Fall 2012 Math 152

Week in Review 1

courtesy: Oksana Shatalov
(covering Sections 6.5\&7.1)

6.5: The substitution rule

Key Points

If $u=g(x)$ is a differentiable function, then

$$
\begin{gathered}
\int f(g(x)) g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u \\
\int_{a}^{b} f(g(x)) g^{\prime}(x) \mathrm{d} x=\int_{g(a)}^{g(b)} f(u) \mathrm{d} u
\end{gathered}
$$

You should make sure that the old variable x has disappeared from the integral.

Examples

Evaluate the following integrals

1. $\int e^{2012 x} \mathrm{~d} x$
2. $\int_{2}^{4} \sin (4 \pi x) \mathrm{d} x$
3. $\int_{0}^{\pi / 2} \cos ^{7} x \sin x \mathrm{~d} x$
4. $\int_{0}^{1} x^{4} e^{9 x^{5}-8} \mathrm{~d} x$
5. $\int \frac{x^{10}}{x^{11}+11} \mathrm{~d} x$
6. $\int \frac{3}{\sqrt{3 y+1}} \mathrm{~d} y$
7. $\int \frac{\tan (\ln x)}{x} \mathrm{~d} x$
8. $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} \mathrm{~d} x$
9. $\int x^{5} \sqrt{4+x^{3}} \mathrm{~d} x$
10. $\int \frac{x-1}{x^{2}+1} \mathrm{~d} x$

7.1: Area Between Curves

Key Points

CASE I $A=\int_{a}^{b}\binom{$ upper }{ function }$-\binom{$ lower }{ function } $\mathrm{d} x$
CASE II $A=\int_{c}^{d}\binom{$ right }{ function }$-\binom{$ left }{ function } $\mathrm{d} y$

- In some cases the limits of integration can be determined as the intersection points of two curves.
- Sketch of a graph of the region is highly recommended.
- The area between two curves will always be positive.

Examples

11. Find the area of the region bounded by $y=\sin x, y=0, x=\pi / 4, x=\pi / 2$.
12. Find the area of the region

$$
D=\{(x, y): \pi / 4 \leq x \leq 3 \pi / 2,0 \leq y \leq \sin x\} .
$$

13. Find the area of the region bounded by $y=x^{3}$ and $y^{2}=x$.
14. Determine the area of the region enclosed by $x=-y^{2}+10, x=(y-2)^{2}$.
15. Find the area of the region bounded by $y=x^{2}-3$ and $y=\frac{5}{1+x^{2}}$.
16. Find the area of the region bounded by $y=\sin 2 x, y=\sin 4 x, x=\pi / 8$, and $x=\pi / 4$. Do not evaluate. Just set up the integral.
17. Determine the area of the region bounded by the x-axis, the curve $y=x^{2}$ and tangent line to this curve at the point $(1,1)$.
