3.8: Higher Derivatives

The derivative of a differentiable function f is also a function and it may have a derivative of its own:

$$
\begin{aligned}
\left(f^{\prime}\right)^{\prime} & =f^{\prime \prime} \quad \text { second derivative } \\
f^{\prime \prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(f^{\prime}(x)\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right)
\end{aligned}
$$

Alternative Notation: If $y=f(x)$ then

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=D^{2} f(x)
$$

Similarly, the third derivative $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ or

$$
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)=\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=D^{3} f(x) .
$$

In general, the $n^{\text {th }}$ derivative of $y=f(x)$ is denoted by $f^{(n)}(x)$:

$$
y^{(n)}=f^{(n)}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}^{n-1} y}{\mathrm{~d} x^{n-1}}\right)=D^{n} f(x) .
$$

EXAMPLE 1. If $y=x^{5}+3 x+1$ find $f^{(n)}(x)$

EXAMPLE 2. Find $D^{2013} \sin x$.

Implicit second derivatives:

EXAMPLE 3. Find $y^{\prime \prime}(x)$ if $x^{6}+y^{6}=66$.

