3.11: Differentials; Linear Approximations

Differentials: If x changes from x_{1} to x_{2}, then the change in x is

$$
\Delta x=x_{2}-x_{1} .
$$

If $y=f(x)$ then corresponding change in y is

$$
\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

DEFINITION 1. Let $y=f(x)$, where f is a differentiable function. Then the differential $\mathrm{d} x$ is an independent variable (i.e. $\mathrm{d} x$ can be given the value of any real number). The differential $\mathrm{d} y$ is then defined in terms of $\mathrm{d} x$ by the equation

$$
\mathrm{d} y=f^{\prime}(x) \mathrm{d} x
$$

EXAMPLE 2. Compare the values of Δy and $\mathrm{d} y$ if

$$
y=f(x)=x^{2}-2 x
$$

and x changes from 3 to 3.01. Illustrate these quantities graphically.

REMARK 3. Notice that $\mathrm{d} y$ was easier to compute than Δy. For more complicated functions (for example $y=\cos x$) it may be impossible to compute Δy exactly.

CONCLUSION: $\Delta y \approx \mathrm{~d} y$ provided we keep Δx small.

EXAMPLE 4. A sphere was measured and its radius was found to be 15 inches with a possible error of no more that 0.02 inches. If we use this value of the radius, find the following quantities:
(a) the maximum possible error in the volume of the sphere;
(b) the relative error in the radius of the sphere;
(c) the relative error in the volume of the sphere.

Linear Approximation: The function

$$
L_{a}(x)=f(a)+f^{\prime}(a)(x-a)
$$

(whose graph, $y=L_{a}(x)$, is the tangent line to the curve $y=f(x)$ at the points $(a, f(a))$) is called the linearization of f at a. The approximation $f(x) \approx L_{a}(x)$ or

$$
\begin{equation*}
f(x) \approx f(a)+f^{\prime}(a)(x-a) \tag{1}
\end{equation*}
$$

is called the linear approximation or tangent line approximation of f at a.

Rewriting the formula (1) when $x=a+\Delta x$, we get the following "approximation by differentials" formula:

EXAMPLE 5. Determine the linaerization and the linear approximation for $\sin x$ at $a=0$. Then find $\sin (0.000007)$.

EXAMPLE 6. Use a linear approximation (or differentials) or to find an approximate value for $\sin 31^{\circ}$.

EXAMPLE 7. Use a linear approximation (or differentials) to find an approximate value for $\sqrt[4]{0.98}$.

