5.2: Annuities

An annuity is an account with payments made to it at regular time intervals.
Examples of annuity: regular deposits into a saving account, monthly home mortgage payments, monthly insurance payments.

We use TVM Solver to study annuities that are

- certain (terms are given by fixed time periods)
- ordinary (payments made at the END of the payment periods)
- simple (the payment periods coincide with the interest conversion periods: $\mathrm{P} / \mathrm{Y}=\mathrm{C} / \mathrm{Y}$)
- equal payments

The Future Value of an Annuity is where you are trying to find how much money will be in the account after depositing equal amounts over a fixed time period.

EXAMPLE 1. Paul makes a quarterly deposit of $\$ 250$ in his saving account earning interest at the rate of 3.8% per year compounded quarterly.
(a) How much will he have in the account after 7 years?

$$
\begin{array}{rlrl}
N & = & \\
I \% & = & F V & = \\
P V & = & P / Y & = \\
P M T & = & C / Y & =
\end{array}
$$

(b) How much interest will he earn over the 7 years?

EXAMPLE 2. A young man puts $\$ 100$ every month into an account for 3 years. If the interest is compounded monthly, what is the effective rate of interest if he has $\$ 4084.27$ in the account at the end of 3 years?

EXAMPLE 3. Lauren's parents have decided to set up a college fund for her. They decided that $\$ 75,000$ should be enough for this goal. They also decided to open the account when Lauren was 6 years old and make monthly deposits every month until Lauren turns 18. If the account pays interest at a rate of 4.75% compounded monthly
(a) what is the monthly deposit that would reach the Lauren's parents goal?

| N | $=$ | |
| ---: | :--- | ---: | :--- |
| $I \%$ | $=$ | $F V=$ |
| $P V$ | $=$ | $P / Y=$ |
| $P M T$ | $=$ | $C / Y=$ |

(b) How much interest did the account earn?

The Present Value of an Annuity is where you are making payments to zero out a loan (or reduce the amount) and are looking to find how much the loan was worth in the beginning.

EXAMPLE 4. Laura made a down payment of $\$ 3500$ toward the purchase of a new car. To pay the balance of the purchase price, she has secured a loan from her bank at the rate of $10 \% /$ year compounded monthly. Under the terms of her finance agreement she is required to make payments of $\$ 200 /$ month for 40 months. What is the original price (cash price) of the car?

$$
\begin{aligned}
\mathrm{N} & = \\
\mathrm{I} \% & = \\
\mathrm{PV} & = \\
\mathrm{PMT} & = \\
\mathrm{FV} & = \\
\mathrm{P} / \mathrm{Y} & = \\
\mathrm{C} / \mathrm{Y} & =
\end{aligned}
$$

