1

Section 2.4: The Precise Definition of a Limit

Question: What does it mean $\lim_{x\to a} f(x) = L$? To motivate the precise definition of limit, consider the function

$$f(x) = \begin{cases} 2x - 1, & \text{if } x \neq 3\\ 1, & \text{if } x = 3 \end{cases}$$

- What is $\lim_{x\to 3} f(x)$?
- Problem 1 How close to 3 does x have to be so that f(x) differs from 5 by less than 0.1?
 - The distance from x to 3 is _____
 - The distance from f(x) to 5 is _____
- Reformulation of problem 1: Find a number δ such that

Thus an answer to the Problem 1 is given by $\delta = \underline{}$; that is, if x is within a distance of $\underline{}$ from 3, then f(x) will be within a distance of $\underline{}$ from 5.

- Problem 2 How close to 3 does x have to be so that f(x) differs from 5 by less than 0.01?
- Problem 3 How close to 3 does x have to be so that f(x) differs from 5 by less than 0.001?
- **Problem 4** How close to 3 does x have to be so that f(x) differs from 5 by less than an arbitrary positive number ε ?

$$|f(x) - 5| < \varepsilon \quad \text{if} \quad 0 < |x - 3| < \delta = \frac{\varepsilon}{2}.$$
 (1)

In other words, we can make the values of f(x) within an arbitrary distance ε from 5 by taking the values of x within a distance $\varepsilon/2$ from 3 (but $x \neq 3$). This is a precise way of saying that f(x) is close to 5 when x is close to 3. Note that (1) can be rewritten as follows:

DEFINITION 1. Let f(x) be a function defined for all x in some open interval containing the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write

$$\lim_{x \to a} f(x) = L,$$

if for every number $\epsilon > 0$ we can find a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$.

REMARK 2. For a limit from the right we need only assume that f(x) is defined on an interval (a, b) extending to the right of a and that the ϵ condition is met for x in an interval $a < x < a + \delta$ extending to the right of a. A similar adjustment must be made for a limit from the left.

A general form of a limit proof

Assume that we are given a positive number ϵ , and we try to prove that we can find a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$.

There are two things to do:

- 1. Preliminary analysis of the problem (guessing a value for δ);
- 2. Proof (showing that the δ works).

Note that the value of δ is not unique. Namely, once we have found a value of δ that fulfills the requirements of the definition, then any smaller positive number $\delta_1, \delta_1 < \delta$, will also fulfill those requirements.

EXAMPLE 3. Use the "epsilon-delta" definition to prove that $\lim_{x\to 4} (3x-1) = 11$.

EXAMPLE 4. Use the "epsilon-delta" definition to prove that $\lim_{x\to 5} x^2 = 25$.