Section 3.1: Derivative

DEFINITION 1. The Derivative of a function $f(x)$ at $x=a$ is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Other common notations for the derivative of $y=f(x)$ are $f^{\prime}, \frac{\mathrm{d}}{\mathrm{d} x} f(x)$.
It follows from the definition that the derivative $f^{\prime}(a)$ measures:

- The slope of the tangent line to the graph of $f(x)$ at $(a, f(a))$;
- The instantaneous rate of change of $f(x)$ at $x=a$;
- The instantaneous velocity of the object at time at $t=a$ (if $f(t)$ is the position of an object at time t).

EXAMPLE 2. Given $f(x)=\frac{3}{x+5}$.
(a) Find the derivative of $f(x)$ at $x=-3$.
(b) Find the equation of the tangent line of $y=f(x)$ at $x=-3$.

Question: Where does a derivative not exist for a function?

DEFINITION 3. A function $f(x)$ is said to be differentiable at $x=a$ if $f^{\prime}(a)$ exists. EXAMPLE 4. Refer to the graph above to determine where $f(x)$ is not differentiable.

CONCLUSION: A function $f(x)$ is NOT differentiable at $x=a$ if

- $f(x)$ is not continuous at $x=a$;
- $f(x)$ has a sharp turn at $x=a$ (left and right derivatives are not the same);
- $f(x)$ has a vertical tangent at $x=a$.

THEOREM 5. If f is differentiable at a then f is continuous at a.
The derivative as a function: If we replace a by x in Definition 1 we get:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

A new function $g(x)=f^{\prime}(x)$ is called the derivative of f.
EXAMPLE 6. Use the graph of $f(x)$ below to sketch the graph of the derivative $f^{\prime}(x)$.

EXAMPLE 7. Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\sqrt{1+3 x}$.

EXAMPLE 8. Each limit below represents the derivative of function $f(x)$ at $x=a$. State f and a in each case.
(a) $\lim _{h \rightarrow 0} \frac{(3+h)^{4}-81}{h}$
(b) $\lim _{x \rightarrow \frac{3 \pi}{2}} \frac{\sin x+1}{x-\frac{3 \pi}{2}}$

