4.1: Exponential functions and their derivatives

An exponential function is a function of the form

$$f(x) = a^x$$

where a is a positive constant. It is defined is the following manner:

- If x = n, a positive integer, then $a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ factors}}$
- If x = 0 then $a^0 = 1$.
- If x = -n, n is a positive integer, then $a^{-n} = \frac{1}{a^n}$.
- If x is a rational number, $x = \frac{p}{q}$, with p and q integers and q > 0, then

$$a^x = a^{\frac{p}{q}} = \sqrt[q]{a^p}.$$

• If x is an irrational number then we define

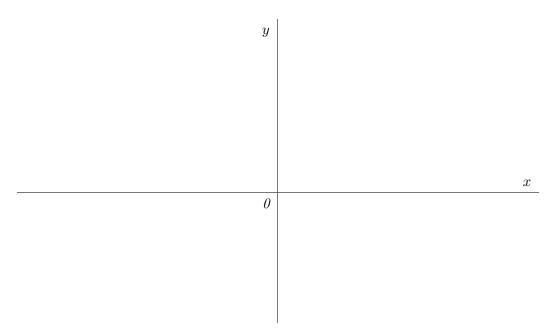
$$a^x = \lim_{r \to x} a^r$$

where r is a rational number.

It can be shown that this definition uniquely specifies a^x and makes the function $f(x) = a^x$ continuous. There are basically 3 kinds of exponential functions $y = a^x$:

Exponential growth		Constant		Exponential Decay	
$y = a^x, a > 1$		$y = 1^x, a = 1$		$y = a^x, 0 < a < 1$	
y		y		y	
	1		1		1
	x		x		x
0		0		0	
Domain:		Domain:		Domain:	
Range:		Range:		Range:	
$\lim a^x =$				$\lim a^x =$	
$\lim a^x =$				$\lim a^x =$	
Domain: Range: $\lim_{x \to \infty} a^x =$		Domain:		Domain: Range: $\lim_{x \to \infty} a^x =$	1

EXAMPLE 1. (a) Find $\lim_{x \to \infty} (4^{-x} - 3)$ (b) Sketch the graph of the function $y = 4^{-x} - 3$ using transformations of graphs.



PROPERTIES OF THE EXPONENTIAL FUNCTION: If a, b > 0 and x, y are real then

1.
$$a^{x+y} = a^x a^y$$
 2. $a^{x-y} = \frac{a^x}{a^y}$ 3. $(a^x)^y = a^{xy}$ 4. $(ab)^x = a^x b^x$.

EXAMPLE 2. Find the limit:

(a)
$$\lim_{x\to\infty} \left(\frac{\pi}{7}\right)^x$$

(b)
$$\lim_{x \to -\infty} (\pi^2 - 7)^x$$

(c)
$$\lim_{x \to 3^+} \left(\frac{1}{7}\right)^{\frac{x}{x-3}}$$

There are in fact a variety of ways to define e. Here are a two of them:

1.
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

2. *e* is the unique positive number for which $\lim_{h\to 0} \frac{e^h - 1}{h} = 1$.

It can be also shown that $e \approx 2.71828$.

 $Geometric\ interpretation:$

EXAMPLE 3. Find the limit:

(a)
$$\lim_{x \to 1^+} e^{\frac{4}{x-1}}$$

(b)
$$\lim_{x \to 1^{-}} e^{\frac{4}{x-1}}$$

(c) $\lim_{x \to \infty} \frac{e^{5x} - e^{-5x}}{e^{5x} + e^{-5x}}$

Derivative of exponential function.

EXAMPLE 4. Find the derivative of $f(x) = e^x$.

CONCLUSIONS:

- 1. e^x is differentiable function.
- 2. If u(x) is a differentiable function then by Chain Rule: $\frac{\mathrm{d}}{\mathrm{d}x}e^{u(x)} = e^u \frac{\mathrm{d}u}{\mathrm{d}x}$. EXAMPLE 5. Find y'' for e^{x^2} .

EXAMPLE 6. Find the derivative:

(a)
$$y = \sqrt{e^x + x^3}$$

(b) $y = e^{x \sin x}$

EXAMPLE 7. For what value(s) of A does the function $y = e^{Ax}$ satisfy the equation y'' + 2y' - 8y = 0?