5.1: What does $f^{\prime}(x)$ say about f ?

What does $f^{\prime}(x)$ say about f ?

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

Let $x=a$ be in the domain of $f(x)$.

- . If the derivative $f^{\prime}(x)$ goes from positive to negative at $x=a$, then the function f has a local maximum at $x=a$.
- If the derivative $f^{\prime}(x)$ goes from negative to positive at $\mathrm{x}=\mathrm{a}$, then the function f has a local minimum at $x=a$.

EXAMPLE 1. Consider the graph of the derivative $f^{\prime}(x)$ of some function f.

Answer the following questions:
(a) Over what intervals is f increasing? \qquad
(b) Over what intervals is f decreasing? \qquad
(c) Determine the x-values of $f(x)$ that have a horizontal tangent:
(d) Determine the local maximum point(s) of f : \qquad
(e) Determine the local minimum point(s) of f : \qquad
(f) Given that $f(0)=0$, sketch a possible graph of f.

Concavity:
concave upward (decreasing)

y	concave upward (increasing)
0	x
concave downward (increasing)	

concave downward (decreasing)
concave downward (increasing)

- f is concave upward on an interval if all of the tangents to the graph of f on that interval are below the graph of f.
- f is concave downward on an interval if all of the tangents to the graph of f on that interval are above the graph of f.

Also,

- If the slopes of a curve become progressively larger as x increases, then f is concave upward.
- If the slopes of a curve become progressively smaller as x increases, then we say f is concave downward.

DEFINITION 2. If f changes concavity at $x=a$, and $x=a$ is in the domain of f, then $x=a$ is an inflection point of f.

EXAMPLE 3. Sketch a possible graph of a function f that satisfies the following conditions:

- $f(x)$ is concave up on $(-1,0)$ and $(1, \infty)$;
- $f(x)$ is concave down on $(-\infty, 1)$ and $(0,1)$;
- $x=0, \pm 1$ are the inflection points;
- $x=-2$ is the local maximum point;
- $x=2$ is the local minimum point;
- $f(0)=3$.

What does $f^{\prime \prime}$ say about f ?

- If $f^{\prime \prime}(x)>0$ for all x on an interval, then f is concave up on that interval.
- If $f^{\prime \prime}(x)<0$ for all x on an interval, then f is concave down on that interval.

EXAMPLE 4. Given the graph of the derivative, $f^{\prime}(x)$, for some function f. Determine the intervals of concavity and inflection point(s).

EXAMPLE 5. Consider the graph of the derivative $f^{\prime}(x)$ of some function f.

Given that $f(0)=0$, sketch a possible graph of f.

