Section 2.3: Calculating limits using the limits laws

LIMIT LAWS Suppose that c is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

exist. Then

1. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
3. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
5. $\lim _{x \rightarrow a} c=c$
6. $\lim _{x \rightarrow a} x=a$
7. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$, where n is a positive integer.
8. $\lim _{x \rightarrow a} x^{n}=a^{n}$, where n is a positive integer.
9. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where n is a positive integer and if n is even, then we assume that $\lim _{x \rightarrow a} f(x)>0$.
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{\lim _{x \rightarrow a} x}$ where n is a positive integer and if n is even, then we assume that $a>0$.

REMARK 1. Note that all these properties also hold for the one-sided limits.
REMARK 2. The analogues of the laws 1-3 also hold when f and g are vector functions (the product in Law 3 should be interpreted as a dot product).

EXAMPLE 3. Compute the limit:
$\lim _{x \rightarrow-1}\left(7 x^{5}+2 x^{3}-8 x^{2}+3\right)=$

REMARK 4. If we had defined $f(x)=7 x^{5}+2 x^{3}-8 x^{2}+3$ then Example 3 would have been,

$$
\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}\left(7 x^{5}+2 x^{3}-8 x^{2}+3\right)=7(-1)^{5}+2(-1)^{3}-8(-1)^{2}+3=-14=f(-1)
$$

EXAMPLE 5. Compute the limit:
$\lim _{x \rightarrow-2} \frac{x^{2}+x+1}{x^{3}-10}=$

REMARK 6. The function from Example 5 also satisfies "direct substitution property":

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Later we will say that such functions are continuous. Note that in both examples it was important that a in the domain of f.

EXAMPLE 7. Compute the limit:
$\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$

EXAMPLE 8. Compute the limit:
$\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-4 x+3}$

EXAMPLE 9. Given

$$
g(x)=\left\{\begin{array}{lll}
x^{2}+4, & \text { if } & x \leq-1 \\
2-3 x & \text { if } & x>-1
\end{array}\right.
$$

Compute the limits:
(a) $\lim _{x \rightarrow 4} g(x)$
(b) $\lim _{x \rightarrow-1} g(x)$

EXAMPLE 10. Evaluate these limits.
(a) $\lim _{x \rightarrow 4} \frac{x^{-1}-0.25}{x-4}$
(b) $\lim _{x \rightarrow 0} \frac{(x+5)^{2}-25}{x}$
(c) $\lim _{x \rightarrow-1} \frac{|x+1|}{x+1}$
(d) $\lim _{x \rightarrow-1} \frac{x^{2}+x}{|x+1|}$
(e) $\lim _{x \rightarrow 0^{-}}\left\{\frac{1}{x}-\frac{1}{|x|}\right\}$
(f) $\lim _{x \rightarrow 0} \frac{\sqrt{6-x}-\sqrt{6}}{x}$

Conclusion from the above examples:
To calculate the limit of $f(x)$ as $x \rightarrow a$:
PLUG IN $x=a$ if a is in the domain of f.
Otherwise "FACTOR" or "MULTIPLY BY CONJUGATE" and then plug in.
Consider one sided limits if necessary.
Squeeze Theorem. Suppose that for all x in an interval containing a (except possibly at $x=a$)

$$
g(x) \leq f(x) \leq h(x)
$$

and $\lim _{x \rightarrow a} g(x)=L=\lim _{x \rightarrow a} h(x)$. Then

$$
\lim _{x \rightarrow a} f(x)=L .
$$

Corollary. Suppose that for all x in an interval containing a (except possibly at $x=a$)

$$
|f(x)| \leq h(x) \quad(\text { equivalently, } \quad-h(x) \leq f(x) \leq h(x))
$$

and $\lim _{x \rightarrow a} h(x)=0$. Then

$$
\lim _{x \rightarrow a} f(x)=0
$$

EXAMPLE 11. Given $3 x \leq f(x) \leq x^{3}+2$ for $0 \leq x \leq 2$. Find $\lim _{x \rightarrow 1} f(x)$

EXAMPLE 12. Evaluate:
(a) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(b) $\lim _{t \rightarrow 0}\left(t^{5}\right) \cos ^{3}\left(\frac{1}{t^{2}}\right)$

EXAMPLE 13. Is there a number c such that

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+c x+c+3}{x^{2}+x-2}
$$

exists? If so, find the value c and the value of the limit.

