Fall 2012 Math 152

Week in Review 11 courtesy: Oksana Shatalov (covering Sections 11.1-11.2 & Sample Test 3)

11.1: Three-dimensional Coordinate System

Key Points

• The distance between the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

• Equation of a sphere $(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2$ (completing the square)

Examples

- Graph the following regions:
 (a) x = 5 in ℝ, ℝ², ℝ³; (b) x² + y² − 1 = 0 in ℝ², ℝ³.
- 2. Given the sphere $(x-1)^2 + (y+4)^2 + (z-2)^2 = 16$.
 - (a) What is the intersection of the sphere with the yz-plane.
 - (b) Find the distance from the point (1, -2, 3) to the center of the sphere.
- 3. What is the intersection of the surface $x^2 + y^2 = 49$ with the *xy*-plane.
- 4. Determine the radius and the center of the sphere given by the equation

$$x^2 + y^2 + z^2 + 2y + z - 1 = 0.$$

11.2: Vectors and the Dot Product in Three Dimensions

Key Points

• The vector **a** from the point $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$ is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$$

• The magnitude or length of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

• Unit vector:
$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

• Dot Product:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3,$$

where θ is the angle between **a** and **b**, $0 \le \theta \le \pi$.

- <u>Scalar projection</u> of vector **b** onto vector **a**: $\operatorname{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
- <u>Vector projection</u> of vector **b** onto vector **a**: $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right) \mathbf{a}$

Examples

- 5. Given the triangle with vertices A(2, 4, 5), B(3, 5, 3), and C(2, 8, -3).
 - (a) Find the cosine of the angle at B.
 - (b) Compute $\operatorname{comp}_{\vec{AB}}\vec{BC}$.
 - (c) Compute $\operatorname{proj}_{\vec{AB}} \vec{BC}$.
- 6. Find a unit vector in the direction $\mathbf{b} \mathbf{a}$ where $\mathbf{a} = \langle 3, -7, 0 \rangle$ and $\mathbf{b} = \langle 1, -6, -2 \rangle$.
- 7. The line L_1 passes through the points M(3,5,3) and N(2,8,-3), and the line L_2 passes through the points P(-1,-1,1) and Q(12,0,-1). Are these lines orthogonal?

Sample Test 3

8. Which of the following series converges absolutely?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+5}$$

(b) $\sum_{n=1}^{\infty} \frac{\sin(\pi^3 n^2)}{n^2 \sqrt{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n}}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$
(e) $\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$
(f) $\sum_{n=1}^{\infty} \frac{5^n}{\ln(n+1)}$

9. Suppose that the power series $\sum_{n=1}^{\infty} c_n (x-4)^n$ has the radius of convergence 4. Consider the following pair of series:

(I)
$$\sum_{n=1}^{\infty} c_n 5^n$$
 (II) $\sum_{n=1}^{\infty} c_n 3^n$

Which of the following statements is true?

- (a) (I) is convergent, (II) is divergent
- (b) Neither series is convergent
- (c) Bith series are convergent
- (d) (I) is divergent, (II) is convergent
- (e) no conclusion can be drawn about either series.
- 10. Show that the series $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ converges. Then find un upper bound on the error in using s_{10} to approximate the series. (Note that $\ln 2 > 1/2$.)

- 11. If we represent $\frac{x^2}{4+9x^2}$ as a power series centered at a = 0, what is the associated radius of convergence?
- 12. Find the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-2)^n (3x-1)^n}{n}.$
- 13. Which of the following statements is TRUE?

14. Find a Maclaurin series representation for $\frac{e^x - 1 - x}{x^2}$.

15. (a) Find a Maclaurin series representation for $f(x) = \sin\left(\frac{x^2}{4}\right)$

- (b) Write $\int_0^1 \sin\left(\frac{x^2}{4}\right) dx$ as an infinite series.
- (c) Using the series found in the previous part, find s_2 , the second partial sum of the series and give an upper bound on the error $|s s_2|$.

16. Let $f(x) = e^{5-x}$.

- (a) Give the fourth degree Taylor polynomial for f(x) centered around a = 5.
- (b) Use Taylor's inequality to give a bound on the error when using the fourth degree Taylor polynomial for f(x) to estimate f(x) on the interval [3, 6].
- 17. Find a Maclaurin series of $f(x) = \ln(2-x)$ and the associated radius of convergence.

18. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 3^n}$$
 converges to s. Use the Alternating Series Theorem to estimate $|s - s_6|$.