Fall 2012 Math 152

Week in Review 8 courtesy: Oksana Shatalov (covering Section 10.3& 10.4)

10.3 : The Integral and Comparison Tests; Estimating Sums

Key Points

THE TEST FOR DIVERGENCE:	If $\lim_{n \to \infty} a_n = 0$ then the series may or
If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$	may not converge.
is divergent.	
THE INTEGRAL TEST	Apply to positive series only when $f(x)$
Let $\sum a_n$ be a positive series. If f is a continuous and decreasing	is easy to integrate.
function on $[a,\infty)$ such that $a_n = f(n)$ for all $n \ge a$ then $\sum a_n$	
and $\int_a^{\infty} f(x) dx$ both converge or both diverge.	
THE COMPARISON TEST	
Suppose that $\sum a_n$ and $\sum b_n$ are series with nonnegative terms and $a_n \leq b_n$ for all n .	• It applies to series with nonnega- tive terms only.
• If $\sum b_n$ is convergent then $\sum a_n$ is also convergent.	• Try it as a last resort (other tests
• If $\sum a_n$ is divergent then $\sum b_n$ is also divergent.	are often easier to apply).
	• It requires some skills in chosing a series for comparison.
LIMIT COMPARISON TEST	
Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms . If	• It applies to positive series only.
$\lim_{n \to \infty} \frac{a_n}{b_n} = c$	• It requires less skills to choose se- ries for comparison than in Com-
where c is a finite number and $c > 0$, then either both series converge or both diverge.	parison test.

• FACT: The *p*-series, $\sum_{n=1}^{\infty} \frac{1}{n^p}$, converges if p > 1 and diverges if $p \le 1$.(by Integral Tests)

• REMAINDER ESTIMATE FOR THE INTEGRAL TEST

If $\sum a_n$ converges by the Integral Test and $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x) \, \mathrm{d}x \le R_n \le \int_n^{\infty} f(x) \, \mathrm{d}x$$

Examples

- 1. Determine if the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^4}$ is convergent or divergent.
- 2. Find the values of p for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ is divergent.
- 3. Determine if the following series is convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \frac{0.99}{n^{0.99}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1.01}{n^{1.01}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2012}{\sqrt[7]{n^5}\sqrt[3]{8n}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^2 + 12}{\sqrt{n^6 + 6}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^{10}}{n^{15} + n^{11} - 7}$$

(f)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^7}\right)$$

(g)
$$\sum_{n=1}^{\infty} \frac{5n^5 + e^{-5n}}{6n^6 - e^{-6n}}$$

- 4. Find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)n^p}$ is convergent.
- 5. (a) If $\sum_{n=1}^{1000} \frac{1}{n^6}$ is used to approximate $\sum_{n=1}^{\infty} \frac{1}{n^6}$, find an upper bound on the error using the Integral Test.

(b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^6}$ correct to 11 decimal places.

- 6. Given the series $\sum_{n=1}^{\infty} n^3 e^{-n^4}$.
 - (a) Show that the series converges.
 - (b) Find an upper bound for the error approximating this series by its 5th partial sum s_5 .

10.4 : Other Convergence Tests

Key Points

ALTERNATING SERIES TEST:	It applies only to alternating series.
If $b_n > 0$, $\lim_{n \to \infty} b_n = 0$ and the sequence $\{b_n\}$ is decreasing then	
the series $\sum_{n=1}^{n \to \infty} (-1)^n b_n$ is convergent.	
RATIO TEST	
For a series $\sum a_n$ with nonzero terms define $L = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $.	• Try it when a_n involves factorials or <i>n</i> -th powers.
• If $L < 1$ then the series is absolutely convergent (which	
implies the series is convergent.)	• The series need not have positive tarms and need not be alternat
• If $L > 1$ then the series is divergent.	ing to use it.
C C	
• If $L = 1$ then the series may be divergent, conditionally	• Absolute convergence implies
convergent or absolutely convergent (test fails).	convergence.

The Alternating Series Theorem. If $\sum_{n=1}^{\infty} (-1)^n b_n$ is a convergent alternating series and you used a partial sum s_n to approximate the sum s (i.e. $s \approx s_n$) then $|R_n| \leq b_{n+1}$.

Examples

7. Determine whether the following series converges absolutely, converges but not absolutely, or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$$
, where p is a real parameter.
(b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt[4]{\ln n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-9)^n}{(n+1)!}$
(d) $\sum_{n=5}^{\infty} \frac{(-1)^{n-1}7^{n-1}}{4^n}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n!)^2}{((2n)!)^2}$
(f) $\sum_{n=1}^{\infty} \frac{n\cos(n\pi)}{n^2 + n + 1}$
(g) $\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$
(h) $\sum_{n=1}^{\infty} \frac{5^n}{\ln(n+1)}$

8. Which of the following statements is TRUE?

9. Given the series $\sum_{n=1}^{\infty} (-1)^{n+1} n^3 e^{-n^4}$.

- (a) Show that the series converges.
- (b) Find an upper bound for the error approximating this series by its 5th partial sum s_5 .