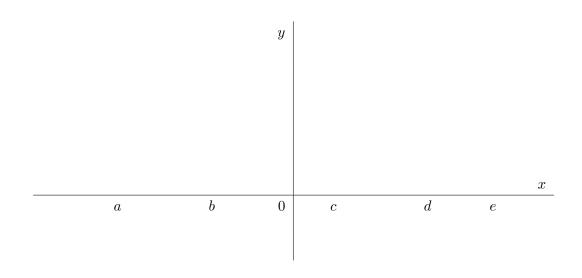
5.2: Maximum and Minimum Values

DEFINITION 1. Let D be the domain of a function f.

- A function f has an absolute maximum (or global maximum) at x = c if $f(c) \ge f(x)$ for all x in D. In this case, we call f(c) the maximum value.
- A function f has an absolute minimum (or global minimum) at x = c if $f(c) \le f(x)$ for all x in D. In this case, we call f(c) the minimum value.

The maximum and minimum values of f on D are called the **extreme values** of f.

DEFINITION 2. A function f has a local maximum at x = c if $f(c) \ge f(x)$ when x is near c (i.e. in a neighborhood of c). A function f has a local minimum at x = c if $f(c) \le f(x)$ when x is near c.



EXAMPLE 3. Find the absolute and local extrema of f by sketching its graph:

(a)
$$f(x) = x^2, -1 \le x \le 3$$

y	
	x
0	

	Local	Ab solute	Value
Maximum			
Minimum			

(b)
$$f(x) = x^2, -3 \le x \le 3$$

y	
	x
0	

	Local	Absolute	Value
Maximum			
Minimum			

	<i>,</i> ,		e.	/ \			9
((\mathbf{c})) :	† ((x)) =	=	x^2

y	
	x
0	

	Local	Ab solute	Value
Maximum			
3.61			
Minimum			

(d) $f(x) = x^3$

y	
	x
0	

	Local	Ab solute	Value
Maximum			
Minimum			

(e) $f(x) = \frac{1}{x}$, $0 < x \le 3$

y		
		x
0		

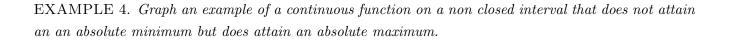
	Local	Absolute	Value
Maximum			
Minimum			

(f) $f(x) = \begin{cases} x^4 & \text{if } -1 \le x < 0 \\ 2 - x^4 & \text{if } 0 \le x \le 1 \end{cases}$

		Local	Absolute	Value
	Maximum			
-				
	Minimum			

y	
	x
0	

Extreme Value Theorem: If f is a continuous function on a closed interval [a, b], then f attains both an absolute maximum and an absolute minimum.



EXAMPLE 5. Graph an example of a function that is not continuous at a point in the given interval and yet has both absolute extrema.

DEFINITION 6. A critical number of f(x) is a number c is in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Illustration:

EXAMPLE 7. Find the critical numbers of f(x):

(a)
$$f(x) = x^3 - 3x^2 + 3x$$

(b)
$$f(x) = |4 - x^2|$$

(c)
$$f(x) = x^{2/5}(5-x)$$

(d)
$$f(x) = x \ln x$$

EXAMPLE 8. Find the absolute extrema for f(x) on the interval I where

(a)
$$f(x) = x^3 - 3x^2 + 3x$$
, $I = [-1, 3]$

(b)
$$f(x) = \sqrt{3}x^2 + 2\cos x^2$$
, $I = \left[\frac{\sqrt{\pi}}{2}, \sqrt{\pi}\right]$