Section 2.2: The Limit of a function

A limit is a way to discuss how the values of a function $f(x)$ behave when x approaches a number a, whether or not $f(a)$ is defined.

Let's consider the following function:

$$
f(x)=\frac{\sin x}{x} \quad(x \text { in radians }) .
$$

Note that $f(0)=\frac{\sin 0}{0}$ is undefined. However, one can compute the values of $f(x)$ for values of x close to 0 .

x	$f(x)$
± 0.1	0.99833417
± 0.05	0.99958339
± 0.01	0.99998333
± 0.005	0.99999583
± 0.001	0.99999983

The table allows us to guess (correctly) that that our function gets closer and closer to 1 as x approaches 0 through positive and negative values. In limit notation it can be written as

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1
$$

which implies that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

DEFINITION 1.

- If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$ then $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=L$;
- If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)=L$ then $\lim _{x \rightarrow a} f(x)$ does not exist.

Limits of piecewise defined function.
EXAMPLE 2. Plot the graph of the function

$$
f(x)=\left\{\begin{array}{lll}
-3-x & \text { if } & x \leq-2 \\
2 x & \text { if } & -2<x<2 \\
x^{2}-4 x+3 & \text { if } & x \geq 2
\end{array}\right.
$$

Find the limits (using the graph above):
$\lim _{x \rightarrow 0^{-}} f(x)=$
$\lim _{x \rightarrow-2^{-}} f(x)=$
$\lim _{x \rightarrow 0^{+}} f(x)=$
$\lim _{x \rightarrow-2^{+}} f(x)=$
$\lim _{x \rightarrow 2^{+}} f(x)=$
$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow-2} f(x)=$
$\lim _{x \rightarrow 2^{-}} f(x)=$
$\lim _{x \rightarrow 2} f(x)=$

Limints involving infinity:

DEFINITION 3. The line $x=a$ is said to be a vertical asymptote of the curve $y=f(x)$ if at least one of the following six statements is true:

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty \quad \lim _{x \rightarrow a^{+}} f(x)=\infty \quad \lim _{x \rightarrow a} f(x)=\infty
$$

$\lim _{x \rightarrow a^{-}} f(x)=-\infty$
$\lim _{x \rightarrow a^{+}} f(x)=-\infty$

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

REMARK 4. The vertical asymptotes of a rational function come from the zeroes of the denominator.
EXAMPLE 5. Determine the infinite limit:
(a) $\lim _{x \rightarrow 4^{-}} \frac{7}{x-4}=$
(b) $\lim _{x \rightarrow 4^{+}} \frac{7}{x-4}=$
(c) $\lim _{x \rightarrow 4} \frac{7}{x-4}=$
(d) $\lim _{x \rightarrow 0^{-}} \frac{3-x}{x^{4}(x+4)}=$
(e) $\lim _{x \rightarrow 0^{+}} \frac{3-x}{x^{4}(x+4)}=$
(f) $\lim _{x \rightarrow 0} \frac{3-x}{x^{4}(x+4)}=$
(g) $\lim _{x \rightarrow \pi^{-}} \csc x=$

EXAMPLE 6. Given: $f(x)=\frac{x-4}{x^{2}-5 x+4}$.
(a) What are the vertical asymptotes of $f(x)$?
(b) How does $f(x)$ behave near the asymptotes?

