Final Exam Practice

In addition to working this problem set, it is advised that you work the first two exams, quizzes, as well as Lecture Notes.

1. Given $\mathbf{a}=\langle-2,3\rangle, \mathbf{b}=\langle 6,1\rangle, \mathbf{c}=2$ i. Find:
(a) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})$
(b) a unit vector having the same direction as a
(c) Find the angle between \mathbf{a} and \mathbf{b}
(d) a unit vector that is orthogonal to $\mathbf{a}+\mathbf{b}$
(e) scalars α and β such that $\mathbf{c}=\alpha \mathbf{a}+\beta \mathbf{b}$
2. Find a vector equation of the line containing the points $(-1,1)$ and $(2,5)$.
3. Find a unit vector perpendicular to the line described by the parametric equations $x=$ $-4 t+1, y=6 t+5$.
4. Find the work done by a force of 30 N acting in the direction $N 30^{\circ} \mathrm{W}$ (i.e. 30° west of the northerly direction) in moving an object $6 m$ due west.
5. Determine whether the vectors $\langle 1,2\rangle$ and $\langle-2,3\rangle$ are orthogonal, parallel, or neither.
6. What is the limit:
(a) $\lim _{\theta \rightarrow \pi / 3} \frac{\cos \theta-\frac{1}{2}}{\theta-\pi / 3}$
(b) $\lim _{h \rightarrow 0} \frac{(2+h)^{6}-64}{h}$
(c) $\lim _{h \rightarrow 0} \frac{\sin (\pi / 4+h)-\sin (\pi / 4)}{h}$
7. Compute the following limits:
(a) $\lim _{x \rightarrow-6^{+}} \frac{x}{x+6}$
(b) $\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{x-16}$
(c) $\lim _{x \rightarrow 8^{-}} \frac{|x-8|}{x-8}$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-9}}{2 x-6}$
(e) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}\right)$
(f) $\lim _{x \rightarrow \infty} \frac{1+2 x-x^{2}}{1-x+2 x^{2}}$
(g) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 3 x}$
(h) $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin 5 x}$
(i) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(j) $\lim _{x \rightarrow 0} \frac{1+\sin x-\cos x}{1-\sin x-\cos x}$
(k) $\lim _{x \rightarrow \pi / 2}\left(\frac{\pi}{2}-x\right) \tan x$
(l) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)^{x}$
8. Discuss the continuity of

$$
f(x)=\left\{\begin{array}{ccc}
2 x-x^{2} & \text { if } & 0 \leq x \leq 2 \\
2-x & \text { if } & 2<x \leq 3 \\
x-4 & \text { if } & 3<x<4 \\
\pi & \text { if } & x \geq 4
\end{array}\right.
$$

9. Find all horizontal and vertical asymptotes of the curve $y=\frac{x}{\sqrt[4]{x^{4}+1}}$
10. Given the curve $y=\frac{2}{1-3 x}$. Find:
(a) the slope of the tangent line to this curve at the point $(2,1)$;
(b) the equation of this tangent line.
11. Find $f^{(5)}(0)$ for
(a) $f(x)=2^{x}$.
(b) $f(x)=e^{2 x}$.
12. What is the domain of $f(x)=\log _{5}\left(5-e^{x}\right)$?
13. Calculate y^{\prime} for
(a) $x^{2} y^{3}+3 y^{2}=x-4 y$
(b) $\cos (x+2 y)=4 x^{2}-y^{3}$
14. Compute the derivative:
(a) $y=\frac{(x+5)^{4}}{x^{4}+5^{4}}$
(b) $y=\frac{1}{\sin (x-\sin x)}$
(c) $y=\tan ^{5}\left(\sqrt{1-x^{2}}\right)$
(d) $y=\ln (\cos x)$
(e) $y=\arccos (\sqrt{t})+\arctan (5 t)$
15. Suppose that $h(x)=f(x) g(x)$ and $F(x)=f(g(x))$, where $f(2)=3, g(2)=5, g^{\prime}(2)=$ $4, f^{\prime}(2)=-2, f^{\prime}(5)=11$. Find $h^{\prime}(2)$ and $F^{\prime}(2)$.
16. If $H(x)=f\left(x^{2}+4 x\right)$ and $f^{\prime}(12)=7$ find $H^{\prime}(2)$.
17. Find the equation of the tangent to the curve $y=\ln \left(e^{x}+e^{2 x}\right)$ at the point $(0, \ln 2)$.
18. At what point on the curve $y=[\ln (x+4)]^{2}$ is the tangent line horizontal?
19. Find the linear approximation for $f(x)=\sqrt{25-x^{2}}$ near 3 .
20. The volume of a cube is increasing at a rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. How fast is the surface area increasing when the length of the edge is 80 cm .
21. A paper cup has the shape of cone with height 10 cm and radius 3 cm at the top. If water is poured into the cup at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$, how fast is the water level rising when the water is 5 cm deep?
22. A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{s}$. A boy is cycling along a straight road at a speed of $15 \mathrm{ft} / \mathrm{s}$. When he passed under the balloon it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3s later?
23. Solve each equation for x :
(a) $e^{e^{x}}=2$
(b) $\ln (x+1)-\ln x=1$
(c) $3^{t}=9^{2 t-1}$
24. Given $\mathbf{r}(t)=\ln t \mathbf{i}+t e^{2 t} \mathbf{j}$. Find parametric equations for the tangent line to the curve at the point $\left(0, e^{2}\right)$.
25. If $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+2$ find the intervals where $f(x)$ is increasing or decreasing and locate all local extrema.
26. Where is $f(x)=x \ln x$ concave up?
27. Find the absolute extreme values for $f(x)=x^{3}-12 x+5$ over the interval $[-5,1]$.
28. Find the most general antiderivative of $\frac{1+4 x}{\sqrt{x}}$.
29. Find $f(x)$ if $f^{\prime}(x)=1+2 \sin x-\cos x, f(0)=3$.
30. Compute
(a) $\sin \left(2 \arcsin \frac{3}{5}\right)$
(b) $\arcsin \left(\sin \frac{5 \pi}{4}\right)$
31. Find the dimensions of the rectangle of largest area that has its base on the x-axis and its other two vertices above the x-axis and lying on the parabola $y=8-x^{2}$.
32. Evaluate:
(a) $\int_{0}^{\pi / 2} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\sin \frac{x}{2} \cos \frac{x}{2}\right) \mathrm{d} x$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\int_{x}^{\pi / 2} \sin \frac{t}{2} \cos \frac{t}{2} \mathrm{~d} t\right)$
33. Evaluate the integral if it exists:
(a) $\int_{1}^{8} \sqrt[3]{x}(x-1) \mathrm{d} x$
(b) $\int_{0}^{b}\left(x^{3}+4 x-1\right) \mathrm{d} x$
(c) $\int_{1}^{4} \frac{x^{2}-x+1}{\sqrt{x}} \mathrm{~d} x$
(d) $\int_{-1}^{2}(x-2|x|) \mathrm{d} x$
34. Find the area under the curve $y=8 e^{x}$ from $\ln (3)$ to $\ln (6)$.

From textbook:

1. page 146 problems 1-3
2. page 234 problems 1-6, 9-12
3. page 297 problems 2-9, 11, 12
4. page 356 problems 1,2,5-7, 9-12
5. page 416 problems 1-16, 13
