Section 2.4: The Precise Definition of a Limit

Question: What does it mean $\lim _{x \rightarrow a} f(x)=L$? To motivate the precise definition of limit, consider the function

$$
f(x)= \begin{cases}2 x-1, & \text { if } \quad x \neq 3 \\ 1, & \text { if } \quad x=3\end{cases}
$$

- What is $\lim _{x \rightarrow 3} f(x)$?
- Problem 1 How close to 3 does x have to be so that $f(x)$ differs from 5 by less than 0.1 ?
- The distance from x to 3 is \qquad
- The distance from $f(x)$ to 5 is \qquad
- Reformulation of problem 1: Find a number δ such that

Thus an answer to the Problem 1 is given by $\delta=$ \qquad ; that is, if x is within a distance of \qquad from 3 , then $f(x)$ will be within a distance of \qquad from 5.

- Problem 2 How close to 3 does x have to be so that $f(x)$ differs from 5 by less than 0.01 ?
- Problem 3 How close to 3 does x have to be so that $f(x)$ differs from 5 by less than 0.001 ?
- Problem 4 How close to 3 does x have to be so that $f(x)$ differs from 5 by less than an arbitrary positive number ε ?

$$
\begin{equation*}
|f(x)-5|<\varepsilon \quad \text { if } \quad 0<|x-3|<\delta=\frac{\varepsilon}{2} \tag{1}
\end{equation*}
$$

In other words, we can make the values of $f(x)$ within an arbitrary distance ε from 5 by taking the values of x within a distance $\varepsilon / 2$ from 3 (but $x \neq 3$). This is a precise way of saying that $f(x)$ is close to 5 when x is close to 3 . Note that (1) can be rewritten as follows:

DEFINITION 1. Let $f(x)$ be a function defined for all x in some open interval containing the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if for every number $\epsilon>0$ we can find a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta .
$$

REMARK 2. For a limit from the right we need only assume that $f(x)$ is defined on an interval (a, b) extending to the right of a and that the ϵ condition is met for x in an interval $a<x<a+\delta$ extending to the right of a. A similar adjustment must be made for a limit from the left.

A general form of a limit proof

Assume that we are given a positive number ϵ, and we try to prove that we can find a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta .
$$

There are two things to do:

1. Preliminary analysis of the problem (guessing a value for δ);
2. Proof (showing that the δ works).

Note that the value of δ is not unique. Namely, once we have found a value of δ that fulfills the requirements of the definition, then any smaller positive number $\delta_{1}, \delta_{1}<\delta$, will also fulfill those requirements.

EXAMPLE 3. Use the "epsilon-delta" definition to prove that $\lim _{x \rightarrow 4}(3 x-1)=11$.

EXAMPLE 4. Use the "epsilon-delta" definition to prove that $\lim _{x \rightarrow 5} x^{2}=25$.

