5.3: Derivatives and Shapes of Curves

Mean Value Theorem: Suppose a function f is continuous on the (closed) interval $[a, b]$ and differentiable on the (open) interval (a, b). Then there is a number c such that $a<c<b$ and

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently,

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Illustration: $m_{A B}=\frac{f(b)-f(a)}{b-a}$

EXAMPLE 1. At $2: 00 \mathrm{pm}$ a car's speedometer reads $30 \mathrm{mi} / \mathrm{h}$. At $2: 10 \mathrm{pm}$ it reads $50 \mathrm{mi} / \mathrm{h}$. Show that at some time between 2:00 and 2:10 the acceleration is exactly $120 \mathrm{mi} / \mathrm{h}^{2}$.

EXAMPLE 2. Find a number c that satisfies the conclusion of the Mean Value Theorem on the interval $[0,2]$ when $f(x)=x^{3}+x-1$.

EXAMPLE 3. Suppose $1 \leq f^{\prime}(x) \leq 4$ for all x in the [2, 5]. Show that $3 \leq f(5)-f(2) \leq 12$.

Test for increasing/decreasing

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.
- If $f^{\prime}(x)=0$ on an interval, then f is constant on that interval.

EXAMPLE 4. Determine all intervals where the following function

$$
f(x)=x^{5}-\frac{5}{2} x^{4}-\frac{40}{3} x^{3}-12
$$

is increasing or decreasing.

First Derivative Test: Suppose that $x=c$ is a critical point of a continuous function f.

- If $f^{\prime}(x)$ changes from negative to positive at $x=c$, then f has a local minimum at c.
- If $f^{\prime}(x)$ changes from positive to negative at $x=c$, then f has a local maximum at c.
- If $f^{\prime}(x)$ does not change sign at $x=c$, then f has no local maximum or minimum at c.

REMARK 5. The first derivative test only classifies critical points as local extrema and not as absolute extrema.

EXAMPLE 6. For function from Example 4 identify all local extrema.

EXAMPLE 7. Find all intervals of increase and decrease of f and identify all local extrema.
(a) $f(x)=x e^{2 x}$
(b) $f(x)=x \sqrt[3]{x^{2}-\frac{5}{3}}$

Recall here the Second derivative test for concavity. (see Section 5.1):

- If $f^{\prime \prime}(x)>0$ for all x on an interval, then f is concave up on that interval.
- If $f^{\prime \prime}(x)<0$ for all x on an interval, then f is concave down on that interval.

In addition, if f changes concavity at $x=a$, and $x=a$ is in the domain of f, then $x=a$ is an inflection point of f.

EXAMPLE 8. Find intervals of concavity and inflection points of f, if $f^{\prime}(x)=4 x^{3}-12 x^{2}$.

EXAMPLE 9. Sketch the graph of f by locating intervals of increase/decrease, local extrema, concavity and inflection points.
(a) $f(x)=x^{4}-x^{2}$
(b) $f(x)=\frac{x}{(x-1)^{2}}$

Second derivative test for local extrema: Suppose $f^{\prime \prime}$ is continuous near c.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then f has a local minimum at c.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ then f has a local maximum at c.

REMARK 10. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$ or does not exist, then the test fails. In the case $f^{\prime \prime}(c)$ does not exist we use the first derivative test to find the local extrema.

EXAMPLE 11. Find the local extrema for $f(x)=1-3 x+5 x^{2}-x^{3}$.

