Section 3.5: Chain Rule

Question: How to find the derivatives of the following functions:

$$y = (x^6 + 4x^2 + 12)^{15};$$
 $y = \sec(12x^2) + \tan^3(x)$ $y = \sqrt[3]{4+x}$

Review of Composite Functions:

$$[f \circ g](x) = f(g(x))$$

If
$$f(x)=x^{15}$$
 and $g(x)=x^6+4x^2+12$ then $[f\circ g](x)=$
Conversely, if $[f\circ g](x)=\sec(12x^2)$ then $f(x)=$ and $g(x)=$

The CHAIN RULE: If the derivatives g'(x) and f'(x) both exist, and $F = f \circ g$ is the composite defined by

$$F(x) = f(g(x))$$

then

$$F'(x) = f'(g(x))g'(x).$$

In Leibniz notation: If the derivatives of y = f(u) and u = g(x) both exist then

$$y = f(g(x))$$

is differentiable function of x and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x}.$$

y = f(x)	u(x)	$\int f(u)$	$\frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\frac{\mathrm{d}y}{\mathrm{d}x}} =$	
y =	u =	y =	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
$(x^6 + 4x^2 + 12)^{15}$	u' =	y' =		
$y = \sec(12x^2)$	u =	y =	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
	u' =	y' =	· ·	
$y = \tan^3(x)$	u =	y =	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
	u' =	y' =	dx	
$y = \sqrt[3]{4+x}$	u =	y =	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
	u' =	y' =	dx	
$y = [g(x)]^n$	u =	y =	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
6 [5(1)]		y' =	dx	
	<i>u</i> –	y -		
			Generalized Power Rule	
			Contralized Forest Tudio	

EXAMPLE 1. Find the derivative:

(a)
$$f(x) = \frac{1}{(x^3 + 5x^2 + 12)^{2012}}$$

(b)
$$h(x) = x^8 (3\sqrt{x} - 11)^8$$

(c)
$$f(x) = \cos(5x) + \cos^5 x$$

(d)
$$f(x) = \sqrt{x^3 + \sqrt{x^2 + \sqrt{x}}}$$

EXAMPLE 2. Find F' and G' if

$$F(x) = f(\sin x), \qquad \qquad G(x) = \sin(f(x)),$$

where f(x) is a differentiable function.

EXAMPLE 3. Let f(x) and g(x) be given differentiable functions satisfy the properties as shown in the table below:

x	f(x)	f'(x)	g(x)	g'(x)
1	-5	8	3	12
3	1	2	-2	8

Suppose that $h = f \circ g$. Find h'(1).