each n E IN and j :$; 2" we choose an ~(n,j) E C(n,j) and an accumulation 
• 2n 

point Jl E M(K) of the sequence (pn: n E IN) := (2-" l:i=l Se(n,j) : n E IN) in 

a(M(K),C(K)). We observe that for n E IN, m ~ n, and j E {1,2 .. 2"}, 

Jlm(C(n,j)) = Tml{i :$;2m I C(m,i) C C(n,j)}l = 2-n. 

Since C(n,j) is clopen ink (note that K \ C(n,j) = U;e{l,. .. 2"l\{il C(n,i)) for 
each n E IN and j :$; 2" ), we deduce that 

(5) p(C(n,j)) = 2-n for each n E IN and j $ 2". 

Taking 11'n := {C(n,j) li $ 2"} U {K \ K}, we have 

II E.,.,. 0 Til(!,.)- E.,.,._l 0 Tli(f .. )ll 
I 

2n-1 

=II ?,': 2"-
1 

[2xc(n,2i) I f,.dp + 2Xc(n,2i-l) I f,.dp 
•=1 C(n,2i) C(n,2i-l) 

- XC(n-l,i) I fndJl] ~ 
C(n-l,i) 

2"-1 

= 2"- 1 II ?,': [xc(n,2i) ( I f,.dp- j f,.dp) 
t=l C(n,2i) C(n,2i-l) 

+ XC(n,2i-l) ( I f,.dp- I f,.dp )] \1 

C(n,2i-l) C(n,2i) 

2"-1 

= ?: II I f,.dp- I f,.dpll 
•=I C(n,2i) C(n,2i-1) 

2n-1 

~ 2:; 2-"[ ll/n(~(n,2i))- f,.(~(n,2i -1))11 
i=l 

- ( _sup II f,.(e)- f,.(e) II+ _ sup II /n(O- f,.(t) ID] 
{,{EC(n,2i) {,{EC(n,2i-l) 

2n-1 

~ L (.e- 2e/4)2-n = e/4, 

i=l 
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where Ew is defined as in (4.2.1). Thus, we have shown that (Ewn : n E IN) 

does not co~verge uniformly on {Tp(Jn) In E IN} and from {4.2.2) we deduce that 

Tp(A) is not limited in L1(p,X). 

Using Proposition {1.1.10), Proposition (4.4.2), and Lemma (4.4.4), we are 

now in the position to give the following necessary conditions for limitedness in 

K..,.(X',Y) and in X®Y: 

4.4.5 Theorem: Let Z be the space X®Y Of K..,.(X', Y). 
Let Kx and Ky be two compacta for which X andY can be isometrically 

embedded in C(Kx )_and C(Ky) respectively, and thus, Z can be isometl·ically 

embedded in C( K x x K y ). Let Ex and Ey be the corresponding Borel sets. (For 

example Kx := (B1(X'), u(X', X)); if X = C(K), then Kx := K is possible also.) 

Then a limited set A in Z satisfies the following conditions (a), (b), and (c): 

a) A(Bl (X')) is Y -limited and A(B1(Y')) is X -limited. 

b) Every sequence (zn: n E JN) contains a subse9uence (zn: nEN), N E 'Poo(IN), 
such that 

for any e > 0 there are countable Ex- and Ey-pa.rtitions rrf and rri of 

Kx and Ky respectively such that 

os<;(z .. , B x B) :S e whenever BE rr;, ~.BE rr;, and n E IN 

(we view Z as a subspace ofL00 (Ex ® Ey )). 

c) If Z = X®Y, then A is almost bounded in the projective tensor norm, i.e. 

for any e > 0 there Is a 11·11-bounded A• C X.®Y such that 

" 
A C n A'+ B,(X®Y). 

c>O 

Proof of ( 4.4.5) : 

(a) : Proposition (4.4.2)(a) =>(b) 

(b): We note that Z can be embedded in C(Kx,Y) as well as in C(Ky,X) 

in a canonical way. Applying Lemma ( 4.4.4) (b) :::?-(a) twice to a sequence 

(!,.: n E IN) C A, we get an N E 'P00(IN) and, for each' e > 0, countable Ex

and Ey- partitions rr(ll and rr<2> of Kx and Kv. respectively, such that the se

quence Un: nEN) is (rr<l),e/2) compatible on Kx (viewed in L~(Ex,Y)) and 
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(1r<2>,ej2) compatible on Kv (viewed in L~(!:v,X)). Thu~,'(oJ,' 
each B<1l E 1r< 1l and B<2l E 1r<2>; and any {(1),((1) eB<ll and e(2),.{@ 
we deduce that 

lzn({(l) ,{<2)) - Zn((<l) 
1 
(<2l)j 

$ lzn({(l) ,{(2))- Zn({(l), (<2))1 + lzn({(l), (<2l) ;.._ 

Sllzn(·,{(2l)- zn<-,(<2>)11 +1llzr.({(ll,.) -~n((<1 >,·)11~e,; 

which implies (b). 

(c): Proposition (1.1.10), applied to V :=IX® Y and I· I :=11·11· .. ,... . 

4.4.6 Remark: 
a) Let II ·II be a reasonable norm on X.® Y. By (10, p.223, Proposition _ .. 

Q . . . ·.~.-· .·• 

follows that 11·11 ~11·11; thus, the iderttity I on X® Y can be exten'd,e,<f 
Q v ...... 

continuous linear / 0 : X@ Y--. X®Y. 
. 1 r., . Q' .. · . . : ··: 

So it follows from ~rthat for any limited set in X ® Y the iinage : · 

/ 0 enjoys the properties (a),(b) and (c) of (4.4.5). 

b) Let Z be an arbitrary Banach space, K z a compact spacdor. 

isometrjcally embedded in C(Kz), and Ez the Borel sets ofKz. 
we-~ho~ed-that a Z-limited set A c Z must be weakly ·. . 

i 
but this is equivalent to the property that eacq. ~E'l'lll'\"""' 

. '._:. 
satisfies in Loo(Ez) = LJ,.,(E, JR.1 the property of case 1· ht"~~lft'V"'(otl':~~:+.·•::. 

i.e. there is a subsequence (in: n E IN) of (zn: n E IN) arid, for each e . 
countable Ez-partition 1r of Kz such that for e~ch n E IN and each'n_ ,,. ... ..;.·•-•-·-

the oscillation of ~n en B is not greater than e. · 
Now Theorem (Ali5) ~harpens this result in the following sense:-... ·-

If Z is the injective tensor product of X and Y and if we take K z : 
(Kx, Kv,Ex and Ey as in (4.4.5)), then for eai:he, the. 

can be taken in Ex ® Ey having only rectangular sets, i.e .. 

of the form 

where 1r(1) and 1r<2l are countable Ex- and 

respectively. 
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Moreover, v,:e1ia,y.e-'sh9wn t\J.Itt. in Grothendieck C(K)-spaces the cl!Uls,of con

ditio~ally weakly compact sets and the cl!Uls of limited sets coin.;:ide;" In the 

next §lllct.idii; \~e will prove that in injective tensor pro4ucts of Grotbendieck 

C(K)-spac~ the condition~ (b) and~!!') of Theorem (4.4~') characterize the 
limited sets. - '··, 

((kl 
'\'" 

V)v ., c -], 
' 



have the:GrothendieCkproperty. We denote tlie .. and K2 bY'E1 

and ~~. respectively. For A C C( K1 x K2) the following conciiti~n~ ( aJ and (b) are. 

equivalent. 

a) A is limited in C(KJ x K2). 

b)i) Each sequence (/n: n E IN) C A contains a sub?eCJ.uencei.fn: nEN), ~ 

(
\p~IN), t9t:~tl!'i-folrc;;,ing ~er~.. +I}_ . ~ 

. lfpf"~ y> o; there ~u~. E1· and'~2- _f..arhcms. 1r1 -~d 1r2. ~f K1 IH_,:)-~J 
~ /f(respectivel~~t ,/"'/ /// /~/.///······· i:\~,-- . 

It /1/ / ... / L · --- · r' ,- 1J 
QllC~/n,_~:X.iJ) $ e "for all Ae 1I'J,~ 1r2 ang,;fi"E N-:"" 

ii) A is almost bounded in C(K1 )®C(K2 ) (M-the se:ns~"1'1"f'H''fJHll:t't1611 (l.l.m}). 

Before we can show Theorem (4.5.1), we need the following Proposition and 

Lemmas. 
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4.5.3 Lemma: Let K be a compact space such that C(K) is a Grothendieck 

space. We consider a bounded sequence Un:n ElN) C C(K,X) with the following 

properties (a), (b), and (c): 

a) The sequence Un(~) : n E IN) is limited in X for each e E K . . 

b) Every subsequence of(fn: n € IN) satisfies the property of case 1 in Corollary 

( 4.3. 7) (we view C(K, X) as a subspace of L:;.,(EK, X)), where EK are tlJe 

Borel sets of EK ). 

c) Un:n ElN) js not limited in C(K,X). 

Then it foltows that there is a subsequence {jn: n E JN) of (/n: n E JN), a sequence 

( Cn: n E JN) of closed subsets of K, and a sequence (On: n E JN) of open subsets of 

K such that. 

d) 0:/: CnC On and On nOn' =.0 ifn,n' E lN, with n :/: n1
, and 

e) for each sequence (hn: n E JN) C C(K) with 0 $ hn $ 1, hnlcn = 1- and 

hn loc = 0, for n E lN, the sequence ( hnin : n E lN) is not limited in C(I(, X). 
n 

Proof of (4.5.3) 1 

By the assumptions in (b) and (c), we can assume that there is an e > 0 and a 

normed w•-zero sequence (Jin:n ElN) in C(K,X)' = M(K,X') with 

(1) for all n E lN 

and that, moreover, there is a countable Ewpartition 1r = (Bm: mE JN) such that 

Un: n E JN) is (e/6, 1r)-compatible on K. Choosing for each m E lN a ~m E Brn 
and setting :!!(n,m) := fn(~m), we deduce that 

(2) llfn- L XBm:i!(n,m)ll :Se/6 for each n E lN . 
mEN 00 

Since for arbitrary :1! E X and B E EK we deduce from (4.5.2) and from the 

Grothendieck property of C(K) that 

(Jin(B),:!!) = (Jin 1 :!!)(xa)--> 0, 
n-oo 

it follows that 

(3) in u(X',X) for any BE EK. 

Now choose inductively, for each k E JN, nk and mk both in IN such that 
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(4)(k) n~; < m~; and if k > 1, then mt-1 < n~;, 
(5)(k) l1'nki(Um~m1 Bm) < fc, 

where c := 1 +sup{ II x(n, m) II In, mE IN}, and 

(6)(k) l(pn 1 ,Em::;m1~ 1 XBrnx(n~;,m))l <~'if k > 1. 

If k = 1 we choose n1 = 1 and an m1 > n1 large enough so that (5){1) holds (note 

that II Jlj II= 1 and that the sets Bj's are pairwise disjoint). 

If m1-1 and nt-1 are already chosen for k > 1, we deduce from (3) and the 

limitedness of (x(n,m): n E IN,m::; m~;_ 1 ) in X (assumption (a)) that·there is 

an n~; > mt-1 such that 

(7) 

which implies (6)(k). As in the first induction step, we can choose an mk > nk 

satisfying (5)(k). 

Setting D1.: := Uj'.!m._
1
+! Bj, for each k E IN (with mo := O),we deduce .that 

(8) (Jln~.:•XDJn~.:) ~ (l'n.,fn~.:) -I(Pn.,Xofln.)l 

~e-e/6-l(pn1 ,Xof L XB,.x(n~.:,m))l 
. mEN 

[(1), (2) and IIPn/i II= 1) 

~ 5e/6 -l(l'n1 , L XB,.x(n~.:, m))l 

~ 5e/6- 2e/6 = e/2 

[by (5)(k) and (6)(k)J. 

Since for any f E C(K) and x EX the sequence ((f.pn1 ,x) : k E IN) is weak•-zero 

convergent in M(K), and thus weakly convergent, since by (1.1.7) (xo1 : k E IN) 

is limited in L00(EK) (we recall that L00(EK) is a Grothendieck space with the. 

Dunford-Pettis property and that (xo1 : k E IN) is weakly zero convergent in 

L00(EK )), and, finally, since Loo(EK) is a subspace of C(K)", we deduce: 

which implies that (l'n~.:lo1 : k E IN) converges in u(M(K,X'),C(K,X)) to zero. 

Since ""•, is regular for k E IN there is for each k E IN a compact i)J.: C Dt with 

ll'n.I(Dt \.b~.:)::; ffi, where c:= SUPneN(I+ ll!nll). 
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:us;:,thf'''&e•Que:nce (vk: k E IN), with "• := lln.lv. (k E IN), hM pairwise disjoint 

·convetges·w• to zero, and satisfies, by (8), 

' · e e e 
(v~<.fn.) ;:: (lin•• XDJnk) -l(pnk• Xok \i>.fnk)l ;:: 2 - 6 = a· 

·:.: .'421<.' •.. •'··'' . .. 
:'J'liis hnplies that the Msumptions of Lemma (3.2.3) are satisfied (taking Fi := ,0 
i;t&}'/e lN) and, together with (3.2.4), we can find a subsequence (kt:i EIN) of IN , 
,.:·.... . .. . \ 

'lind .a w•-zero sequence (iit: i E IN) in M(K, X') such that the supports Ct of ilt 

have pairwise disjoint open neighborhoods Ot and such that 

II lit- ilt II$ e/(1 + 6 sup II fn II) for each i E IN. 
nEN 

Taking it := fnkt for i E IN, we deduce for an arbitrary sequence (ht: e E IN) C 

C(K) with 0 $ ht $ 1, htlc1 = 1, and htlof = 0 that 

(lidt, ilt) = (it. ilf.) 

? (Jnk1>11kt)- II fnkt II ' !lvkt - Vktll 

;:: t:/6, 

which hnplies that (hdt : e E IN) is not limited in C(K,X) and so the Msertion 

follows. 

0 

4.5.4 Lemma: Let K1 and K2 be compact spaces with C(K!) and C(K2) 
being Grothendieck spaces. 

We consider a sequence Un: n E IN) C C(K1 x K 2 ) and an e > 0 with the 
following properties (a) and (b): 

a) For n E IN and 6 = 1,2, there are closed C! C Ke and open O! C Ke -witl1 

C(S) C O(S) O(S) nat B) = 0 and suppf C C(l) X 0(2) 
n. n ' n n' ' n n n 

for n,n' E IN with n =F n'. 
b) There is a sequence <in:n EIN) C C(Ki)®C(K2) with 

!lin...:. fnll < e and sup 11/nll < oo for n E IN. 
V nEN A 

. Then for any weak•-zero sequence (pn:n EIN) in B1(M(K1 xK2)) it follows that 

limsupl{pn.fn)l $e. 
n_..·oo · 
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.iheusual.norm qn C(Kt xK2) by 11·11· For n e 1N ... .. v . 

be a8 assumed in (a) and choose 9~9) e C(Ks} with 

1 (B)I . - 0 d (e) I - 1 
'''"''·'"'""i.Rc•\c·-; 'I .9n c~8) - an Un {o!,B>)C - • 

. . . . · '(9) • • 
miJtuwm" op~rat<irs Pn , Pn, and Pn by 

Pn := P~1 >®P~2> and Pn := p~ll®P~2> for n e 1N and e = 1, 2 

'< (c.f.(0.3)(d)) and observe that for !I e C(K1) and he C(K2 ) we have 

.· PnUt ®h) = p~ll(h) ® P~21(h) = (g~11 It)® (9~21 h)= (9~1) ® 9~21 ) ·(!I ®h). 

,, Thus; J\(f) = (9~l) ® 9~21 ). I for I e C(Kt X K,). 
By condition (b) andthe definition of the projective tensor norm, we can choose 

.·. for each n e 1N finite famili~s 

(x(n,i): i:::; l(n)) C Bt(C(Kt)), 

(y(n~ i) : i $ l(n)) C Bt (C(K2)), and 

(a(n, i) : i $l(n)) C IR 

such that each jn defined by 

l(n) 

jn := l:>(n,i)x(n,i) ®y(n,i) for n E 1N 
i=l 

satisfies II In - jnll :::; e and such that 
v 

l(n) 

· L la(n, i)l $ 2 sup II jn'll < oo for n E 1N. 
i=J n'EN II 

,From assumption (a), from (1), and from the definition of jn, we deduce for each 
n E 1N that 

(2) PnUn) = (9~1) ®·9~21 )1n;:; In and 
l(n) 

· Pn{j,;) = Pn(jn) = L a(n, i)(x(n, i)9~1)) ® (y(n, i)9~2>). 
i=J 
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Thus, since II Pn II= 1, 

(3) 

Since C(Kg), 8 = 1, 2, have the Grothen:dieck property, we deduce from the fact 

that the elements of (g~9l : n E IN) have pairwise disjoint supports and from ( 1.1. 7) 

that the sets 

are limited in C(Ki) and C(K2) respectively. ~y (4.5.2)(b) the set A<1l®A(2l, and 

thus the set 

i~ limited in C(Ki)®C(K2). Since (P,.{j,.) : n E IN) C A and since the identity on 

C(KJ) ® C(K2) can be extended to a linear and bounded operator 

T : C(KI)®C(K2) ..... C(KJ)®C(K2), we deduce that (P,.{j,.) :E IN) is limited 

in C(K1 )®C(K2). 

Thus, for any normed weak•-zero sequence (p,.: n E IN) in M(K, X') it follows from 

(2) and (3) that 

which finishes the proof. 

Proof of Theorem ( 4.5.1) 

(a) :?(b): Theorem (4.4.5) . 

:S limsllpi(Jln,Pn(f,.))l + e = e, 
n-oo 

.o 

..,(a)~ -.(b):We have to show that if A C C(K, xK2) is not limited and satisfies 

(b)(i), then A does not satisfy (b)(ii). 

For this suppose (f,.:n EIN)C A is not limited in C(K1 xK2 ) and satisfies (b)(i). 

We first observe that the conditions (b) and (c) of Lemma (4.5.3) hold by .taking 

K := K1 and X:= C(K2). Moreover, (a) of (4.5.3) is satisfied, which can be seen 

as follows: 

The sequence (f,.:n E IN), viewed in L00 (EK~, C(I(1 )), satisfies case 1 of Corollary 

( 4.3.7)(a). This implies, by (4.3.7)(b), that for each e E K, and each N E 1'00(IN), 
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there is an N -E 'P00(N) for which the sequence Un(e, ·) : n e N) converges 

pointwise on K2 • Thus, {fn(e, ·) : n E ;lN) is conditionally weakly compact iri 

C(K2), which implies, by (1.1. 7), that it is limited in C(K2). 

Thus, all of the assumptions of Lemma (4.5.3) are satisfied and we can choose an 

Nt E 'Poo(lN) and, for each n E Nt. an open 0~1 > C Kt and a closed d 1l C Kt 
satisfying (d) and (e) of (4.5.3). We now choose, for each n E Nt, a g~t'l E C(Kt) 
with 

(1) 0 < (I) < 1 (1)1 - 0 d (I) I - 1 _ Un _ , Yn 0~tJ - , an Yn (O~I))C - • 

By taking J( := K2 and X:= C(K1 ), we may proceed as above to show that the 

sequence (g~t) /n: n E Nt) also satisfies th~ assumptions of Lemma (4.5.3). Thus, 

we can choose an N2 e 'Poo(Nt) and, for each n E N2, an open 0~2) C K2 and a 

closed C~2> c K2 such that (d) and (e) of (4.5.3) are satisfied and we can choose, 

for each n E N2, a g~2) e C(K2) with 

(2) 0 < (2) < 1 (2)1 - 0 'd (1)1 - 1 - Un - ' Yn c~2J - , an Un co!!>>c - . 

By (e) o£(4.5.3), we deduce the existence of N3 E 'P00(N2) and a normed w•-zero 

.sequence (!Jn: n E N3) C M(Kt xK2) with_ 

(3) 1 ; f ( ( (t) (2))f, ) -e := -2 m /Jn• Un ® Un n > 0. 
_ nEN3 

We have shown that ((g~l) ® g~2))/n : n E N3) satisfies condition (a) of ( 4.5.4) and 

for the above chosen O~') and d'l, n E N3 and 8 = 1, 2, but it does not satisfy 

the assertion of (4.5.4). This implies that (b) o£(4.5.4) cannot be satisfied, and 

thus, , 
(4) any sequence (hn: n E N3) C C(Kt)® C(K2), with II hn- (g~> ®g~2))/nll $ e 

v 
for n E N3 , is unbounded in C(Kt)@C(K2). 

To show that (b)(ii) is not valid, let (in : n E N3) C C(Kt)@C(/(2) be arbitrary 

with II in- /nil< e ifn E N3. Since ll(g~) ®g~2))(/n- in~l$ e for n E N3, (4) 
v v 

implies that {in(9~l) ® g~2)): n E N3) is unpounded in C(Kt)<,8\C(K2) and since 

II inll ~II (g~l) ® g~2))inll if n E N3, we deduce that {in: n E lN) is unbounded in 
1\ 1\ 

C(Kt)®C(K2)1 which finishes the proof. 
0 
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Finally, we want to ·construct three bounded subsets A, B, and C ·of f.oe,®f.oe, 
which demonstrate the following: 

- The implication (b) =?(a) of Proposition (4.4.2) is not true in general (A and 

B). 
- Neither (b)(i) nor (b)(ii) are superfluous in Theorem (4.5.1), i.e. both are, 

necessary to imply limitedness (C and B respectively). 

- Not every limited set of £00®£00 can be obtained in the way described by 

Proposition (4.5.2)(h), i.e. not every limited set is almost (in the sense o~ 

(1.1.3)) a finite sum of products of limited sets in £00 (this shows the set A). 

4.5.5 Examples: For each n E IN we define the following elements of ioo®ioo 

( = C({jN X {jN) = C({jN, f.oo )): 

.. n 

Xn :=LXII) ®X(i) 
i=l 

( = LX {(i,i)) ), 

n n 

Yn := LX{i) ® LX{j) 
i=l j=i 

2"-1 

Zn := L XA(n,i) ® X{i) 
i=l 

i=l 
n 

(= LX{i)x{i,i+l, ... n)), and 
i=l 

2n-l 

(= L XA(n,i) ® X(iJ), 
i=l 

where (A(n, i) : n E INo, i E {1, 2, ... , 2"}) C 'P00(IN) satisfies the conditions of a 

tree of sets. 

Then for A := {x,.l n E IN}, B := {y,. In E IN}, and C := {z,.l·n E IN} the 

following hold: 

a) For each D E {A,B,C}, the sets D<ll := {f(e,·)le E {jN, f E D} and 

D<2l := {/(·,e)lee{jN, jED} are limited in f.oo. 

b) A satisfies (h)(i) and (b)(ii), 

B satisfies (b )(i) hut not (b )(ii), and 

C satisfies (b)(ii) but not (b)(i) of Theorem (4.5.5). 

In particular, A is limited in £00®£00 but the sets B and C are not. · 

Proof of (4,5.5) : 
(1) A< 1>;.A<2l, B< 1>, B<2>, C(l) and c<2> are limited in £00 : 

To see this, A(l), A(2), B<1l, B(2), and C(l) are subsets of the weakly conditionally · 

compact set D1(co). Moreover, 

c<2l = {xA(n,j) In E INu, j:::; 2"} u {0}' 
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so each subsequence of c<2l contains either a sequence with pairwise disjoint sup· 

ports or a monotone decreasing subsequence. This implies that c<2J is condition

ally weakly compact. The assertion thus follows by (1.1.7). 

(2) A and B satisfy condition (b)(i): 

To see this, we observe that A and B are, for both embeddings into L~(E~, £00 ), 

measurable with respect to the O'.algebra generated .by the countable partition 

1r := {{i} ji E lN} U {,aN\ lN}. 

(3) A and C satisfy condition (b)(ii): 

For this we first make the following observation: 

Let Kt and K2 be two compact spaces and let 9t,92 1 ... ,g~; E C(Kt) and 

ht, h2, ... , h~; E C(K2). Then 

2-" :E (L9i-L9J)®(Lhi-LhJ) 
AC(l, ... ,l:) jEA jf,!A jEA jf!A 

1: 

= 2-" L L (XA(i)g;- XAc(i)g;) ® (XAU)hJ- XAc(j)hj) 
AC(I, ... ,.I:)i,j=l 

. 1: 

= 2-1: L L (XA(i)g;- XAc(i)g;) ® (XAU)hj- XAc(j)hJ) 
i,j=l AC(I, ... ,I:) 

1: 

= 2-A: L L (XA(i)g;- XAc(i)g;) ® (xA(i)h;- XAc(i)h;) 
i=l AC{I, ... ,I:) 

L (XA(i)g;- XAC (i)g;)®(XAU)hj- XAC(j)hj) 
i,j=l,i:Fj AC(t, ... ,k) 

1: 

= 2-I::E( :E + :E )(g;®h;) 
i=l iEAC(I, ... ,A:) if!AC(t, ... ,k) 

1: 

+2-" :E 
i,j=J,i~j 

1: 

= :Eg;®h;. 
i=l 

AC{I, ... ,k) 
iEA,jflA 

:E + :E )(g;®hj) 
AC{I, ... ,k) AC{I, ... ,k) 
JEA,IflA i,JflA 

'If, moreover, (g;: i = l, ... ,k) and (hi :j = l, ... ,k) are normed and have pairwise 

disjoint supports, we deduce that 
.1: 

IIL91 ® h;ll ~ 2-"IP({1,2, ... ,k})l = 1.. 
i='t . A 
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Now we observe that, for each n E IN, Zn and Zn can be represented in the above 

form with pairwise disjoint and normed 91, ... ,gk E C(,llN) and ht, ... , hk E C(,tiN) 

and so the assertion follows. 

(4) C does not satisfy (b)(i): 
Let N E 'P00(1N) and let 1 and "'(1 be two distinct branches of (A(n,j) : n E 

N,j:::; 2n), i.e. "Y = ((n,j(n,"'f)): n EN) with j(n,"'():::; 2n and A(n,j(n,")')) C 

A(m,j(m,"'f)) whenever m < n. 

Then there exist 
{EA.,.:= n A(n,j(n,"'()) and 

nEN 

{'EA.,, := n A(n,j(nd)) 
neN· 

and annE N with 11/nW- In({') II= 2 (taken EN with j(n,"'() #j(nd)). 

Since there ~e uncountably many branches, we deduce the assertion. 

(5) B does not have property (b)(ii). 

We introduce the following notations: . . 

11·11, where 1 :::; p:::; oo, denotes the usual ip norm on ip and t; (n E IN). 
1' 

For i,j E IN, let .. {0 ifi=j 
a(~,3):= f-a ifi#j 

and let M and Mn (n E IN) be the mat~ices 

M := (a(i,j): i,j E IN) and Mn := (a(i,j): i,j E {1,2, ... ,n}). 

For n E IN and 1 :::; p :::; oo define 

p~n): lp-+ IR.n, :1: 1-+ z(n) := (:ift 1 Z2 1 ... 1 Zn) for :1: = (z;) E ip, and 

Q~n) ; IR.n -+ ip 1 X 1-+ (Xt, X2 1 .. :, Xn, 0, 0, ... ) • 

Now we recall the following result of Schur [29, p.212, Theorem 293]: 

The mapping 

00 

T: £2 -i IR.N I :1: = (x;) 1-+ M 0 X= c.L: a(i,j)x; : i E IN)' 
j=l 

well defined, takes its values in £2, and is a bounded and linear operator on e2. 
this result we deduce that for each n E IN the operator 

Tn := .!.q~n) 0 M(n) 0 Pj;:> : ioo -+it 
n 
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(6) 

1.34 

IITnll = sup. l{x,Tn(Y))I 
o:,rEBt (too) 

1 
=- sup l{z,Mnoy)l 

n .,,,EBt(l::C,) 

1 X y 
=- sup 1(-ll •. II'Mn o -11 ll}lllzllllvll n .,,11eBt(t" ) .z Y _ 2 2 

. Oo ; 2 2 

~ sup l(:c,Moy)I=IITII 
a:,rEBt (l2) 2 

fllzll~vnllzll fo~xent"). 
2 00 

Finally, we need the following inequality which can be obtained by passing to 

integrals of minorizing functions: 

(7) 
n-{ n 

1 2: 2: ~ ~ <n- 2)ln(n- 2) whenever n e lN with n ~ 2. 
i=l j=i+l ) ' ' 

We have, for each n E IN and each y E (Yn' + Bt;•(loo®foo)) n £00 ® f.oo, that 

(8) -c· .) ·- {o .. _) { ~ 3/4. if j e {i,i + 1, ... ,n} 
yl,) .- (a,J)>Y ~1/4 ifjE{1,2, .. ,i-l} 

for any i,j E {1,2, ... ,n}. Viewing Tn as an element of (loc®foo)' = L(£00 ,£~), 
we deduce that 

(9) n{Tn 1 Y) = n L y(i,j)Tn(X(i} ® X(j)) 
i,jE(J, ... ,n} 

= L y(i,j)a(i,j) 
i,jE{l , ... ,n} 

n n n i-1 

=E E .~.v(i,j)+EE .~.v(i,j) 
i=J j=i+J ) I . i=l j=l ) I 

n-1 n 

= E 2: . ~ .(!i(i,j)- fi(j,i)) 
i=l j=i+l) I 

1 
n-1 n 1 

~2EE~ 
i=l j=i+l J I 

n-2 
~ -

2
-Jn(n- 2). 
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the IISsertion, let A(l/•) C ioo ®ioo with 

.. >C A<114> + Btj4 (ioo®iop)· For each n e lN, we can choose jj,. E A
1
1
4 

. ~ 11~11 :5 1/4, which implies by (9) that . . 
v 

lim sup I(T,., y,.)l :5 -
2
1

limsup ~ ln(n- 2) = oo. 
n-oo n-oo n 

: n e lN) is bounded in ( ioo®ioo )'I this implies that (iin: n E lN) is 

,!,l~ib.OUn41ed in ieo®ioo, which finishes the proof. 
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5 Examples 

Concerning examples of limited sets and Gelfand-Phillips spaces, we are still 

in the following unsatisfying situation: 

On the one hand, all of the spaces we have. found up until now which do not 

have the Gelfand-Phillips property, have been Grothendieck C(K)-spaces (compare 

{1.1.8)). On the other hand, all of the concrete examples of Gelfand-Phillips. 

spaces which we have considered up now have been spaces X whose dual unit

ball contained X-norming and weak•-sequentially pre-compact subsets (compare 

section ( 1.2) ). 

It seems that the literature on this field does not present any other examples. 

So we want to construct the following examples in the last chapter: 

Example 1 shows that the Gelfand-Phillips property is not a three space 

property and that there are Banach spaces which fail the Gelfand-Phillips property 

and are generated by weakly conditionally compact .sets (by {2.i.6) and {2.3.1) non 

reflexive Grothendieck spaces are not generated by weakly conditionally compact 

subsets). 

Example 2 shows that there are even spaces which do not enjoy the Gelfand

Phillips property and do not contain a copy of it. 
Example 3 is a Gelfand-Phillips space which does not admit in its dual ball a 

norming (up to a constant) and weak•"sequentially pre-compact subset. 

Example 4 is a Gelfand-Phillips space C(K) such that K does not contain 

any dense and sequentially pre-compact subset. 

Example 5.shows that under the continuum hypothesis one can find an infi

nite dimensioliai C(K)-space having the Gelfand-Phillips property such that every 

converging sequence i!l K is eventually stationary. 
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5,1 Example 1: The Gelfand-Phillips property is not a three~space

property 

It is easily seen that quotients of Gelfand-Phillips spaces need not be Gelfand

Phillips spaces. In fact, the space M(,tiN) = e:,., is a Banach lattice which does not 

contain a copy of c., and thus, by (1.~.5)(c) it is a Gelfand-Phillips spa:ce. But 

e:,., has a quotient, namely £00 , which is not a Gelfand-Phillips space (consider 
an isometric embedding E : £1 --. ioo and pass to the adjoint). In this section 

· we want, conversely, to construct a space X, which does not enjoy the Gelfand

Phillips property, but which contains a subspace Y such that Y and X/Y are both 

Gelfand-Phillips spaces. By this we have proven a conjecture of L. Drewnowski in 

(12, p.14, Conjecture). 

The space to be constructed will be a C(K)-space where K is the Stone com

-pact of an algebra on 1N which is generated by 'PJ(IN) and a well-ordered family . 

'R, = (R.,:o: < w) c 'Poo(lN) (we Ord) with the following properties: 
1) For any 0 ::; o: < f3 < w, either RpcR., or Rp n R.,~0 . 

.. 2) For each N e 'P00(JN), there is an o: < w with R., C N. 
This is a specialization of the properties which were considered in (25, 27, 31) 

(compare Definition (5.1.1)). · 

5.1.1 Deftnitioiu Let 'R, = (R.,: o: < w) be a well-ordered (by the ordinal w) 

subset of 'P00(1N). We will say that 'R, has the property (F) if 

(F) for. any o:,f3 e [O,w( with o: < {3, 'either RpCRa or Ran Rp~0, 
and we will say that 'R, satisfies (FM) if 

(FM) 'R, satisfies (F) and is maximal in the following sense: for each R.., E 'P00(1N), 

the family ft := (Ra:o: < w + l)!does not satisfy (F). 
5.1.2 Proposition: Let 'R, = (Rcr:o:.< w) satisfy (F). 

Then the following a.t(l equivalent: 

a) 'R, satisfies (FM). 
b) For each N E 'P00(1N), tl1ere is an a < w witl1 

INnRal = oo and IN\ Rcrl = oo. 

Proof of (5.1.2} : 

(a) '*(b): Let 'R, satisfy (FM) and let N E 'Poo(IN). Then ft := (Ra:o: < w + 1), 
where R.., := N does not satisfy (F), S,ince (R.,: o: < w) satisfies (F), there is an 
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o < w such that the pair (o,w) does not satisfy th~ alternative in (F), i.e. 

either INn Ral ~ oo and IN\ Ral = oo 

or IN nRal <± 00 and IN \Ral < 00. 

Since INI = oo, the second case cannpt happen and we deduce (b). 

(b) ~(a): For a given R.., e P00(lN), we have to show that ii. := (R0 :o < w + 1) 
does not satisfy (F)~ . 

By (b), we find an o < w such that 

Ill.., n Ral = 00 and Ill.., \ Ral = 00 • 

Thus, the alternative in (F) does not hold for f3 := w. 

0 

5.1.3 Lemma: Let 'R. = (.Ra:o <:w) C P00(1N) satisfy (F), A the algebra on 

lN generated by 'R. and PJ(lN), K the Stone compact of A (compare (0.5)), and 

k := K\ lN (compare (0.5.4)). ' 

a) Every regular Borel measure Jl. on R: has a metrizable support. 

b) Bt(M(k)) is u(M(K), C(K))-sequentially com}Jact. 

c) If'R. satisfies (FM), then lN has no converging subsequence inK. 

Proof of (5.1.3) : (compare the prod£ of (31, p.322, Theorem 3.7] and Remark 

(5.1.4)) 

Proof of (a): By (0.5.4)(c), the topology of K is generated by A:= {AK I A e A}. 

Thus, we have to show that for a given Jl. E M(K) and for C := supp(Jt.) the set 

An C = {An CIA e A} is countable. Since A is generated by 'R. U P,(JN), it is 
enough to show that the set 

'R.(C) := {CnRo Ia < w} 

is countable. For any o < w, it follows from the definition of supports of measures 

and from the fact that Ro is closed and open inK that either IJt.I(Ro n C)> 0 or 

Ra n C = 0. Thus, it is enough to show that for a given e > 0 the set 

'R.(C,e) := {C n Ra I Q < w' IJt.I(C n Ro)::: e} 

is countable. 
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··. Le.t us .say that a finite family (a; : i = 1,2,· ... ,£) satisfies (1) if 

(1) Rl¥; n RaJ n c = 0 and jpi(R,.,) ~ e I whenever i,j € {1,2, ... ,£}, i :/: j. 

(2) £(e):= ma.x{i E INo l3{a; : 1 :S i :S t) C (O,w( with (1)} 

(note that i(e) exists because JJ is finite) and choose a family {a;: i :S l(e)) C [O,w[ 

satisfying ( 1 ). 

Ffoin the ma.ximality of l( e) it follows that any element of n( c, e) lies in at least 

one of the sets n(C,e,i), i :S i(e), where 

{3) R(C,e,i) :={Ran cIa< w I R,; nRa; n c :/: 0} n n(C,e) fori :S t(e). 

Thus, it is sufficient to show that R{ C, e, i) is countable for a. given i :S i( e). For 

this, we first show that 

for B,iJ E R(C,e,i) 

defines a. well-ordering on R( C, e, i). 
From (0.5.5)(a.) and (F) we deduce {recall that C C K) that 

(4) . either Rp n C c R,. n C or R,. n RfJ n C = 0 

whenever 0 :Sa< /3 < w. 

To show that two elements A, B E n( C, e, i) a.re c~mpa.ra.ble, choose a, /3 E w with 

A = R,. rl C and B = Rp n C. W.l.o.g. we may assume that a < {3 and, by (4), 

we have to show that R,. n Rp n C :/: 0. 
This ca.n be· seen as follows: assuming that R,. n Rp n C = 0 and deducing from 

the definition qf n( C, e, i) that neither Ran Ra, n C nor RfJ n Ra; n C is empty, 

we observe by (4) that 

(note that Ra; n C c Ran C cannot be true since Rp n Ro; n C t 0 and 

R,. n Rp n C = 0 (by the assumption); in the same way we show that. Ra;- ftC ,c;. · 
RpnCcannotbetrue). .,· : ... ~> .•. : 
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But this would imply that the family {&j: 1 s; j s; l(c) + 1), where 

{

ai ifjs;i(e),j#i 
&j := Q if j = i 

f3 if j = t(e) + 1 for j E {1,2, ... ,l(e) + 1}, 

would satisfy (1), which is a contradiction of the maximality of l(e). Thus, we 

hlwe shown that 'R.( C, c, i) is. linearly ordered. 

To show that 'R.(C,c,i) is well-ordered, let ftc 'R.(C,c,i) be non empty. Then 

there exists a := min{a < w I c n Ra E R}. Since for each B =RancE nit 
follows that a ~.a, we deduce from (4) that Ran C c Riir n C; thus, R& n Cis 
minimal in ft. 
Now the set {B \ succ(B) I B E 'R.(C, c1 i)}, where succ(B) is the successor of B 

(with respect to -<)·if it exists and 0 if not, consists of pairwise disjoint, clopen 

(with respect to the topology on C), and non empty subsets of C with strictly 

·pbsitiv& '1/.~Fnieasui:e. SinctHI-'1 is finite, we deduce that 'R.(C, c, i) is countable, 
';'lind thus;'th~ assertion. 

Pr'OQfof (b(Let (~ri: n E 1N) C Bt(M(K)) and set /l := EneN 2~nll-'nl· Then 
g :~·~VPP(PJ con.tains the support of each /ln· Since c is metrizable, M(C) is 
w~a~•:s_~qtientially compact. Since the inclusion E : M(C) -+ M(K) is weak*

~~nti~ti:o~; {it ls ihe ~djoint of the restriction-map R : C( K) -+ C( C)) ~d since 

E maps each /ln to itself, we deduce the assertion. 

Proofof (c): Assume that 'R. satisfies (FM) and let N E 1'00(1N). By (5.1.2), there 

is an a < w with 

liminf c5n(Ra) = 0 and lim sup 6n(Ra) = 1, 
nEN,n-+oo nEN,n-oo 

which implies that N does not converge inK since R;.is closed and open in/(. 

<> 

5.1.4 Remark: The idea to consider Stone compacts Kover algebras generated 

by systems n c 'Poo(1N), for wich 

whenever R, R E n, 

originates from D. H. Fremlin (compare (31, p.322, line 8)). It was used to construct 

·counter-examples for the weak•-sequentially compactness of dual balls: 
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a) R. Haydon showed in (31, p.322, Theorem 3.2] that C(K) does not contain 

l 1(r) for an uncountable set rand that the dual ball of C(K) is not weak"· 

sequentially comp~ct. In the proof of (5.1.3), we use essentially his ideas. 

b) J. Hagler and F. Sullivan (27, p.501] showed in a direct way {without using 

{5.1.3)(a)) that C(K)/co has a weak"-sequentially compact dual ball (recall 

that C{K)/co ::: C(K) by {0.5.5)), and thus, they showed that the property 

of Banach spaces having weak• ·sequentially compact dual balls is not a three

space property. 

c) J. Hagler and E. Odell (25] construc~ed a non-separable James tree-spaceY 

and showed that there is a subspace of C(K) $2 Y which does not contain a 

copy of l1 and does not admit a weak• -sequentially compact dual ball; thus, 

they sharpened the result cited in (a). 

We want to show now that a family, n = (R,.: a< w) C 1'00 (1N) satisfying 

(FM) can be chosen with the property that the corresponding C(K), where [(is 

defined as in (5.1.3), is not a Gelfand-Phillips space. Therefore, we need first the 

following result about the cardinality of ~ystems n which satisfy (FM): 

5.1.5 Lemma: Let n = (R,.:a < w) c 1'00(1N) satisfy (FM). 

Then I'RI = lwei 
(note that thb.assertion follows trivially from (5.1.3)(c) if we assume the contin· 

uum hypothesis). 

Proof of (5,1.5) : 

Let n = (R,.:a < w) satisfy (FM) and hence, condition (b) of (5.1.2). 
i 

First we observe that 

(1) if a, .BE (O,w(, IRan Rpl = oo, an!IIR,. \ R.BI = oo, 
then a < .B and R,BCRa. . 

This can be seen as follows: 

Fl'Om IR.. n Rpl = oo and (F) it follows, .that 

or 
a 

RpCR,. and ,8 :5 a. 

Since IR,. \ Rpl = oo the first possibility cannot be true and a and .B cannot be 
equal .. 

Secondly, we show that 

(2) for each a< w, there are a 1 , a2 E)a,w( with 

and 
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For this let a< w. By (5.1.2)(b) (set N := R,.), there is a {J < w with 

{3) IRan R.sl = 00 and IR .. \ Rpl = 00' 

which implies by (1) that a< (3 ahd RpcR,.. Thus, 

a, := min{{J E]a,w!l Rp satisfies (3) and RpCRa} 

exists. 

Then we apply (5.1.2)(b) toN:= Ra \ R,.1 and we find an a~ <w such 'that 

( 4) IRa n R~l n Ra,l = 00 and IRa n R~l \ Ra,l = 00 , 

wich implies by (1) that 

(5) a< a2, Rcr2 CRa, llfld with {3 := a2 (3) is satisfied. 

From the minimality of a 1 we deduce that at $ a 2 and from (4) we have a 1 < a2.• 

Since by ( 4)it is nqt possible that R .. , CRal' we deduce from (F) that Rat nRcr2 ,g,0. 
Thus, (2) is shown. 

Using {2), we can inductively choose.a family (a(n,j) :'"n E lNo,j E {1, ... ,2"}) 

with 

Q0 Q 
(6) Ra(n,;) n Ra(n,;)= and Ra(n+t,2j-l) U Ra(n+J,2j)CRa(n,;), 

when~ver n E IN and i,j E {1, ... , 2"} with i :/: j . 

. Let Br bethe set of all branchesof({n,j) : n E INo,j E {1,,. .. ,2"}), i.e. the set of all 

"Y = (j(n,"'(): n EINo) C IN with j(O,-r) = 1 andj(n+l, -r) E {~j(n, -r), 2j(n,-r)-l }. 

For every 'Y EBr, we choose anN., E 'P00(1N) such that 

(7) N.,cRa(n,j(n,-,)) for n E IN 

(note that this is possible since, by (6), the sets nm::;n Ra(m,j(ttJ,-r>>• n E INo, are 

of infinite cardinality). 

Applying (5.1.2)(b) for each 'Y eBr, we find a(-r) < w with 

IN., n Ra(-,)1 = 00 and IN.,\ Ra(-,)1 = 00. 

Using (7), we deduce therefore that 
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by (1), R.•h>cR .. (,.;j(n,-,» for all 'Q e lN and 'Y eBr. 
ftir two distinct 'Yd EBr there is annE lN with j(n,'Y) :f j(n,1'), it follows 

(6) that 

i.n particular, we deduce that I'R.I ~ lwol (note that IBrl = lw.l) and thus the 
~sertion. 

0 

5.1.6 Theorem: (Example (1)) 

There exists a family 'R. "" (Ra: a < w.) C 'Poo(lN) which satisfies (F) and, 

moreover: 

(5.1.6.1.) for each N E 'Poo(lN) there is an a< w. with Ra C N. 

Let K be the Stone compact corresponding to the algebra generate~ by 'R.U'P J(lN) . 
. Then the sequence (X{n) : n E IN) is limited !n C(K) (we consider lN as a subset 

of K as in Proposition (0.5.4)). 

Using Lemma (5.1.3)(b) and (1.2.2), we deduce therefore that C(K)/co 

(=: C(K \ lN) by (0.5.5)) and Co (viewed as a subspace of C(K) by {0.5.4)(d)) 

have the Gelfand-Phillips property but C(K) does not. 

Proof of (5.1.6) 1 

Let (Na :a < w.) be a well-ordering of 'Poo(lN). In order to show the existence of 

(R .. :a < w.), we choose by transfinite induction, for each (3 < w., an Rp E 'Poo(IN) 
such that 

(1)((3) Rp C Np, and 

(2)((3) for any a < (3, either Rp n Ra~0 or RpCRa. 

We suppose that (R .. :a < (3) has been chosen for a (3 <We and we set 

I:= {a< P liRa n Npl = oo} 

and 

ft := (R .. :a E I), where .R .. :=Ran Np for a e I. 

Then the cardinality of n is strictly less then the cardinality of We (lftl s Ill s 
lf31 < jw.l). Thus, I is order isomorphic to an ordi11al w less then wand ft satisfies 

condition (F) as a subset of 'Poo(Np). From Lemma (5.1.4) we deduce that ft 
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cannot be maximal; thus, there is an Rp E 'Poo(Np) such. that (Ra: a E I u {.B}) 
sati11fies (F). 

Taking Rp := Rp, (1)(,8) is satisfied. In order to show (2)(,8), let cr.< ,B. 
If a ¢..I, we deduce from the definition of I and Rp that Rp n Ra~0. 
If a E I we deduce from the fact that ( Ra: a E I U {.B}) satisfies (F) that 

either (Rp n Np) n (Ran N11)~0 or Rp n NpCRan Np. 

Since Rp C NfJ, we deduce the assertion, which finishes the induction step. 

Since each Ra is open and closed inK, we deduce that for each N E 1'00(1N) the 

sequence (X { n 1 : n E N) contains a subsequence (choose an a with Ra C N) which 

admits a supremum in C(K) (namly XRa ). Thus, we deduce from (3.3.2) that the 

sequence (X{nl : n e IN) is limited in C(K). 

5.1.1 Proposition: Let n = (Ra:a < w) c 'Poo(IN) satisfy (F) and let K 

be the Stone compact corresponding to the algebra generated by nand 'PJ(IN). 

Then the set 

G := {XRa Ia <We} u {X{n)ln e lN} u {1} 

is conditionally u( C( K), M( K))-compact and generates C( K). 

In particular, the space C(K) of Theorem (5.1.6) is not a Gelfand-Phillips 

space, but it is conditionally weakly compactly generated and, by Corollary (2.3.3), 

every in C(K) limited set is relatively weakly compact. 

Proof of (5.1,7) : 
(1) G is conditionally weakly compact, 

Let Un: n e IN) c G;::: {xRa Ia < Wc}U {X{n} In e IN} u {1}. From (F) and 

(0.5.5) we deduce that fork:= K \IN the sequence Unlk : n e lN) contains II. 

subsequence (fnlk : n E N) which is either decreasing or consists only of elements · 

with pairwise disjoint support. Thus, it is u(C(K),M(K))-Cauchy. Since M(K) is 

the complemented sum of M( K) and span( {On I n E IN}) = tIt a separable space, 

we deduce the assertion (1). 

(2) G generates C(K). 

For this we remark that 

f> := 'P,(IN) U {IN\ A I A E 'PJ(IN)} U {(Ra \A) UBI a< w, A,B E 'PJ(IN)} 
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is closed under taking intersections 
(remark tha.t for 01 < {J <wand A,B,A,B e P,(lN) we deduce from (F) that the 

set ((Ra \A) U B)() ((Rp \A) U B) is either almost empty or almost equal to Rp) 

and we deduce the assertion from (0.5.3). 
<> 

IS.LS Remark: From Proposition (5.1.2) we deduce that the system 

(R,.: 01 < we) constructed in Theorem (5.1.6) satisfies (FM). In (5.4) we will con

struct, under the continuum hypothesis; another system n = (Ra:OI <We) which 
satisfies (FM) but has the property that the corresponding C(K) is a Gelfand-

Phillips space. 
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5.2 Example 2: A Banach space which does not contain £1 and does not 

have the Gelfand-PhiJlips; property 

In this section we want to cobstruct a Banach space which does not contain 

£1 and which does not have the Gelfand-Phillips property. This example shows 

that the result of J. Bourg~n and\J. Diestel (c.f. Corollary (2.3.3)(a)) cannot be 

sharpened in the following way: ~om the assumption that lt ¢. X, it does not 

follow that all limited sets o{ X al-e relatively compact; Secondly, this example 

strengthens the result of J. Hagler !Uld E. Odel1[25) cited in (5.1.4)(c) (note that 

the weak"-sequential compactness 'of the dual ball of the space X implies the 

Gelfand-Phillips property of X). 
In order to construct the desired example, we could follow the construction 

in [25) using the C(K) constructed .in Theorem (5.1.6). Since the main ideas of 

the proof in [25] are usable, but noUhe results themselves, we estimate that H is 

shorter to use other methods, namely the factorization theorem of W. J. Davis, 

T. Figiel , W. B. Johnson and A. Pelczynski, (7). This follows an idea of C. Stegall 

(cited from [32)), who proposed to use this method to find a space which does not 

contain tl and does not admit a w·-~equentially compact dual ball. 

We recall same notations from [7]: 
5.2.1 Definition: Let W be a bounded, closed, and absolutely convex subset 

o£X. 

For n E IN, let 11·11 be the Minkowski functional of Un := 2nw +2-nB1(X), 
n 

i.e. 

llxll := inf{r > 0 I x E r(2nW + 2-nBt(X))} for n E IN, x EX. 
n 

Let Y := Y(X, W) be the space 

Y:={xeXI l::llxll 2 <oo} 
nEN n 

endowed with the norm \/ 

•·•: y .... lR, v .... rr: IIYII
2 

\ t... 
~EN n 

Denote the inclusion of Y into X by j = j(X, W) and the £2_ sum of the spaces 

(X, II ·II> by Z := Z(X; W), i.e. 
n 

z :== {{xn:n elN) c X I L llxnll 2 < oo}. 

We denote the norm on Z by I · I· 
2 

nEN n 
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5,2;2 Lemma: Let W C B1(X) be bounded, closed fWd absolutely convex 

and let II ;II for n e IN, (Y, I • 1), j, and z be as m (5.2.1); Then 
n· 

a) forneiN and~ ex, 2-(n+l)llzll5ll~ll52"ll~ll 
n 

fWd 11~115 2-n whenever z E W, 
n . 

b) W C B,(Y, 1·1) and (Y, 1·1) is a Banach space, 

c) E : Y -+ Z, !I H (!I : n E IN), is an isometric embedding, and 

d) Y does not contain i1 if and only ifW is weakly conditionally compact. 

Proof of (5.2.2) : 
Proof of (a): obvious. 

Proof of (b): (7, p.313, Lemma l(i) and (ii)]. 
Proof of (c): obvious. 

Proof of (d)(=>): If Y does not contain i1, then B1 (Y, Y · i) is weakly conditionally 

compact by Rosenthal's £1 theorem. Since j is continuous (which follows from 

(a)), Bl(Y, m. I) is also weakly conditionally compact when viewed as a subset of 

X and we deduce the assertion from the first part of (b). 

Proof of (d)(<=): Let W be conditionally u(X,X')-compact. For each n E IN, we 

deduce from the definition of I · I that for each n E IN 

and thus, 

B1 (Y, I· i) c n 2"W + 2-"B, (X), 
nEtl 

which implies that B, (Y, I· i) is conditionally u(X, X' )-compact. 

In order to show that B1(Y, W • W) is u(Y, Y') conditionally compact (which implies 

that Y does not contain it), let (y,.: n e IN) c B1(Y, I ·I) be arbitrary. We 

first deduce from the observations above that there is a subsequence (!In: nE N), 

N E 1' 00(IN), such that ( (:t1
, !In} : n E IN) converges for each x' E X'. Secondly, 

we remark that in Z', namely the i2·sum of ((X', 11·11): n E IN), the subspace V, .. 
V := {(x~:n EIN) C X'll{n E IN jx~ :f= 0}1 < oo}, 

is dense. For each v = ( x~, x;, ... , x'm, 0, 0 ... ) E V it follows that 

n 

((v,E(Yn)): n EN):= <I)~:.,.,y .. ): n EN) 
i=l 



i. 
io..< 

148 

is convergent. Since (E(yn) : n E N) is bounded in z,. we deduce that it is 

a(Z, Z')-Cauchy, which implies by (c) that (yn:nEN) is a(Y, Y')-Cauchy and this 

finishes the proof. 

5.2.3 Lemma: Let n := (Ra:a <We) and K be as in Theorem (5.1.6). 

Then for each bounded sequence (l'n! n E IN) C M(K) satisfying: 

r :::::: limsup(l'niX{n}) > 0 
n .... oo 

there is an a < We such that 

limsup(fln,Xn .. ) > 
2
!:. .. 

n-oo 

Proof of (5.2.3) : . 

<> 

Let (l'n: n E IN) C M(K) and r > 0 satisfy the assumption. Then there is an 

N E Poo(IN) with 

(1) 
3r 

1-'n({n}) = (1-'ntX{nJ);::: 4, (n EN). 

Applying the lemma of Rosenth81 [9, p.82, Rosenthal's Lemma), we find an 

M E Poo(N) such that 

{2) 
. r 

ll'ni(M \ {n}) < 4 for n EM. 

We now choose an uncountable family {M; : i E I) C Poo(M) such that M; and 

Mj are almost disjoint fori:/; j and we deduce from {0.5.5)(a) that M; \ M; and 

Mj \ Mj are disjoint if i :/; j. Since I is uncountable, we find L := M;0 such that 

(3) 11-'ni(L\L)=O, CornEL. 

By condition (5.1.6.1), we find a< We with Ra C Land we deduce from (1), (2), 

and (3) that for each n E Ra 

l'n(Ra);,;. 1-'n{ {n} )+ J.ln(Ra \ {n}) + 1-'n(Ra \ Ra) 

;::: 1-'n( {n})- ll'ni(Ra \ {n}) -11-'n I(Ra \ Ra) 

>3r_!:=!:. 
- 4 4 2' 

which implies the assertion. 

With these preparations we can formulate: 

<> 
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5.2.4 Theorem: (Example 2) 

Let n := (Ro: Q < We) and C(K) be as in Theorem (5.1.6) ~d let y be the 

space introduced in (5.2.1) for W := aco({X{n) In E lN} U {xn;la <we}). 

Then Y does not contain lt and (X{n} : n E lN) is not relatively compact but 

it is limited in Y. 

Proof of (5.2.4) : 
By Proposition (5.1.7) and (1.1.9), W is conditionally weakly compact and we 

deduce from Lemma (5.2.3)(d) that Y does not contain l 1 • 

From (5.2.2)(a) we deduce fori f. j in lNi that 

hlil- XUJ~ ~IIX!il- X{i}ll ~ 2-
2

, 
1 

which implies that (X{n} : n e lN) is not relatively compact in Y. 

In order to show that (X{n}: n E lN) is'limited in Y, let (y~:n ElN) C B1(Y') 

with 

(1) r := limsup(y~,X{nj) > 0. 
n-oo ' 

We have to show that (y~: n E lN) is not weak• -zero convergent. 

By Lemma (5.2.2)(c), there is, for each n E lN, a sequence (Jl(n,m): me lN) C 

M(K) with l:meN 11Jl(n,m)ll2 ::51 such that 
n 

· (y~, II) = L (Jl(n, m), 11), for each 11 E Y, and n E lN. 
mEN 

Choosing an mo E lN with 2-mo < i and defining Jln := l:m:$mo Jl(n,m), for 

n E lN, we deduce from the fact that 11·11 and 11·11 are equivalent norms on C(K) 

that (Jln:n elN) is bounded in M(K) and that fo; each n E lN 

{Jln,X{nj) = (y~,X{nj)- L {Jl(n,m),X{n}) 
m>mo 

~ (Y~>X{nj)- L IIJl(n,m)llllxlnJII 
. m>mo m m 

~ (y:,,X(nj)- L Tm 
m>mo 

(since IIJl(n,m)ll::::; 1 and using (5.2.2)(a)J 
m 
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This implies, together with (1), that limsuJ?n.;..,00{p111 :qn)) ;:: 3/4r, and thus,by 

(5.2.2),.th.ere exists an.cr <.we..with . 
I 

. . 3 
lim sup(f.ln, Xid ;:: 

8
r • 

n-+oo C) 

Since XR; E W C B,(Y, 1·1) (by Lemma (5.2.2)(b)), we deduce that 

limsupl(y~.xrH = limsupl(p .. ,xr) + L (p(n,m),xr)l 
n-oo o n-.oo , o m>mo o 

3r "' ;:: 8- L..., llp(n,m)llllxn .. ll 
m)rmo m m 

> 3r _ 2_~0 >_ r 
- 8 8 

[since IIJ.I(n,,m)ll $ 1 and using (5.2.2)(a.)], 
: m 

which implies that (y~: n E IN) is not u(Y', Y)-zero convergent and ·finishes the 

proof. 
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5.3 Example 3 and 4: The Gelfand-Phillips property does not imply 
(w•-spcnc) and the Gelfand-Phillips property of C(K) does not im
ply that K contains a sequentially pre-compact dense subset. 

Using the compact space K of Theorem (5.1,6), we will construct for each 

k E 1N a closed subspace Xk of C([O, wck) x K), where [01 11) is endowed with the 

order topology for 11 E Ord, such that X k is a Gelfaxid-Phillips space and such 

that every c > 0, for which there is a w•-sequentially pre-compact DC Bt(XL) 
with the property 

llxll:5 csup{l(x',x)llx' ED} for all x E Xk, 

is not greater than k~l' 
We deduce that the it sum (EBkEtiXk)l1 still has the Gelfand-Phillips property 

but not the property (w•-spcnc) (see Proposition (1.2.2) and (1.2.3)). We will 

show that the space X1 can be isometrically represented as C(K)-space such that 

K does not have a dense sequentially precompact subset; this answers a question 

posed by L. Drewnowski in [13, p.408, Remarks 3.3.(3)). 

We begin with the well known result about M((O, 11),X), for the sake of com

pleteness, we include a proof. 

5,3.1 Lemma: I£11 E Ord, then 

M([O ) X) _ {" 6 I an E [0, 11! and Xn E X for n E IN, } 
'11 ' - L Xn a,. " II X II < 00 • 

nEt! -'-mEt! n 

Proof of (5.3.1) 1 

Since f1 E M([O, 11), X) is a.sum of Dirac measures if and only if the variation has 

this property, it is enough to show that each positive f' E M([O, T))) is a sum of 

Dirac-measures. 

We will show this by transfinite induction. 

Assuming that the assertion is true for all ii < 1), we distinguish the following three 

cases: 

Case 1: 11 = ii + 1 and thus 

which, together with the assumption, implies the assertion. 
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Case 2: There is an increasing sequence ('In: n E IN) C (0, '7[ with '7 = SUPneN '7n 1 

and thus, 

fJ = fJ[o,,u) + P( {'7} )6q + L Phq,;+J,qn+tl • 
nEN 

which, together with the assumption, implies the assertion. 

Case 3: '7 = supo<q and .the supremwn of each sequence in (0, n[ lies in (0, 71(. 
Since fJ is regular' there is an increasing sequence (On: n E IN) c [0, '7[ with 

1 
fJ([O, on[) ?: fJ([O, 7][) - - for n E IN. 

n 

Thus, for a := supnEN on ( < '7 ), 

fJ = 1-ll[o,o) + fJ( { '1} }6q , 

which, together with the assumption, implies the assertion. 

0 

5.3.2 Lemma: Let n := (R .. : a < We) and C(K) be as in Theorem (5.1.6). 

For each f3 < We we define, · 

Yp := span(co U {Xn" Ia :5 /3}) and yP := span(coU {Xn" 1/3 <a< We}) 

Then 

a) for each N E 'Poo(IN), the sequence (6n: nEN) has a u(Yp,Y,o) converging 

subsequence, and 

b) (X{n} : n E IN) is limited in yP, 

Proof of (5.3.2) : 

Proof of (a): Let f3 < We and N E 'Poo(IN) and set I := {a :5 PI IRa n Nl = oo}. 

The system R := (Ran N : a E I) satisfies (F) as subset of 'Poo(N) (I is well· 

ordered and thus can be identified with an ordinal jj :5 /3) and from Lemma (5.1.2) 

we deduce that it cannot be maximal. Thus, by (5.1.5), there is an M E 'Poo(N) 

such that for all a E I 

IRa n Ml < 00 or IM \ Ro I < 00 • 

Together with the definition of I, we deduce that limneM 6n(Ra) exists for each 

o :5 f3 and since ( 6n: n E IN) converges also with respect to u( c~, C0 ), we deduce 

the assertion. 
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Proof of (b): It is enough to show that the system n := (Ro : {3 < a < We) 

satisfies condition (5.1.6.1) of Theorem (5.1.6), since then it follows from Lemma 

'(5.2.3) that (X{n} : n E IN) is limited in y.8, 

For this, let N e 'Poo(lN) be arbitrary. We choose a family (No : a < We) of 

pairwise almost disjoint infinite subsets. of N (see (0.5.6)(c)). Since n satisfies 

(5.1.6.1), we find for each a < We an & < We with Rc. C No. This implies that 

&1 ~ &2 if a, ~ a2, and, since 1191 < w., we find an a <We for which f3 < & <Wei 

this implies the assertion. 

5.3.3 Theorem: (Example 3) 

Let n := (Ro:a <We) and C(K) be as ip Theorem (5.1.6). 

a) Let k E IN. For each j e {1, ... ,k} and a E [O,w.(, we consider the following 

element of C{(O,wek] x K): 

(note that {0} and ]a,l9], 0 <a< 19 < w0, are open and closed in (O,we], thus 

/(o,J) E C((O,wck) x K)). 
We define 

Theu.it follows: 

i) X• bas the property (w*-spcnc} (see (1.2.3)); in particular, it is a Gelfand

Phillips space. 

ii) The supre~um of all c > 0 for which there is a a(Xk, X•)-sequeutially 

pre-compact DC B,(XU withi 

II x II~ c sup l(x', x)l for all x EX 
%1€D 

is not greater tllruJl/(k+l). In particular, Xk does not satisfy (w* -spcu). 

b) The spaceY := (EBkeNXk)t1 has tlJe Gelfand-Phillips property, but not the 

property ( w* -spcnc ). 

Proof of (5.3.3) : 

Proof of (a): Since Xk is a subspace of'C((O,w.k] x K), we can extend each x' E 

xk to an element i' E C([O,wck] X K)' = M((O,wck], M(K)) with II x' 11=11 i' II· 
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I 

Thus, we view each x' ·e Xl, as. an element of M((O,wck),M(K)) and to avoid 

ambiguities we must always be precise about wbich w• topology we consider on 

M((O,w.},M(K)) and we distinguish between the following norm and semi-norm 

on M({O,wck), M(K)): 
11·11 is the variation-norm oh M({O,wckJ,M(K)) (thus the dual norm of the usual 

norm on C([O,w.k)xK)) and 1·1 i~ the semi-norm on M([O,wek), M(K)) generated 
by X,., i.e.: 

Ill I::::: sup l(p, x)l for ll E M((O,w~k], M(K)). 
:rEBt(X~) 

Proof of (a)(i): We first show that 

(1) the sequence (lln:n EIN), where 

1 . 1: 
Pn := ;;--

1 
(6o ®6,.- L 6.., •. j 0 6n). for n € IN, 

+ j""l 

converges in <1(X~, X,) to zero.· 

For this, we observe that for cr < w, j E {1,2 ... ,kJ and n E IN we have 
1 

(llnJ(a,j)) = k + 1 (xna (n)- xn;(n)) = 0 

and, forgE C(!O,w.k])) and hE c., 

1 " 
(llntU ®h)= k + 1 (g(O)- L g(wc ·j))h(ry)n~ 0, 

which implies (1). 

Secondly, we prove that 

(2) for each j E {1 1 2 ... , k }, the set 

j::l 

Dj := {6..,.(j-l)+o 0 6,. In E IN, 0 < cr <we} 

is <7(X~,X,.)-sequentially pre-compact. 

For this let (cr .. :n eiN) C]O,wc(, (mn:n EIN) c IN, andj E {1,2, ... ,1:}. By taking 

subsequences if necessary, we may assume that (a .. :n EIN) and (m,.:n EIN) are 

both (not necessarily strictly) increasing. For each cr < w0 , i E {1,2 ... ,k}, and 

n E IN, it follows that 

{

0 ifii:i. 
(6..,.(j-l)+an ®6mn '/(a,i)} = 0 if i = j and a,. ~ cr 

xn;(mn) if i = j and ern >a. 

By Lemma (5.3.2)(a), there is an M E 'Poo{IN) for which (xn;(m,.) :. n E M) 

converges whenever a $ sup,. EN a,. ( < w.). Thus 



155 

Jk~(S~c(i-:-ll+<>n 0Sm,., /(o,i)) 

0 ifi:f:j 

{ 

0 if i = j and a,. ~ a for each n E lN 
:: limneM X;r(m,.) if i = j and if there is annE lN 

" with a,.> a 
and, forgE C((O,w.k]) and h e Co, 

limneM{S..,.(j-l)+<>n Q$) 6;,,. ,g ®h)= 
if m,.---+ oo ,._..., 

{ ~(supneN w.(j - 1) + a,.)h(m) if m,. = m, for all but finitely many n E lN, 

whi~h implies that (6..,.(j-l)+o,. ® Sm,. ; n E M) converges in a(XI,,Xk) and 

finishes the proof of (2). 

In order to show (a)(i), it remains to prove that 

(3) the set D := {ftn In E lN}UU;9 D; (ftn as in (1)) norms X up to the constant 

1/(k + 1)2
• 

For this, let f E X~; and e > 0 be arbitrary. We distinguish two cases: 

Case 1: 11/11~ (k + l)supo<a~~o~cli;(EJ< lf(a,{)l· 
Then there are mE lN, j E {l, ... ,k}, and a E]O,wc[ with 

1 
I(S..,0 (j-l)+o ®Om./) I~ sup l/(;3,{)1- e ~ k + 1 11/11-£ 

O<P!>~o~ck; (EK 

(note that lN is dense inK and that u;=1]w.(j- l),w.j[ is dense in ]O,wck] ). 

Thus, we deduce in this case that f is normed up to the factor 1/(k + 1) by the 

elements of U1 ~;:>c D;. 
Case 2: II/II> (k + l)sup0 <a~w<k;(EK jJ(a,OI· Thus, 1/h ·)I takes its maximum 
in the set {0} X K and, since lN is dense inK, we find an mE lN with 

II /II -e ~ 1/(0, m )I 
k k 

~ 1/(0,m)- Lf{wc · j,m)j + ILf(w. · j,m)l 
j=l j=l 

k k 

~ j(oo 0bm- 2)w.; 06m,J)I + L k ~ 1 ll/11 · 
i=l i=l 

Hence, 
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Thus, in this case, f is normed up to the factor 1/(k + 1)2 by the elements of 

(pn: n EIN).. 

Proof of (ii): We suppose that .b C B1(;rA,) is u(Xt,Xk)-sequentially pre-compact 

and that c > 0 is such that for each n E IN there is a x~ E .b with 

(4) 

We have to show that c !5 1/(k + 1). 

From Lemma (5.3.1) we deduce that for each n E IN and j E {1, ... , k} there 

is a sequence (o:(n,j,m): mE IN) c]O,wc(, a sequence (v(n,j,m): mE IN) C 
B1(M(K)) and (v(n,j): j = O,l, ... ,k) C B1(M(K)) such that 

k k 

(5) L L II v(n,j, m) II + L llv(n,j) 11!5 1 
i=l meN j=O 

and 

k k 

(6) X~ =h'o®v(n,O)+ :Eo..,ei®v(n,j)+ L L s..,.(j-l)+o(n,j,m)®ll(n,j,m). 
j=l i=l meN 

We define 

(7) f3 := sup o:(n,j, m) (<We) 
j;Sk,n,meN 

and 

(8) p(n,j) := v(n,O) + v(n,j) for n E IN,j $ k 

and choose N E 'Poo(IN) for which (x~: n E IN) converges in u(XJ:, Xk) to an xh 
(assumption on D). We deduce from (6) and (7), for j E {1, ... , k }, a: E]f3,wc[, and 

nENthat 

(9) p(n,j)(Ra) = (v(n,O),Xn) + (v(n,j),Xn) = (x~,!(or,j));;eN(x~,f(a,j)) 

and, for n EN and mE IN, that 

p(n,j)( {m}) = (v(n, 0), X{m)) + (v(n,j), X{m)) 

= {x~,X{o)x{m) + X)c.~e(j-J)+{t,c.~ci]x(m)) 
;;eN{x~,X{o)x{m} + X]c.~c(j-1)+/l,c.~d]x(m)) 
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Thus, we have shown that (~(n,j) : n E N) converges in ·a(YP', Yil:) and; since 

(X{n) : n EN) is limited in yP by Lem~a (5.3.2), we deduce that 

limsupl~(n,j)({nl)l o= 0 
nEN 

foreachj ~k. 

Together with (8), (6), and (4) this implies that 

(10) 

and thus, 

limsupv(n,j)( {n}) =lim sup( -v(n, 0)( {n}) + ~(n,j)( {n} )) 
dN dN. . 

= limsup'-v(n,O)({n}) 
nEN · 

= -liminf(:r~,X{o)x{n)) :5 -c, 
nEN 

k 

2! li~Wf(:r~, X{o)x{n) - ?= X)w,(j-1)+/l,wci}><{n)) 
J=l 

k 

;:::: c -lim sup :E v(j, ~)( {n}) 
nEN. j=l : 

(by (4), {6) and (7)) i 

2! c- k( -c)= (k + 1)c 

(by (10)), 

which implies that c :5 1/{k + 1) and finishes the proof of (a)(ii). 

Proofof(b): Fork E lN,letEk: Xk -t {El1k•eNXk•)t1 bethecanonicalembedding. 

For a w•-sequentially pre-compact De Jil 1((El1k•eNXk' )~ 1 )), we deduce from (a)(ii) 

that 
. f l(z,Ej,(z'))l < 1 
m sup --. 

zEXk\(o).,•eD :llxll - k+1 

which implies that (El1k•eNXk• )t1 does not have the property (w•-spcnc). However, 

{ 4.2.6) implies that it is a Gelfand-Phillips space. 
0 

5.3.4 Theorem: (Example 4) 
Let nand J( be as in Theorem (3.1.6)! We assume that Ro = lN, (otherwise we 

pass to 'k = (Ra:a <We), where Ro := 'lN, Ra := Ra+t 1 if a< wo, and Ra := Ra 

ifwo :5 a< we)· 
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Then the space X 1 con~tructed in Theorem (3.5.3)(a) fork:== 1 is 
cally isomorphic to C(KJ) (o~ a compact K,. 

From (5.5.3)(a)(ii) we deduce that K 1 cannot contain a dense ore,-se.aue·nti•ii:ll 

compact set D, because otherrvise it would follow that the set· of all uu·ac-·me!astrn 

on D would norm the elements ofC(Kt) and is t1(M(Kl), C(K2))-sequentially 

compact. 

Proof of (5.3.4) : 

It is enough to show that X, .is'idosed under multiplication in C([O,wc}xK). Ifw/ 

have shown this, we observe that 1 = X[o,w.)xl( = /(l,o) and deduce the assertion 

from [39, p.65,Theorem 9]. 

In order to do this, we have to ~pow that for any ft,/2 E G, with 

G := {f(l,,c:r) I a < w.} U {9 ®hI 9 E C({O,w.}, hE c.,)}, 

it follows that ft ·hE span(G). . .. 
We distinguish the following cases. (which are the only ones up to a permutation): 

Case 1: It = g,®ht and h = 92®h2 with 91>92 E C([O,w.J) and ht,h2 E C({O,w.J); 

then 

Case 2: It = Ul ® h1 and h = /(l,a), for an a E {0, Wtli then 

It . h = (Ul . X{O}U)a,wcj) ®(hi . xn;) E G. 

I 

I 

I 

I 

Case 3: h = f(I,{J) and /2 = /(l,o) ;with 0 $ a $ f3 < Wei by (F) two cases are 1 

possible: 

Case 3(a): Ran Rp~0. and thus, I 

ft • h = X{{O)UJP,we))x(RanRp) E G. 

. a 
Case 3{b): RpCRc., and thus, 

/J · h = X((o}u)p,w.))x(RcrnRp) 

= X((o}u){J,w.J)xRp- X((O}u){J, .... ))x(Rp\Rcr) E span(G). 

This verifies the asssertion and finishes the proof. 

I 

I 

I 

I 
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Example IS and 6: Two Gelfand Phillips C(K)-spaces with 

Using the continuum hypothesis, we will construct two compact spaces K, 
K2, both of infinite cardinality, with the following properties: 
C(K1) and C(K2 ) both have the Gelfand-Phillips property. Moreover, both 

·compacts have a dense subset D such that every sequen<;e (~n: n E lN) in D 
co!}ta.ins a subsequence {en4 : k E JN) such that (6~,.,24) - 6(,.(24 _ 1) : k E lN) is w•
zero convergent {we will easily deduce from this property that C(KI) and C(K2) 

are Gelfand-Phillips spaces). 

Every convergent sequence in K1 is eventually stationary. Roughly speaking, 

this means that on the one hand sequences of Dirac-measures on K 1 does only 
converge in the trivial case, but on the other hand there are enough convergent 

differences of Dirac- measures to insure the Gelfand-Phillips property for C(K2). 

K2 is a Stone compact of an algebra on IN which is generated by 'PJ(IN) .and 
a system (R..:Ot <We) C 'P00(1N) satisfying (F) and (FM) of Definition (5.1.1). 

The construction of K1 was pointed out to the author by D. Fremlin {20], who 

we whish to thank in this place for the permission to use it. The space K 2 can be 

constructed using similar ideas. Since some of the technical arguments for both 
constructions are the same, we will formulate them in the following lemmas. We 

begin by introducing the following notations: 

5.4.1 Definition: 

a) Let :F be the set of all strictly increasing functions f: 1N--+ lN, 

(so :F is a representation of 'Poo(lN)). 
b) Let j c :F, I e :F and N e P(lN). 

N is called f-admi3sible if there is an io E IN such that 

j(2i)E N ~ f(2i- 1) EN for all j e IN, i ~ io I 

N is called strictly f- admi3sible if 

/{2i) EN ~ f(2i- 1) E N for all i E IN , 

and N will be called (strictly) i'-admi&sible if, for each f E i', N is (strictly) 

/-admissible. 

c) We will say that j C :F satisfyes condition (E) if 

(E) for all J E 'PJ(i) andm E 1N there is a K E 'Pt(lN) 'Yith 
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i) mE K, and 
ii) K is strictly J-admissible. 

5.4.2 Proposition: Let j: C :F. 

a) The set of all (strictly) f:-admissible subsets of IN is a (u-)algebra an IN. 

b) Suppose that j: satisfies (E). Farm E IN and J E P !(ft), we define recursively 

the fallowing sequence (L(J,m,n):nEINo) C P,(IN): 

L(J, m,O) := {m} and, assuming that L(J,m,n) has been-chosen for n E IN0 , 

we set 

L(J,m,n + 1) := 

{ . . I i E IN and f e J, with . } 
L(J,m,n)U /(2l),/(21-l) {1(2i),/(2i.:_l)}nL(J,m,n);oG0 . 

Then (L(J, m, n): n EIN0 ) is eventually stationary in 'PJ(IN) and the set 

K(J,m) := Une.N0 L(J,m,n) 

satisfies the conditions (i) and (ii) of (E), and is contained in each strictly 

J-admissible set which owns m. 

Proof of (5.4.2) : 

Proof of (a): obvious. 

Proof of (b): Let me IN and J c P1(f:) and let K e P(IN) satisfy the conditions 

(i) and (ii) of (E). 

By induction we show, for each n E lNo, that 

(l)(n) L( J, m, n) C K . 

For n = 0 the assertion follows from the definition of L(J,m,O) and from (E)(i). 

We suppose that (1)(n) is satisfied for n E lNo and that k E L(J,m,n + 1) is 

arbitrary. W.I.o.g. we may assume that k ~ L( J, m, n ). From the definition 

of L(J,m,n + 1) it follows that there are f E J, fJ E {0,1}, and i E JN with 

k = f(2i- 8) and /(2i + fJ -1) E L(J, m, n). This implies, by (E)(ii), that k E K, 

which finishes the induction step, 

Since ( L( J, m, n) : n E IN0 ) is monotone and since K can be chosen to be finite, 

}Ve deduce that (L(J, m, n): n E 1N'0 ) is eventually stationary and that K(J, m) is 

finite and satisfies (E)(i). 
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Moreover, we deduce from the defintion of { L{ J, m, n): n E lNo) that 

f(2i) E L{J, m,n) => f(2i -1) E L{J, m,n + 1) '* f(2i) E L(J,m,n + 2) 

for n,i E IN and f E J, 

which implies that K{J,m) satisfies {E)(ii). 

5.4.3 Lemma: Let j C :F satisfy (E), R E 'Poo{IN) be i-admissi6Je, and 

N e 'Pco{IN) have an inlinite intersection with R. 
Then for each J E 'Poo{i) there is.a sequence (K,:n ElN) E 'PJ(IN) with 

a) K, nK,. = 0 for n,m E IN, with n f. m, 
b) K, C R and NnK, f. 0 for n E IN, and 

c) Kn is strictly ]-admissible for n E'IN. 

Proof of (5,4.3) : 
Let J E 'PJ(i). Recursively, we choose a. strictly increasing sequence 

(m,: n E IN) C N n R such that the sequence (K{J,m,): n E IN) {defined as 

in (5.4~2){b)) is pairwise disjoint. 
For n = 1 we set m1 := min(N n R) and, assuming that m1 < m2 < ... mn-1 
are already chosen, we note that Ui<n K(J, mj) is strictly J-admissible and finite. 

Thus, there exists 

m,. := min(N nR) \ {1,2, ... ,max ( U K(J,mj)}}, 
j<n 

and since the set IN\ Ui<n K(J,mi) is strictly J-a.dmissible (by (5.4.2)(a.)) and 

owns m,. it contains J((J,m,.) (by (5.4/2)(b)). 

We now want to show that there is an ~o such that 

(1) K(J,m,.)CR for any n E IN with A;:: no. 
Assuming that this were not true, we find an M E 'Pco(IN) such that 

K(J, m,.) \ R rf 0 whenever n EM. 

Since L(J,m,,O) = {m,.} C R, there e~ists, for each n EM, the number 

t, := max{l E IN? I L(J, m,.,l) C R}. 

By the definition of L(J,m,,£,+1), we,find for each n EM an fn EJ, ani,. E IN, 

and a·8, E {0, 1} such that for each n EM 

j,.(2i,- 8,) E L(J,m,.,t,.) C R and f,.(2i,.- 1 + 8,.) E L(J,m,.,i,. + 1) \ R. 
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Since J is finite, we find an M E 'P00(M) and an f E J with f,. = f for ea.ch 
n EM. By the assumptions on (m,.:n ElN}, the elements of (!(2i,- 8,.):nEM) 

are pairwise distinct and lie in R, while (!(2i, - 1 + 8,.): n eM) lies in JN \ R. 
But this is a contradiction of the assumption that R is /-admissible; thus, we have 

shown (1). 

Now taking K, := K(J,m,.0+,) for n ~ JN, we deduce the assertion. 

5.4.4 Lemma: Let J C F satisfy{E) and be countable, Jet (R,.:n eJN) be a 

sequence of !-admissible sets with Rn.fl cR,. for each n e JN, and Jet N e 'P00(JN) 

satisfy INn Rnl = 00 for n E JN. 
Then there exists an J-admissible'R with the following properties: 

a) RcR, for each n e JN, and 

b) jRnNI = oo and IN\ Rl = oo. 

Proof of (5.4.4): 
Let J = (!,:n e1N). 

By induction we choose, for each n E JN, a K, E P,(JN) with 

(1}(n) K, C ni::>n Rio 
(2)(n) J(, n N :f: 0, 
(3)(n) K, n Krn = 0 form < n, and 
(4)(n) K, is strictly {f~>h, ... ,f,}-admissible. 

If n = 1, we apply Lemma (5.4.3) to N ,=: N, R := R1 and, j := {/I} to find a 

sequence (K~1 >: n eJN) C 'PJ(lN) satisfying (a), (b), and (c) of (5.4.3). Choosing 

K 1 := k!,0 , we observe that (1)(1), (2)(1), (3}(1), and (4)(1) are satisfied. 

Assuming that J(I>K2, ... , Kn-l have already been chosen, we apply Lemma (5.4.3) 
- - i- a • 

to N := N, R := ni::>n Rj (note that R n N =R, n N E 'Poo(lN)), and J := 

{/J,h ... ,f,.} to get pairwise disjoint k~~) E P,(JN), mE JN, each of them satis- · 

fying {l)(n),(2)(n), and (4){n). Since U;<n Kj is finite, we find an m E lN such 
that K,. := k!.,"> satisfies (3)(n) also. Thus, we have finished the induction step. 

We now chooseR:= UneN K2n and dedtice from (1)(n) that for each mE lN 

R\ Rm = U /(2, \ Rm c U K21 E P,(1N), 
nEN 2j<m 
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which implies (a.). From (2)(n) a.nd (3)(n) we deduce that 

RnN= U K2nnNEP00(lN) a.nd 
nEN 

N \ R = N \ U K2n n N ::> U K2n-1 n N E Poo(lN). 
nEN nEN 

Finally, we deduce for n E lN a.nd each i E JN with i ~ io := 1 + max( { i E 

lN I J,.(2i) E u2i<n K2j}) from (3) ( n) a.nd (4)(n), that . 

j,.(2i} ER-:=? /n(2i} E U K2; *'* fn(2i -1) E U K2i -:=? j,.(2i -1) ER, 
2j~n 2j~n 

which implies that R is Un:n·eJN)-admissible. 

5.4.5 Lemma: Let j: be a countable subset of :F satisfying (E) and Jet 

n C P..,(JN) be a countable subset of ft-admissible sets, and let N E Poo(lN). 

Then there exjsts an f E :F with the following properties: 

a) {f} u j: satisfies (E), 

b) each R E n is {/} U j--admissible, and 

c) f(lN) C N. 

Proof of (5.4.5) : 
Let j: = (/,.: n E JN) and n = (R,.: n E JN) a.nd ch00se a non-principal ultra-filter 
U on lN with N EU. 
By induction we choose, for each k E lN, f(2k- 1), f(2k) E lN, and K~; E PJ(lN) 

such that 

(1)(k) f(i) E K~t for all1 !5 i < 2k -1 and {1,2, ... ,k} C K~;, 
(2)(k) Kt is strictly {!1, ... ,/k}-admissible, 

(3)(k) f(2k- 1) < f(2k) a.nd, if k > 1, then f(2k- 2) < f(2k- 1}, and 

(4)(k) /(2k -1), /(2k) EN~:, where 

N~: := (Nn n{Ri li $ k, R; EU}nn{Rf li !5 k, Ri ¢Ul) \ U Ki 
i9 

(note that N~: is a finite intersection of elements of U, and thus, N~; E U). 

Fork= 1, we take Kt := K( {/1},1} (defined as in (5.4.2)) and 

/(1) :== min(Nl) a.nd /(2) := min(N1 \ {!(1)}) 
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and note that (1)(1)-(4)(1) are satisfied. 

I£, for a k E lN, k > 1, and each i < k, f(2i), f(2i -1), and K; are already chosen, 

we set 

Kk := U K({ft, ... ,fk}),m). 
m::O/(U-2) 

Thus, Kk is finite, by (5.4.2)(b), and satisfies (1)(k) and (2)(k) (note that 

f(2k - 2);?: 2k- 2;?: k and that f(2k- 2) ;?: f(i) whenever i :5 2k- 2). Taking 

f(2k- 1) := min(N,.) and f(2k) := min(N,. \ {!(2k- 1)}), 

(4)(k) and the first part of (3)(k) follow. The second part of (3)(k) follows from the 

fact that N,. C Kf C {1,2, ... ,/(2k- 2)}c. Thus, we have finished the induction 

step. 

For this choice of J, w~ now have to verify (a), (b), and (c): 
Proof of (a): In order to verify (E), let J E P,(i') U {!} ~d mE 1N be arbitrary. 
We set k := max({m} U {nlfn E J}) and show that K,. satisfies (E)(i) and (ii). 

Since .k ~ m (E)(i) follows from (1)(k). For each j E J\ {!},it follows from (2)(k) 

that K,. is strictly i-admissible, while for j = f we deduce for each i E 1N that 

f(2i) E K,. '* i < k '* 2i - 1 < 2k- 1 

(By (4)(i), i;?: k would imply that /(2i) E N; C Kf] 

'* f(2i- 1) E Kk 

[(1)(k)] 

:::} i < k '* 2i < 2k- 1 '* /(2i) E K,. 

(as above], 

which implies that K,. is strictly !-admissible. 

Proof of (b). By the assumption, it is enough to show that each R = Ri E 'R is 

/-admissible. This follows from (4)(i) since, fori;?: j, 

/(2i) E Rj {:::? Rj E U {:::? /(2i- 1) E Rj. 

Proof of (c): (4)(k) (k E lN). 
0 

.. ·1 
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5.4.6 Lemma: Let j: be a countable subset. ofF satisfying (E) and le.t 

(Rn:n E IN) C 'P
00

(IN) be a pairwise disjoint sequence of !-admissible sets. 

Then there exists R E 'Poo(IN) such that 

a) R is !-admissible, and 

b) R cUneN R2n-1 andR2n-1CR < oo for n e IN. 

Proof of (5.4 •. 6) : 
Let j: = Un: n e IN). For each k e IN' ~e set 

(1) L~::= U {fm(2i),/m(2i-1)li~INandl{fm(2i),/m(2i-1)}nRtl=1}. 
m,l$1: 

Since Rt is f.-admissible, each Lt is finite, and thus, by the assumption that j: 

satisfies (E), 

K~: := U K({/J, ... ,/1:},£) 
teL~ · 

is finite also (by (5.4.2)) for each k E lN. 
More~ver, R~: \K~: is strictly {/J, ... , fl:}·admissible. Indeed, for each i E IN, j $ k, 

and 9 e {0, 1} we have 

/j{2i- 9) E Rt \ K~: ==> /j(2i- 1 + 9) E R~: and /;(2i- 9) ¢ K~: 

(Otherwi~e, l{i;(2i), /j{2i- 1)} n R~:l· = 1, 

We deduce that the set 

' and thus,1 by (1), /;(2i- 9) e Lt c Kt) 

==> fi(2i .L 1 + 9) e R~: \ K~: 
(Kt is strictly l; -admissible). 

R := U Ru-1 \K21:-1 = U R21:-1 \K21:-1 U U R21:-1 \K2~:-t (j E IN) 
kEN 21<-l<j 21:-l~j 

is /;-admissible for each j e IN (by (5.4.2){a)); hence, R is !-admissible. Since 

each K~; is finite and since (Rn: n E IN) is pairwise disjoint, we deduce that R 

satisfies condition {b). 
<> 
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5.4.7 Theorem: (Example 5) 

We assume the continuum hypothesis (w1 ==we)· C! , 

Then there exists an algebra .A on IN which contains 'PJ(IN) such that, the 

Stone compact J( of .A has the foll~wing properties: 

a) Every convergent sequence inK is eventually stationary. 

b) Every strictly increasing sequence (k.,: n E IN) C IN contains a subsequence 

( kn(m)! m EIN) for whiCh ( 6A:,.(al) - .s,~,,.(am-1): m EIN) is u(M(K), C(K))-zero 

convergent. 

c) C(K) has the Gelfand-Phillips property. 

Proof of (5.4.7) : 

We first well-order 'P00(IN) by (N~ : a < WJ) and the set of all sequences 

(A.,: n E IN) C 1'(1N) \ {0} having pairwise disjoint elements by 

By transfinite induction we choose, f<?r each a < WJ. /o E T and Ro E 1'oo(IN) 
such that 

(l)(a) /o(IN) C N0 , 

(2)(a) (fp: {J 5 a) satisfies (E), 

(3)(a) i) for each fJ <a the set Rp is fo·admissible, and 

ii) R 0 is (fp: fJ 5 a)-admissibl~, 
(4)(a) i) if IA(a,n)l == 1 for each n E IN, then 

ii) if lA( a, n)l = oo and if A( a, n)is (fp : {J:::; a)-admissible for each n E IN, 

then 

: G 

RoC U A(a,2n- 1) and, for each n E IN, A( a, 2n- l)CRo. 
nEtl 

We assume that for a < wl! i := (fp : fJ <a) and ft := (Rp : {J: {J < a) have 

been chosen. 

Applying Lemma(5.4.5) to i, n, and N := N0 , we get an fa E Ffor which (I)( a), 

{2)(a}, and (3}(a){i) are satisfied (note that i satisfies (E) because {fp: fJ <a) 
satisfies (E) for each a < a). 
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. . . . : n E IN) satisfies neither of the two cases in (4)(a), we set Ra :=IN 

. note that in this case (3)(a)(ii) is satisfied and that (4)(a) is empty. 
< IfjA(a,n)l '7' 1 for each n E IN, we apply Lemma. (5.4.4), to :ftu {/a}, R,. :=IN 

fo~ n E IN 1 and N := UneN A( a, n) to get an :F U {/a }-admissible set Ra (which 

i~plies.(3)("')(ii)) satisfying (b) of (5.4.4), which implies (4)(a). 
u''A(a,n) is of infinite cardinality and is :Fu {/a}-a.dmissible, for each n E IN, we 

apply Lemma.(5.4.6) to iu {fa} and R,. := A(a,n) (n E IN) to get an :Fu {/a}· 
admissible set Ra E 'Poo(IN) (thus, {3)(a)(ii) is satisfied) which satisfies (b) of 

(5.4.6) and hence implies (4)(a). 
Thus, we have finished the induction step. 

Now taking 

A:= {R E 'P(IN) IRis Ua :a< wl)- admissible}, 

(thus 'PJ(IN) C A), we have to verify that the Stone compact K of A satisfies (a), 

(b), and (c) of the assertion. 

We first note that (Ra :a< w1) C A (for a,/3 E (O,wi(, it follows from (3)(a)(i) 

that Rp is fa·a.dmissible if f3 <a while, if f3 ~a, then we deduce from (3)(,B)(ii) 

that Rp is / 01-a.dmissible). 

Proof of (a.): We have to show that a. given family ((n: n E IN) C K of pairwise 
distinct elements does not converge. W.l.o.g. we can assume that one of the 

following cases happens; 

Case 1: (e,.:n EIN) C IN. 

Then there is an a < w1 with A(a,n) = Un} for n E IN. From (4)(a)(ii) we 
deduce that 

are both of infinite cardinality, which implies that ((n: n E IN) does not converge. 

Case 2: ((n:n EIN) C K \IN. 

By passing to a. subsequence, we may assume that there are pairwise disjoin1 

An E A (n E IN) with e .. E A,.. Thus, there is an Q < Wj with A(a,n) =A,., foJ 

n E IN and, by (4)(a) (note that lA .. I= 00 because e .. E ](\IN), we deduce that 

. 
Ra C U A2n-1 , and f01· each, n E IN A2n-l CRa < oo. 

nEN 
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Thus; 6n-J E Ra and 6n ¢. Ra for each n E IN, which implies that (~n: n E IN) 

does not converge. 

Proof of (b): Let ( kn: n E IN) be strictly increasing in IN. Then there is an a < w1 

with Na = {kn In E IN} and from (l)(a) we deduce that /a(IN) C Na. From the 

definition of A and the definition of admissibility we deduce, for each A E A, that 

which implies the assertion. 

Proof of (c): By Theorem (3.1.3), it is enoug~ to prove that a given normed 

sequence (gn: n E IN) C C(K) with elements having pairwise disjoint supports 

is not limited in C(K). ~ince IN is dense in K, we find for such a sequence an 

ihcreailing (kn:n eiN) c IN such that IYn(k(n))l ~~.and thus, Yn(k(m)) = 0 for 
n,m E IN with n =/: m. By (b), there is a subsequence (k(n(m)): mE IN) for 

which (8k(n(2m))- 8k(n(2m-1)): mE IN) is weak*-zero convergent. Since 

1 . . 
(9n(2m)•8k(n(2m))- 8k(n(2m-1))) ~ 2 for each mE IN, 

we deduce the assertion. 

5.4.8 Theorem: (Example 6) 

We assume the continuum hypothesis. 

Then there exists a family n = (Ra: a < Wt) c Poo(IN) satisfying (F) and 
(FM) of Definition (5.1.1) such that C(K) is a Gelfand-Phillips space, were K is 

the Stone compact of the algebra generated by Pt(IN) and n. 
Proof of (/i.4.8) : 

Let (Na :a < Wt) be a well-ordering of P00(IN). 

By transfinite induction we choose, for each a < Wit Ra E Poo(IN) and Ia E :F 
such that 

(l)(a) either RaCRp or Ran Rp~0 for each (3 <a, 
(2)(a) INa n Ral =()()and INa\ Ral =co, 

(3)(a) (Jp:(3 ~a) satisfies (E), 

(4)(a) /a(IN) C Na, and 
(5)(a) i) Rp is / 0 -admissible for each (3 <a, 

ii) Ra is (fp : (3 ~a)-admissible. 

Assuming that for a< W) the families i:= (fp : (3 <a) and n := (Rp : (3 <a) 

are already chosen, we note that (Jp : (3 <a) has property (E) because, for each 
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& <a, (fp : f3 <&)satisfies (E) and (Rp : f3 <a) satisfies (F) because of (1)(&) 

(&<a). 
Applying Lemma (5.4.5) to :f, ft, and N := N(JI we find an fa E :F such that 

(3)(a), {4)(a) and {5){a)(i) are satisfied. 
By the Zorn's lemma, we find an I C (0, a( satisfying the following properties (6), 

(7) and (8): 

(6) IR.s n N(JII = oo for each f3 E I, 
(7) RpCRp whenever {3, {J E I with f3 < {J, and 

(8) I is maximal in the following sensei 
For each f3 E (0, a[\1, I U {{3} does not satsify (6) or (7). 

{Note that 0 satisfies (6) and (7) and that for each linearly ordered (by inclusion) 

I C P((O, a[) consisting of elements satisfying (6) and (7), the set UI satisfies (6) 

and (7) also.) 

If I =f:. 0, we choose a non decreasing sequence {a11:n E IN) C I with 

(9) sup a 11 "'sup I 
nEN 

(we recall that a is countable) 
and, if i := (O,a(\I is not empty, ther~ exists a sequence ({311 : n E IN) such that 

J = {f3n In E IN}. 

For each n E IN, we define 

{10) 

if!;: i = 0 
ifi=0andi=f:.0 

iii =F 0 and i ;;:: 0 
if I =F 0 and i =F 0. 

By {7), the sequence {An: n E IN) is de~reasing with respect to "c". We want to 

show that for each n E IN 

{11) IAn n Nal = oo. 

If i = 0, (11) follows from (6). 
We suppose that i =F 0 and that (11); is not true; hence, we find an n E IN for 

which (if I = 0, set Ra,. := IN) 

Ra,. nNaC U Rpi nN(JI, 
j~n 
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Ra, nNac U RpJ 
1

nNa whenever m~ n. 
i:Sn 

We deduce from (6) and (7) that there. is a j 0 $ n such that 

IRa, n RpJo I= 00 for each rn E IN and IRPJo n Nal = 00. 

By (1)( a'), this implies that for each mie IN 

either or 

From (7) and (9) we conclude for each a E /: 

either or 

This implies that I U {,8j0 } satisfies (6) !and (7), which contradicts (S). Thus, we 

have proven (11). 

Now we are in a position to apply ~~rna (5.4.4) to :F U {/a}, Rn := An for 

n E IN and N := Na, to get ani'U{fa}~admissibleRa E 'P00(IN) (thus, (5)(a)(ii) 

is satisfied) which satisfies (a) and (b) of (5.4.4). Thus, we deduce 2(a). In order 

to show (l)(a) let ,8 <a. 

If ,8 E i, then we deduce that Ran Rp~0 from (5.4.4)(a) and (10). 

If ,8 E /, then there is ann E IN with ,8 $an and we deduce from (7) and (5.4.4) 

that 
" . " RaCRanCRp, 

which implies the assertion and finishes the induction step. 

From (l)(a), (2)(a), and Propositi6n (5:1.2) we deduce that (Ra: a < wi) sat·. 

isfies (FM). To show that K is a Gelfand-Phillips space we proceed as in the 

proof of Theorem (5.4.7): first we deduce from (4)(a) and (5)(Q) that each 

(kn:n EIN) contains a Sl,lbsequence (kn(m): mE IN) such that 

is a w• -zero sequence; and then we observe that this, together with Theorem 

(3.1.3), implies the Gelfand·Phillips propJrty for C(K). 
<> 
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