3.7: Derivatives of the vector functions

DEFINITION 1. If $\mathbf{r}(t)$ is a vector function then the tangent vector \mathbf{v} at $t=a$ is found by

$$
\mathbf{v}=\lim _{t \rightarrow a} \frac{1}{t-a}[\mathbf{r}(t)-\mathbf{r}(a)]
$$

DEFINITION 2. The derivative of a vector function $\mathbf{r}(t)$ at a number a, denoted by $\mathbf{r}^{\prime}(t)$, is

$$
\mathbf{r}^{\prime}(t)=\lim _{t \rightarrow a} \frac{1}{t-a}[\mathbf{r}(t)-\mathbf{r}(a)],
$$

if this limit exists.
One can show that this definition implies that
If $(r)(t)=\langle x(t), y(t)\rangle$ is a vector function, then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle
$$

if both $x^{\prime}(t), y^{\prime}(t)$ exist.
EXAMPLE 3. If $\mathbf{r}(\mathbf{t})=\left\langle t^{2}, \sqrt{t-5}\right\rangle$ find the domain of $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$.

EXAMPLE 4. Given curve $\mathbf{r}(t)=\left\langle 2 t, 10 t-t^{2}\right\rangle$.
(a) Find a vector tangent to the curve at the point $(4,16)$.
(b) Find parametric equations of the tangent line to $\mathbf{r}(t)$ at $t=2$.
(c) Find a Cartesian equation of this tangent line.

DEFINITION 5. If $(r)(t)=\langle x(t), y(t)\rangle$ is a vector function representing the position of a particle at time t, then

- instantaneous velocity at time t is $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$
- instantaneous speed at time t is $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}$

EXAMPLE 6. The vector function $\mathbf{r}(t)=\left\langle t, \sqrt{t^{2}+9}\right\rangle$ represents the position of a particle at time t. Find the velocity and speed of the particle at time $t=4$.

