4.4: Derivatives of Logarithmic Functions

EXAMPLE 1. Using Implicit Differentiation find the derivatives of the following function:
(a) $f(x)=\ln x$
(b) $f(x)=a^{x}$

Combining the formulas obtained in Example 1 and Chain Rule one can get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (g(x))=
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} x} a^{g(x)}=
$$

EXAMPLE 2. Find the derivative:
(a) $f(x)=\ln (\sin x)$
(b) $f(x)=\ln (1+\ln (1+\ln x))$
(c) $f(x)=\ln |x|$
(d) $f(x)=\cot ^{3} x+3^{\cot x}$

EXAMPLE 3. Using the change of base formula, find the derivative formula for $f(x)=\log _{a} x$ and generalize it using the Chain Rule.

EXAMPLE 4. Find the derivative of $f(x)=\log _{2}\left(3+x^{2}+x^{3}\right)$

Logarithmic Differentiation can be used to find derivative of complicated functions involving products, quotients or powers.

STEPS IN LOGARITHMIC DIFFERENTIATION:

1. Take logarithms of both sides of an equation $y=f(x)$ and simplify (f.ex. split a product or quotient, etc.).
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y^{\prime}.
4. Plug in $y=f(x)$.

EXAMPLE 5. Find the derivative: $y=(\cos x)^{\sin x}$

