4.1: Exponential functions and their derivatives

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where a is a positive constant. It is defined is the following manner:

- If $x=n$, a positive integer, then $a^{n}=\underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text { factors }}$
- If $x=0$ then $a^{0}=1$.
- If $x=-n, n$ is a positive integer, then $a^{-n}=\frac{1}{a^{n}}$.
- If x is a rational number, $x=\frac{p}{q}$, with p and q integers and $q>0$, then

$$
a^{x}=a^{\frac{p}{q}}=\sqrt[q]{a^{p}}
$$

- If x is an irrational number then we define

$$
a^{x}=\lim _{r \rightarrow x} a^{r}
$$

where r is a rational number.
It can be shown that this definition uniquely specifies a^{x} and makes the function $f(x)=a^{x}$ continuous.

There are basically 3 kinds of exponential functions $y=a^{x}$:

PROPERTIES OF THE EXPONENTIAL FUNCTION:

If $a, b>0$ and x, y are real then

1. $a^{x+y}=a^{x} a^{y}$
2. $a^{x-y}=\frac{a^{x}}{a^{y}}$
3. $\left(a^{x}\right)^{y}=a^{x y}$
4. $(a b)^{x}=a^{x} b^{x}$.

EXAMPLE 1. Find the limit:
(a) $\lim _{x \rightarrow \infty}\left(4^{-x}-3\right)$
(b) $\lim _{x \rightarrow \infty}\left(\frac{\pi}{7}\right)^{x}$
(c) $\lim _{x \rightarrow-\infty}\left(\pi^{2}-7\right)^{x}$
(d) $\lim _{x \rightarrow 3^{+}}\left(\frac{1}{7}\right)^{\frac{x}{x-3}}$

There are in fact a variety of ways to define e. Here are two of them:

1. $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
2. e is the unique positive number for which $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.

It can be also shown that $e \approx 2.71828$.
EXAMPLE 2. Find the limit:
(a) $\lim _{x \rightarrow 1^{+}} e^{\frac{4}{x-1}}$
(b) $\lim _{x \rightarrow 1^{-}} e^{\frac{4}{x-1}}$
(c) $\lim _{x \rightarrow \infty} \frac{e^{5 x}-e^{-5 x}}{e^{5 x}+e^{-5 x}}$

Derivative of exponential function.

EXAMPLE 3. Find the derivative of $f(x)=e^{x}$.

CONCLUSIONS:

1. e^{x} is differentiable function.
2. If $u(x)$ is a differentiable function then by Chain Rule: $\frac{\mathrm{d}}{\mathrm{d} x} e^{u(x)}=e^{u} \frac{\mathrm{~d} u}{\mathrm{~d} x}$.

EXAMPLE 4. Find the derivative of the function $f(x)=e^{x \sin x}$.

EXAMPLE 5. For what value(s) of A does the function $y=e^{A x}$ satisfy the equation $y^{\prime \prime}+2 y^{\prime}-8 y=0$?

