3.9: Slopes and tangents of parametric curves

Consider a curve C given by the parametric equations

$$
x=x(t), \quad y=y(t)
$$

or in vector form:

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle .
$$

If both $x(t)$ and $y(t)$ are differentiable, then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle
$$

is a vector that is tangent to C. Its slope is:

$$
\text { slope }=
$$

Another way to see this is by using the Chain Rule. We have $y=y(x(t))$ and then

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

which implies

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}
$$

EXAMPLE 1. Find the equation of tangent line to the curve

$$
x(t)=\sin t, \quad y(t)=\tan t
$$

at the point corresponding to $t=\frac{\pi}{4}$.

EXAMPLE 2. Find the equation of tangent line to the curve

$$
x(t)=t+1, \quad y(t)=t^{2}+4
$$

at the $(2,5)$.

EXAMPLE 3. Find the points on the curve

$$
x=t+t^{2}, \quad y=t^{2}-t
$$

where the tangent lines are horizontal and there they are vertical.

REMARK 4. It may happen that $x^{\prime}(t)=y^{\prime}(t)=0$ for some value of t.
Illustration 1. $x(t)=t^{3}, y(t)=t^{3}$

Illustration 2. $x(t)=t^{3}, y(t)=t^{2}$

EXAMPLE 5. Show that the curve

$$
x=\cos t, \quad y=\cos t \sin t
$$

has two tangents at $(0,0)$ and find their equations.

