3.6: Implicit differentiation

EXAMPLE 1. Find y^{\prime} if the $y=y(x)$ satisfies the equation $x y=5$ for all values of x in its domain and evaluate $y^{\prime}(5)$.

Solution 1 (by explicit differentiation):

Solution 2 (by implicit differentiation):

EXAMPLE 2. (a) If $x^{2}+y^{2}=16$ find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Find the equation of the tangent line to $x^{2}+y^{2}=16$ at the point $(2,2 \sqrt{3})$.

EXAMPLE 3. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for the following:
(a) $4 x^{3}+2 y^{2}=4 x y^{5}+y$
(b) $x^{3}-\cot \left(x y^{2}\right)=x \cos y$
(c) $\left(x^{2}+y^{2}\right)^{5}=x^{2} y^{3}$

DEFINITION 4. Two curves are said to be orthogonal if at the point(s) of their intersection, their tangent lines are orthogonal(perpendicular). In this case we also say that the angle between these curves is $\frac{\pi}{2}$.

Illustration: Consider two families of curves:

$$
x^{2}+y^{2}=r^{2}, \quad y=k x
$$

where r and k are real parameters.

EXAMPLE 5. Are these curves orthogonal?

$$
x^{2}-y^{2}=5, \quad 4 x^{2}+9 y^{2}=72
$$

EXAMPLE 6. Find the equations of both the tangent lines to the ellipse $x^{2}+4 y^{2}=36$ that pass through the point (12,3).

