Fall 2012 Math 152
 Week in Review 2
 courtesy: Oksana Shatalov
 (covering Section 7.2)

7.2: VOLUME

Key Points:

Cross sections are perpendicular to the axis of rotating. $A(x)$ is crossectional area.

$$
\text { - } V=\int_{a}^{b} A(x) \mathrm{d} x \quad \text { where } A(x) \text { is the area of a moving cross-section obtained by }
$$ slicing through x perpendicular to the x-axis.

- $V=\int_{c}^{d} A(y) \mathrm{d} x \quad$ where $A(y)$ is the area of a moving cross-section obtained by slicing through y perpendicular to the y-axis.

Examples

1. Find the volume of the solid whose base is the region in the first quadrant bounded by parabola $x=y^{2}$ and line $x=9$ and whose cross-sections are semicircles with the diameter perpendicular to the x-axis.
2. Find the volume of the solid whose base is a unit disk and whose cross-sections are squares with the base perpendicular to the y-axis.
3. Find the volume of the solid whose base is the region bounded by $x=4-y^{2}$ and line $x=y^{2}-4$ and whose cross-sections are equilateral triangles with the base perpendicular to the y-axis.
4. Determine the volume of the solid whose base is an elliptical region with boundary curve $\frac{x^{2}}{4}+y^{2}=1$ and whose cross-sections perpendicular to the x axis are isosceles right triangles with hypotenuse in the base.

Key Points: DISK METHOD

Cross sections perpendicular to the axis of rotating are disks and $A(x)=\pi(\text { radius })^{2}$.

- A solid is formed by rotating a curve about a horizontal axis $(y=k): A(x)=\pi[r(x)]^{2}$.
- A solid is formed by rotating a curve about a vertical axis $(x=k): A(y)=\pi[r(y)]^{2}$.

Examples

5. Determine the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}$, $y=4$ and the y-axis about the y-axis.
6. Determine the volume of the solid obtained by rotating the region

$$
D=\left\{(x, y) \mid \quad-3 \leq x \leq 3, \quad 0 \leq y \leq 10-x^{2}\right\}
$$

about the x-axis.
7. Determine the volume of the solid obtained by rotating the region bounded by $x=5-y^{2}$, $x=1$ about the line $x=1$.
8. Sketch and find the volume of the solid obtained by rotating the region under the graph of $f(x)=\left\{\begin{array}{llc}-x & \text { if } & -2 \leq x<-1 \\ 1 & \text { if } & -1 \leq x \leq 0 \\ e^{x} & \text { if } & 0<x \leq 3\end{array}\right.$ about the x-axis.
9. Each integral represents the volume of a solid. Describe the solid.
(a) $\pi \int_{0}^{\pi / 6} \cos ^{2} x \mathrm{~d} x$
(b) $\pi \int_{3}^{10} x^{4} \mathrm{~d} x$

Key Points: WASHER METHOD

Cross sections perpendicular to the axis of rotating are washers (rings) and

$$
A(x)=\pi\left[\binom{\text { outer }}{\text { radius }}^{2}-\binom{\text { inner }}{\text { radius }}^{2}\right]
$$

- If a solid is formed by rotating about a horizontal axis $(y=k)$ then $A(x)=\pi\left[R(x)^{2}-r(x)^{2}\right]$
- If a solid is formed by rotating about a vertical axis $(x=k)$ then $A(y)=\pi\left[R(y)^{2}-r(y)^{2}\right]$

Examples

10. Determine the volume of the solid obtained by rotating the region bounded by $y=3 x^{2}$ and $y=\frac{x^{3}}{3}$ about the x-axis.
11. Determine the volume of the solid obtained by rotating the region bounded by $y=3 x^{2}$ and $y=\frac{x^{3}}{3}$ about the y-axis.
12. Determine the volume of the solid obtained by rotating triangle with vertices $(0,0),(1,0)$ and $(1,4)$ about the line $y=-5$.
13. Determine the volume of the solid obtained by rotating the region bounded by $x=y^{2}-6 y+12$ and $x=7$ about the y-axis.
14. Set up the integral representing the volume of the solid obtained by rotating the region bounded by $y=e^{-x}, y=\sqrt{x}+1$ and $x=1$ about the line $y=-3$.
15. Each integral represents the volume of a solid. Describe the solid.
(a) $\pi \int_{0}^{\sqrt{5}}\left(25-y^{4}\right) \mathrm{d} y$
(b) $\pi \int_{\pi / 4}^{\pi / 2}\left[(2+\sin x)^{2}-(2+\cos x)^{2}\right] \mathrm{d} x$
