Section 2.4: The Precise definition of a Limit

DEFINITION 1. Let $f(x)$ be a function defined for all x in some open interval containing the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if for every number $\epsilon>0$ we can find a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta .
$$

REMARK 2. For a limit from the right we need only assume that $f(x)$ is defined on an interval (a, b) extending to the right of a and that the ϵ condition is met for x in an interval $a<x<a+\delta$ extending to the right of a. A similar adjustment must be made for a limit from the left.

A general form of a limit proof

Assume that we are given a positive number ϵ, and we try to prove that we can find a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta .
$$

There are two things to do:

1. Preliminary analysis of the problem (guessing a value for δ);
2. Proof (showing that the δ works).

Note that the value of δ is not unique. Namely, once we have found a value of δ that fulfills the requirements of the definition, then any smaller positive number $\delta_{1}, \delta_{1}<\delta$, will also fulfill those requirements.

EXAMPLE 3. Use the "epsilon-delta" definition to prove that $\lim _{x \rightarrow 4}(3 x-1)=11$.

EXAMPLE 4. Use the "epsilon-delta" definition to prove that $\lim _{x \rightarrow 5} x^{2}=25$.

