Sample problems for Test 1.

- 1. A woman walks due west on a ship at 4 mph. The ship is moving $N30^0W$ at 20 mph. (This means that the direction from which the ship moves is 30^0 west of the northerly direction.) Find the speed of the woman relative to the water.
- 2. Find f'(x) for $f(x) = \sqrt{5-x}$ using the definition of derivative.
- 3. Prove Properties of the Dot Product. (see Theorem 3 in notes, section 1.2)
- 4. Given vectors $\vec{a} = \langle 4, 6 \rangle$ and $\vec{b} = \langle -3, 2 \rangle$.
 - (a) Find the unit vector in the direction of \vec{b}
 - (b) Find the angle between \vec{a} and \vec{b}
 - (c) Find the scalar and the vector projections of \vec{a} onto \vec{b} .
- 5. Find the equation of the line that passes through the point (1,3) and is perpendicular to the vector $\vec{n} = -4i + \vec{j}$.
- 6. Find the distance from the point (-5,2) to the line x 2y = 4.
- 7. Find the work done by a force of 20 lb acting in the direction $N50^{0}W$ in moving an object 4 ft due west.
- 8. Find the Cartesian equation of the curve given by $x = \cos t$, $y = \cos 2t$, $0 \le t < 2\pi$.
- 9. Find the vector and parametric equations of a line that passes through the points (1,2) and (-3,4).
- 10. A particle is moving in the xy-plane and its position (x, y) at time t is given by x = 3t + 1, $y = t^2 t$.
 - (a) Find the position of the particle at time t = 3.
 - (b) At what time is the particle at the point (16,20)?
- 11. Prove using the ε , δ definition of limit that $\lim_{x \to 2} (3x 2) = 4$.
- 12. Prove that
 - (a) $(\cos x)' = -\sin x$
 - (b) $(\sin x)' = \cos x$
 - (c) $(\tan x)' = \sec^2 x$
 - (d) $(\sec x)' = \sec x \tan x$

13. Find the limit if it exists:

(a)
$$\lim_{t \to 1} \frac{t^3 - 1}{t^2 - 1}$$

(b)
$$\lim_{x \to 5} \frac{x^2 - 5x + 10}{x^2 - 25}$$

(c)
$$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$$

(d)
$$\lim_{t \to 1} \left\langle \frac{t^2 - 2t + 1}{t - 1}, \frac{\sqrt{t} - 1}{t^2 - 1} \right\rangle$$

(e)
$$\lim_{x \to -3} |x + 3|$$

(f)
$$\lim_{y \to \infty} \frac{7y^3 + 4y}{2y^3 - y^2 + 3}$$

(g)
$$\lim_{x \to \infty} (\sqrt{x^2 + 3x + 1} - x)$$

(h)
$$\lim_{x \to 0} \frac{\sin(5x)}{\tan(2x)}$$

- 14. Use the Squeeze Theorem to prove that $\lim_{x\to 0} \sqrt{x} \cos^4 x = 0$.
- 15. Find the horizontal and vertical asymptotes of the curve $y = \frac{x^2 + 4}{3x^2 3}$.

 $\frac{2}{2}$

16. Use the definition of continuity to show that the function $f(x) = \frac{x+1}{2x^2-1}$ is continuous at a = 4.

17. Find the values of c and d that make the function

$$f(x) = \begin{cases} 2x, & \text{if } x < 1\\ cx^2 + d, & \text{if } 1 \le x \le 2\\ 4x, & \text{if } x > 2 \end{cases}$$

continuous on $(-\infty, \infty)$.

18. For each of the functions below, find all points of discontinuity, and classify them as removable discontinuities, jump discontinuities, or infinity discontinuities:

(a)
$$f(x) = \frac{x^2 - 2x - 8}{x + 2}$$

(b) $g(x) = \frac{5x - 3}{x^2 - 4}$
(c) $h(x) = \begin{cases} 1 - x, & \text{if } x \le x^2 - 2x, & \text{if } x > 0 \end{cases}$

- 19. Use the Intermediate Value Theorem to show that there is a root of the equation $x^3 3x + 1 = 0$ in the interval (1,2).
- 20. Find the derivative f' of each function:

(a)
$$f(x) = (x^9 + x^7 - 5x^2 + 2013)(x^2 - 4x + 6)$$

(b) $f(x) = \frac{x^7 + 9x - 13}{\sqrt{x} - 3}$
(c) $f(x) = x + x\sqrt[5]{x^2} + x\sqrt{x} + \frac{1}{x\sqrt{x}} + 15$
(d) $f(x) = \sqrt{\tan x} + \cos^2(\tan^2 x + 6)$

- 21. Find the equation of the tangent line to the curve $y = x\sqrt{5-x}$ at the point (1,2).
- 22. Find parametric equations for the line tangent to the curve $r = \langle t^2 + 2t, t^3 t \rangle$ at the point corresponding to t = 1.