Sample problems for Test 1.

1. A woman walks due west on a ship at 4 mph . The ship is moving $\mathrm{N} 30^{0} \mathrm{~W}$ at 20 mph . (This means that the direction from which the ship moves is 30° west of the northerly direction.) Find the speed of the woman relative to the water.
2. Find $f^{\prime}(x)$ for $f(x)=\sqrt{5-x}$ using the definition of derivative.
3. Prove Properties of the Dot Product.(see Theorem 3 in notes, section 1.2)
4. Given vectors $\vec{a}=<4,6>$ and $\vec{b}=<-3,2>$.
(a) Find the unit vector in the direction of \vec{b}
(b) Find the angle between \vec{a} and \vec{b}
(c) Find the scalar and the vector projections of \vec{a} onto \vec{b}.
5. Find the equation of the line that passes through the point $(1,3)$ and is perpendicular to the vector $\vec{n}=-4 i+\vec{\jmath}$.
6. Find the distance from the point $(-5,2)$ to the line $x-2 y=4$.
7. Find the work done by a force of 20 lb acting in the direction $\mathrm{N} 50^{0} \mathrm{~W}$ in moving an object 4 ft due west.
8. Find the Cartesian equation of the curve given by $x=\cos t, y=\cos 2 t, 0 \leq t<2 \pi$.
9. Find the vector and parametric equations of a line that passes through the points $(1,2)$ and $(-3,4)$.
10. A particle is moving in the $x y$-plane and its position (x, y) at time t is given by $x=3 t+1, y=t^{2}-t$.
(a) Find the position of the particle at time $t=3$.
(b) At what time is the particle at the point $(16,20)$?
11. Prove using the ε, δ definition of limit that $\lim _{x \rightarrow 2}(3 x-2)=4$.
12. Prove that
(a) $(\cos x)^{\prime}=-\sin x$
(b) $(\sin x)^{\prime}=\cos x$
(c) $(\tan x)^{\prime}=\sec ^{2} x$
(d) $(\sec x)^{\prime}=\sec x \tan x$
13. Find the limit if it exists:
(a) $\lim _{t \rightarrow 1} \frac{t^{3}-1}{t^{2}-1}$
(b) $\lim _{x \rightarrow 5} \frac{x^{2}-5 x+10}{x^{2}-25}$
(c) $\lim _{x \rightarrow 7} \frac{2-\sqrt{x-3}}{x^{2}-49}$
(d) $\lim _{t \rightarrow 1}\left\langle\frac{t^{2}-2 t+1}{t-1}, \frac{\sqrt{t}-1}{t^{2}-1}\right\rangle$
(e) $\lim _{x \rightarrow-3}|x+3|$
(f) $\lim _{y \rightarrow \infty} \frac{7 y^{3}+4 y}{2 y^{3}-y^{2}+3}$
(g) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x+1}-x\right)$
(h) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\tan (2 x)}$
14. Use the Squeeze Theorem to prove that $\lim _{x \rightarrow 0} \sqrt{x} \cos ^{4} x=0$.
15. Find the horizontal and vertical asymptotes of the curve $y=\frac{x^{2}+4}{3 x^{2}-3}$.
16. Use the definition of continuity to show that the function $f(x)=\frac{x+1}{2 x^{2}-1}$ is continuous at $a=4$.
17. Find the values of c and d that make the function

$$
f(x)= \begin{cases}2 x, & \text { if } x<1 \\ c x^{2}+d, & \text { if } 1 \leq x \leq 2 \\ 4 x, & \text { if } x>2\end{cases}
$$

continuous on $(-\infty, \infty)$.
18. For each of the functions below, find all points of discontinuity, and classify them as removable discontinuities, jump discontinuities, or infinity discontinuities:
(a) $f(x)=\frac{x^{2}-2 x-8}{x+2}$
(b) $g(x)=\frac{5 x-3}{x^{2}-4}$
(c) $h(x)= \begin{cases}1-x, & \text { if } x \leq 2 \\ x^{2}-2 x, & \text { if } x>2\end{cases}$
19. Use the Intermediate Value Theorem to show that there is a root of the equation $x^{3}-3 x+1=0$ in the interval (1,2).
20. Find the derivative f^{\prime} of each function:
(a) $f(x)=\left(x^{9}+x^{7}-5 x^{2}+2013\right)\left(x^{2}-4 x+6\right)$
(b) $f(x)=\frac{x^{7}+9 x-13}{\sqrt{x}-3}$
(c) $f(x)=x+x \sqrt[5]{x^{2}}+x \sqrt{x}+\frac{1}{x \sqrt{x}}+15$
(d) $f(x)=\sqrt{\tan x}+\cos ^{2}\left(\tan ^{2} x+6\right)$
21. Find the equation of the tangent line to the curve $y=x \sqrt{5-x}$ at the point $(1,2)$.
22. Find parametric equations for the line tangent to the curve $r=<t^{2}+2 t, t^{3}-t>$ at the point corresponding to $t=1$.

