Fall 2012 Math 152

Week in Review 6
courtesy: Oksana Shatalov
(covering Section 9.3, 9.4 \&10.1)

9.3: Arc Length

Key Points

- Arc length of curve $C: \int \mathrm{d} s$
- $\int \mathrm{d} s=\int_{\alpha}^{\beta} \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t$ when C is given by $x=x(t), y=y(t), \alpha \leq t \leq \beta$;
- $\int \mathrm{d} s=\int_{a}^{b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x$ when C is given by $y=y(x), a \leq x \leq b$;
- $\int \mathrm{d} s=\int_{c}^{d} \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y$ when C is given by $x=x(y), c \leq x \leq d$.

Examples

1. Find the length of the curve $x=\cos ^{3} t, y=\sin ^{3} t, 0 \leq t \leq \pi / 2$.
2. Find the length of the curve $x=\frac{1}{4} \ln y-\frac{1}{2} y^{2}$ from $y=1$ to $y=e$.
3. A wire hanging between two poles (at $x=-10$ and $x=10$) takes the shape of a catenary with equation

$$
y=2\left(e^{x / 4}+e^{-x / 4}\right)
$$

Find the length of the wire.

9.4: Area of a Surface of Revolution

Key Points

- $S A=2 \pi \int($ radius $) \mathrm{d} s$
- about the x-axis: radius $=y$
- about the y-axis: radius $=x$

Examples

4. The curve $y=x^{2}, 0 \leq x \leq 1$, is rotated about the y-axis. Find the area of the resulting surface.
5. The curve $x=1-\cos (2 t), y=2 t+\sin (2 t), 0 \leq t \leq \pi / 4$ is rotated about the x-axis. Find the area of the resulting surface.
6. Set up (but don't evaluate) the integral that gives the surface area obtaine by rotating the curve

$$
x=\sin \left(\pi y^{2} / 8\right), \quad 1 \leq y \leq 2
$$

(a) about the x-axis
(b) about the y-axis
7. The curve $x=\sin (a t), y=\cos (a t), 0 \leq t \leq \frac{\pi}{2 a}$ is rotated about the x-axis (here a is an arbitrary positive constant). Find the area of the resulting surface.

10.1: Sequences

Key Points

- If $\lim _{n \rightarrow \infty} a_{n}$ exists and finite then we say that the sequence $\left\{a_{n}\right\}$ converges. Otherwise, we say the sequence diverges. (Recall all techniques for finding limits at infinity.)
- The Squeeze Theorem for Sequences: If $a_{n} \leq b_{n} \leq c_{n}$ for all n and the sequences $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ have a common limit L as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} b_{n}=L$.
- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
- $\left\{a_{n}\right\}$ increasing: show that $a_{n+1}-a_{n}>0$, or $f^{\prime}(x)>0\left(\right.$ where $\left.f(n)=a_{n}\right)$; or $\frac{a_{n}+1}{a_{n}}>1$ (provided $a_{n}>0$ for all n.) Note: reverse signs for $\left\{a_{n}\right\}$ decreasing.

Examples

8. Define the n-th term of the sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}$ and find its limit.
9. Determine if the given sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{3 n^{5}-12 n^{3}+2012}{2012-12 n^{4}-4 n^{4}-9 n^{5}}$
(b) $b_{n}=\frac{3 n^{5}-12 n^{3}+2012}{2012-12 n^{4}-4 n^{4}-9 n^{5}+11 n^{6}}$
(c) $c_{n}=\frac{12 n^{7}+2012}{2012-12 n^{4}-4 n^{5}-9 n^{6}}$
10. Determine if the sequence with the given general term $(n \geq 1)$ converges or diverges. If it converges, find the limit.
(a) $a_{n}=\ln \left(n^{2}+3\right)-\ln \left(7 n^{2}-5\right)$
(b) $z_{n}=\frac{1}{n^{4}} \sin \left(\frac{1}{n^{5}}\right)$
(c) $y_{n}=\frac{(-1)^{n}}{n^{3}}$
(d) $x_{n}=\frac{(-1)^{n} n}{3 n+33}$
(e) $a_{n}=\frac{(\arctan n)^{7}}{n^{5}}$
11. Assuming that the sequence defined recursively by $a_{n}=1, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{9}{a_{n}}\right)$ is convergent, find its limit.
12. Determine whether the given seqence is increasing or decreasing.
(a) $\{\arctan (n)\}_{n=1}^{\infty}$
(b) $\left\{n-2^{n}\right\}_{n=1}^{\infty}$
(c) $\left\{\frac{10^{n}}{n!}\right\}_{n=1}^{\infty}$
