Section 3.5: Chain Rule

Question: How to find the derivatives of the following functions:

$$
y=\left(x^{6}+4 x^{2}+12\right)^{15} ; \quad y=\sec \left(12 x^{2}\right)+\tan ^{3}(x) \quad y=\sqrt[3]{4+x}
$$

Review of Composite Functions:

$$
[f \circ g](x)=f(g(x))
$$

If $f(x)=x^{15}$ and $g(x)=x^{6}+4 x^{2}+12$ then $[f \circ g](x)=$
Conversely, if $[f \circ g](x)=\sec \left(12 x^{2}\right)$ then $f(x)=\quad$ and $g(x)=$
The CHAIN RULE: If the derivatives $g^{\prime}(x)$ and $f^{\prime}(x)$ both exist, and $F=f \circ g$ is the composite defined by

$$
F(x)=f(g(x))
$$

then

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Leibniz notation: If the derivatives of $y=f(u)$ and $u=g(x)$ both exist then

$$
y=f(g(x))
$$

is differentiable function of x and

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

$y=f(x)$	$u(x)$	$f(u)$	$\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\begin{aligned} & y= \\ & \left(x^{6}+4 x^{2}+12\right)^{15} \end{aligned}$	$\begin{gathered} u= \\ u^{\prime}= \end{gathered}$	$\begin{aligned} & y= \\ & y^{\prime}= \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=$
$y=\sec \left(12 x^{2}\right)$	$\begin{gathered} u= \\ u^{\prime}= \end{gathered}$	$\begin{aligned} & y= \\ & y^{\prime}= \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=$
$y=\tan ^{3}(x)$	$\begin{gathered} u= \\ u^{\prime}= \end{gathered}$	$\begin{aligned} & y= \\ & y^{\prime}= \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=$
$y=\sqrt[3]{4+x}$	$\begin{aligned} & u= \\ & u^{\prime}= \end{aligned}$	$\begin{aligned} & y= \\ & y^{\prime}= \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=$
$y=[g(x)]^{n}$	$\begin{aligned} & u= \\ & u^{\prime}= \end{aligned}$	$\begin{aligned} & y= \\ & y^{\prime}= \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=$ Generalized Power Rule

EXAMPLE 1. Find the derivative:
(a) $f(x)=\frac{1}{\left(x^{3}+5 x^{2}+12\right)^{2012}}$
(b) $h(x)=x^{8}(3 \sqrt{x}-11)^{8}$
(c) $f(x)=\cos (5 x)+\cos ^{5} x$
(d) $f(x)=\sqrt{x^{3}+\sqrt{x^{2}+\sqrt{x}}}$

EXAMPLE 2. Find F^{\prime} and G^{\prime} if

$$
F(x)=f(\sin x), \quad G(x)=\sin (f(x)),
$$

where $f(x)$ is a differentiable function.

EXAMPLE 3. Let $f(x)$ and $g(x)$ be given differentiable functions satisfy the properties as shown in the table below:

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-5	8	3	12
3	1	2	-2	8

